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Motivation and General Picture



The community has developed many AI/ML tools 
for making decisions in practical systems, e.g. 

power systems, transportation …

But it’s hard to see them being widely used …



How can we better introduce 
AI in practice to help make 
critical online decisions?

The community has developed many AI/ML tools 
for making decisions in practical systems, e.g. 

power systems, transportation …

But it’s hard to see them being widely used …



Going From Digital to Physical Worlds …

Physical World

Embodied 
AI

Power Systems

Autonomous Driving

Digital World

…



Key Challenges:

1. Environments are more complicated and more sensitive to 

mistakes 

2. Many existing and well-established industrial methods that are 

hard to be replaced entirely (more unique in power systems)

e.g. Control Agent: Why should I use RL for scheduling?

Digital World

What Makes the AI Methods Less Responsible?

Physical World



Some Quick Thoughts



Classic Problems and Methods Machine-Learned Predictions

Online Optimization

Online Algorithms

Linear Controller

Bandit Problems MDP
?

Idea: Use Classic Methods as Backup Plans!

Black-Box



Consistent ML Algorithm (Good when  is small) ε

Consistency vs Robustness Trade-off

Prediction error ε

e.g. Competitive ratio 𝖢𝖱(ε)

0

1

Robust Classic Algorithm (Good when  is large) εγ

Intermediate Regimes

Meta-algorithms

(by varying a trust parameter )λ

The Goal of Learning-Augmented Algorithms

Performance Benchmark



General Goal of Learning-Augmented Algorithms

Consistency vs Robustness Trade-off

Prediction error ε
0

1

λ = 0γ

First Limitation

λ = 0.2
λ = 0.5
λ = 0.7
λ = 1

Competitive ratio 𝖢𝖱(ε)

Which  should I choose? (  is unknown)λ ε

(We can ask the same question for any learning-augmented online algorithms)

Not sure what  is optimal …λ



Issue: Prediction error  is not known a prioriε

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error ε

Prediction error ε
0

1

λ = 0γ
λ = 0.2
λ = 0.5
λ = 0.7
λ = 1

Competitive ratio 𝖢𝖱(ε)

First Limitation

Can we automatically adjust  ?λ



General Goal of Learning-Augmented Algorithms

Consistency vs Robustness Trade-off

Prediction error ε
0

1

λ = 0γ

One Solution: Online Learning

λ = 0.2
λ = 0.5
λ = 0.7
λ = 1

Idea: • use history to automatically select 

• the system can self-tune

• online learning 

λ

[Li et. al. SIGMETRICS 2022] [Khodak et. al. NeurIPS 2022] 

[Lin et. al. Preprint 2023] …

Competitive ratio 𝖢𝖱(ε)

[Li et. al. NeurIPS 2024] 



Second Limitation

• The machine learning tools are considered as

learning-augmented online algorithms
prediction

• Structural information of the model and ML tools can be helpful

black-boxes

• specific forms of predictions

• grey-box ML models (Q-value functions of value-based policies)

[Li et. al. SIGMETRICS 2022] 

[Li et. al. Preprint 2023] 

• can be used to self-tune  (second solution)λ



Second Limitation

• The machine learning tools are considered as

Classic Algorithms

ñ

• Structural information of the model and ML tools can be helpful

black-boxes

• specific forms of predictions

• grey-box ML models (Q-value functions of value-based policies)

[Li et. al. SIGMETRICS 2022] 

[Li et. al. Preprint 2023] 

• can be used to self-tune  (second solution)λ

λt

• Learning-augmented —> Learning-infused

• Q-learning

• Linear Regression

• Multi-arm bandit



不准确预测

不可信AI建议

Ski-rental

Online Set Cover

Convex Body Chasing Suggested Actions [Christianson et. al. COLT 2022]

Number of Skiing Days

Predicted Covering [Bamas et. al. NeurIPS 2020]

[Antoniadis et. al. NeurIPS 2020]
Secretary Problem

Online Bipartite Matching

Maximum Price

Adjacent Edge-weights

[Purohit et. al. NeurIPS 2018][Wei et. al. NeurIPS 2020]

Online Subset Sum Decision [Xu et. al. Journal of Global Optimization 2022]

… …

Linear Quadratic Control System Perturbations [Li et. al. SIGMETRICS 2022]

Q Learning

Value-Based RL

Q-Value Functions

Q-Value Functions (灰盒)/Actions (黑盒) [Li et. al. NeurIPS 2023]

[Golowich et. al. NeurIPS 2022]

Learning-Augmented Algorithms

Online Problems

Over 100 topics on this website: https://algorithms-with-predictions.github.io/

[Li et. al. NeruIPS 2024]

Imperfect Predictions

Black-box AI/ML Advice

Stochastic Game Type Beliefs [Li et. al. NeurIPS 2024]



Methods and Results



Decision-Making Problem AI MethodClassic Method

Existing Augment

Redesign

Partial Solution: Combine Classic and AI Algorithms

•AI tools make decisions alone help classic algorithms make decisions

•Goal: take advantage of both worlds

worst-case guarantees on average

How to combine them?

•Convex combination

•Switching

•Projection … 



Decision-Making Problem AI MethodClassic Method

Existing Augment

Redesign

Partial Solution: Combine Classic and AI Algorithms

•AI tools make decisions alone help classic algorithms make decisions

•Goal: take advantage of both worlds

worst-case guarantees on average

How to combine them?

•Convex combination

•Switching

•Projection … 

Next: Stepping into concrete examples



Decision-Making Problem ML PredictionsClassic Method

Existing

•Classic methods that are existing and have worst-case guarantees

•AI methods that are better on average

•Augment ML predictions or advice to the classic method and redesign algorithms

Augment

Redesign

Learning-Augmented Algorithms

Partial Solution: Combine Classic and AI Algorithms



•Goal: take advantage of both worlds

How to combine them?

•Convex combination

•Switching

•Projection … 

ML AgentClassic Agent

π : 𝖷 → 𝖴 π̃ : 𝖷 → 𝖴

State Space: 𝖷
Action Space: 𝖴

Revisit: Combine Classic and ML Algorithms



Combining Classic and ML Agents

•Goal: take advantage of both worlds

How to combine them?

•Convex combination

•Switching

•Projection … Next: Stepping into concrete examples

ML AgentClassic Agent

π : 𝖷 → 𝖴 π̃ : 𝖷 → 𝖴

State Space: 𝖷
Action Space: 𝖴



ML AgentClassic Agent

Concrete Models

π : 𝖷 → 𝖴 π̃ : 𝖷 → 𝖴

State Space: 𝖷
Action Space: 𝖴

System Model Classic Agent ML Agent

LQR MPC+Perturbation Predictions [SIGMETRICS ’22]Linear Dynamics



System Model Classic Agent ML Agent

LQR MPC+Perturbation Predictions [SIGMETRICS ’22]

NonLinear Dynamics

Linear Dynamics

LQR Black-Box RL [OJCSYS ’23]

Concrete Models

ML AgentClassic Agent

π : 𝖷 → 𝖴 π̃ : 𝖷 → 𝖴

State Space: 𝖷
Action Space: 𝖴



Decision-Making Problem AI MethodClassic Method

Linear Quadratic Control

Linear Quadratic Control Linear Quadratic Regulator MPC with Perturbation Predictions

xt+1 = ft(xt, ut) = Axt + But + wt

T−1

∑
t=0

x⊤
t Qxt + u⊤

t Rut + x⊤
T Qf xT

Dynamics

Costs



xt+1 = ft(xt, ut) = Axt + But + wt

Dynamics Total Cost

T−1

∑
t=0

x⊤
t Qxt + u⊤

t Rut + x⊤
T Qf xT

xt−1

xt

xt

Action

State

ut
ftController Device w0, …, wt−1

System Perturbations

ML 
Predictions

w̃ 0, …, w̃ T−1

w̃ 0, …, w̃ T−1

Machine-Learned Perturbations

, A, B

Q, R, Qf ≻ 0

•The system is stabilizable

• 

Linear Quadratic Control



xt+1 = ft(xt, ut) = Axt + But + wt

Dynamics Total Cost

T−1

∑
t=0

x⊤
t Qxt + u⊤

t Rut + x⊤
T Qf xT

xt−1

xt

xt

Action

State

ut
ftController Device w0, …, wt−1

System Perturbations

ML 
Predictions

w̃ 0, …, w̃ T−1

w̃ 0, …, w̃ T−1

Machine-Learned Perturbations

, A, B

[2005, Mayne et al.] Robust Model Predictive Control of Constrained Linear Systems with Bounded Disturbances
[2019, Lopez et al.] Dynamic Tube MPC for Nonlinear Systems

[2022, Bujarbaruah et al.] Robust MPC for Linear Systems with Parametric and Additive Uncertainty: A Novel Constraint Tightening Approach

Robust MPC cannot actively adapt based on predictions

Linear Quadratic Control



Cost induced by an online algorithm with prediction error ε

Performance Benchmark

𝖢𝖱 := max
ε≥0

𝖢𝖱(ε)

𝖠𝖫𝖦(ε) :=

𝖮𝖯𝖳 := Optimal cost knowing  in hindsight         w0, …, wt−1

𝖢𝖱(ε) := max
w, w̃ :d(w, w̃ )≤ε

𝖠𝖫𝖦(ε)
𝖮𝖯𝖳

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error 
ε

•Be aggressive if  is small ε
•Be conservative if  is largeεIdea:



ε :=
T−1

∑
t=0

T−1

∑
τ=t

(F⊤)τ−t P(wt − w̃ t)
2

Solution of DAREP :=

F := A − BK = A − B(R + B⊤PB)−1B⊤PA

Prediction Error

Prediction error measures “how good the ML predictions are”

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error 
ε



ε :=
T−1

∑
t=0

T−1

∑
τ=t

(F⊤)τ−t P(wt − w̃ t)
2

weighted sum

•Simplify expressions in our analysisQuick Answer:

Why is it a “weighted sum”?

Prediction Error

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error 
ε

•Per-step error impact is not uniform in a dynamical system

•It is actually the “error in the actions”

More fundamental Answers:

•Impact decays exponentially



Model Predictive Control

ut = π̃(xt) := argmin(ut,…,uT−1) (
T−1

∑
τ=t

(x⊤
τ Qxτ + u⊤

τ Ruτ) + x⊤
T PxT)

xτ+1 = Axτ + Buτ + w̃ τ, ∀τ = t, …, T − 1.

Good when  is small ε

(MPC as a widely used control policy …)

π̃(xt) = − (R + B⊤PB)−1B⊤ (PAxt +
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)
(Explicit Expressions [2020 Yu et al.] )

[2020 Yu et al.] The power of predictions in online control, NeurIPS, 2020 



π̃(xt) = − (R + B⊤PB)−1B⊤ (PAxt +
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)
π(xt) = − (R + B⊤PB)−1B⊤PAxt = − Kxt

(Optimal linear controller for LQR with Gaussian perturbations)

Taking benefit of Two Policies  …

Drop the predictions

Good when  is small ε

Good when  is largeε



MPC Policy + LQR Policy 

λπ̃(xt)+

How about a convex combination?

Trust Parameter

(1 − λ)π(xt)

π̃(xt) = − (R + B⊤PB)−1B⊤ (PAxt +
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)
π(xt) = − (R + B⊤PB)−1B⊤PAxt = − Kxt

(LQR; optimal with Gaussian perturbations)

Drop the predictions

Good when  is small ε

Good when  is largeε

Taking benefit of Two Policies  …



π̃(xt) = − (R + B⊤PB)−1B⊤ (PAxt +
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)

π(xt) = − (R + B⊤PB)−1B⊤PAxt = − Kxt

Trust parameter

“0-confident”

“1-confident”

λπ̃(xt) + (1 − λ)π(xt) = − (R + B⊤PB)−1B⊤ (PAxt + λ
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)“   -confident”λ

-Confident Controlλ



π(xt) = λπ̃(xt) + (1−λ)π(xt) = − (R + B⊤PB)−1B⊤ (PAxt+λ
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)
Trust parameter

“   -confident”λ

(Equivalent to)

π(xt) := argmin(ut,…,uT−1) (
T−1

∑
τ=t

(x⊤
τ Qxτ + u⊤

τ Ruτ) + xTPxT)
xτ+1 = Axτ + Buτ+λ w̃ τ, ∀τ = t, …, T − 1.

Trust parameter

-Confident Controlλ



Decision-Making Problem AI MethodClassic Method

Linear Quadratic Control Linear Quadratic Regulator

π(xt) = − (R + B⊤PB)−1B⊤PAxt = − Kxt

Solution of DAREP :=

F := A − BK = A − B(R + B⊤PB)−1B⊤PA

MPC with Machine Learned Predictions

Revisit Our Paradigm



Decision-Making Problem AI MethodClassic Method

Linear Quadratic Control Linear Quadratic Regulator

π(xt) = − (R + B⊤PB)−1B⊤PAxt = − Kxt

Solution of DAREP :=

F := A − BK = A − B(R + B⊤PB)−1B⊤PA

π̃(xt) := argmin(ut,…,uT−1) (
T−1

∑
τ=t

(x⊤
τ Qxτ + u⊤

τ Ruτ) + x⊤
T PxT)

xτ+1 = Axτ + Buτ + w̃ τ, ∀τ = t, …, T − 1.

MPC with Machine Learned Predictions

Predictions 

Revisit Our Paradigm



Prefect Predictions

MPC with Untrusted Predictions 

π̃(xt) := argmin(ut,…,uT−1) (
T−1

∑
τ=t

(x⊤
τ Qxτ + u⊤

τ Ruτ) + x⊤
T PxT)

Untrusted ML Predictions



MPC with Untrusted Predictions 

Untrusted ML PredictionsPrefect Predictions



Decision-Making Problem AI MethodClassic Method

Linear Quadratic Control Linear Quadratic Regulator

π(xt) = − (R + B⊤PB)−1B⊤PAxt = − Kxt

π̃(xt) = − (R + B⊤PB)−1B⊤ (PAxt +
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)Alternatively,

MPC with Machine Learned Predictions

Revisit Our Paradigm



Decision-Making Problem AI MethodClassic Method

Linear Quadratic Control Linear Quadratic Regulator

π(xt) = − (R + B⊤PB)−1B⊤PAxt = − Kxt

π̃(xt) = − (R + B⊤PB)−1B⊤ (PAxt +
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)Alternatively,

MPC with Machine Learned Predictions
Good when  is small εGood when  is large ε

λπ̃(xt)+

How about a convex combination?

Trust Parameter λ ∈ [0,1]

(1 − λ)π(xt)

Augment

Revisit Our Paradigm



Decision-Making Problem AI MethodClassic Method

Linear Quadratic Control Linear Quadratic Regulator MPC with Machine Learned Predictions
Good when  is small εGood when  is large ε

Augment

Trust parameter

λπ̃(xt) + (1 − λ)π(xt) = − (R + B⊤PB)−1B⊤ (PAxt + λ
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ)“   -confident”λ

Revisit Our Paradigm



Theorem (Informal; SIGMETRICS ’22)

Under model assumptions, with a fixed trust parameter ,  the -confident algorithm has aλ > 0 λ

worst-case competitive ratio of at most

𝖢𝖱(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)

Meta Theorem

•Establish the classic trade-off between “robustness” and “consistency”

•Useful in the proof of the main results

Competitive Ratio Results



Consistency vs Robustness Trade-off

Varying Trust Parameter  λ

•When  is large, the linear component dominates ε

𝖢𝖱(ε) ≤ 1 + 2∥H∥ ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C )

•Selecting different  realizes different performance trade-offs      λ

𝖢𝖱(ε)

1

λ = 0

λ = 0.2
λ = 0.5
λ = 1

εPrediction error

[SIGMETRICS ’22]



Prediction error ε
0

1

λ = 0γ
λ = 0.2
λ = 0.5
λ = 0.7
λ = 1

(  is unknown)ε

What  Should I Choose?λ

𝖢𝖱(ε)



Prediction error ε
0

1

λ = 0γ
λ = 0.2
λ = 0.5
λ = 0.7
λ = 1

(  is unknown)ε

What  Should I Choose?λ

𝖢𝖱(ε)

Can we get the best performance regardless of prediction error? 



λt = argminλ

t−1

∑
s=0 (

t−1

∑
τ=s

(F⊤)τ−s P(wτ − λ w̃ τ))
⊤

H (
t−1

∑
τ=s

(F⊤)τ−s P(wτ − λ w̃ τ))
𝖠𝖫𝖦t−1 − 𝖮𝖯𝖳t−1

⟹ λt =
∑t−1

s=0 (η(w; s, t − 1))⊤ H (η( w̃ ; s, t − 1))
∑t−1

s=0 (η( w̃ ; s, t − 1))⊤ H (η( w̃ ; s, t − 1))
where η(w; s, t) :=

t

∑
τ=s

(F⊤)τ−s Pwτ

“Optimize based on History”

Our Solution: Online Learning Approach

Quadratic function ofλ

•If  and  are closer,  is closer to    w̃ w λt 1

•“Follow-the-leader” design   

•Only previously observed info is needed

•Computational complexity linear in  T



For t = 0,…, T − 1

If t = 0 Initialize λ0

λt =
∑t−1

s=0 (η(w; s, t − 1))⊤ H (η( w̃ ; s, t − 1))
∑t−1

s=0 (η( w̃ ; s, t − 1))⊤ H (η( w̃ ; s, t − 1))

η(w; s, t) :=
t

∑
τ=s

(F⊤)τ−s Pwτ

Else Compute

where

Generate an action using the -confident algorithmλt

Update xt+1 = Axt + But + wt

Self-Tuning Control Algorithm



𝖢𝖱(ε) ≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + Cε
+ O (μ𝖵𝖠𝖱(w) + μ𝖵𝖠𝖱( w̃ ))2

𝖮𝖯𝖳
.

Competitive Ratio Bound for Self-tuning Control

Theorem (Informal; SIGMETRICS ’22)

Under model assumptions, the competitive ratio of the self-tuning control algorithm is bounded by 

μ𝖵𝖠𝖱(x) :=
T−1

∑
s=1

max
τ=0,…,s−1

xτ − xτ+T−s• 

How fast  and  change over 
time

w w̃

“maximal variation” (variation terms appear in many online learning literature)

CR Theorem



𝖢𝖱(ε) ≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + Cε
+ O (μ𝖵𝖠𝖱(w) + μ𝖵𝖠𝖱( w̃ ))2

𝖮𝖯𝖳
.

Competitive Ratio Bound for Self-tuning Control

Theorem (Informal; SIGMETRICS ’22)

•When ε → ∞ ,
ε

𝖮𝖯𝖳 + εC
→

1
C

•When ε = 0 ,
ε

𝖮𝖯𝖳 + εC
= 0

Bounded!

CR Theorem

Under model assumptions, the competitive ratio of the self-tuning control algorithm is bounded by 



𝖢𝖱(ε) ≤ 1 +
O(ε)

Θ(1) + Θ(ε)

Main Results: 𝖢𝖱(ε) ≤ 1 + O(λ2ε)

+ Variation

Apply Our Algorithm



Apply Our Algorithm

Low Error Case: Optimal λ ≈ 1



Medium Error Case: Optimal 0 < λ < 1

Apply Our Algorithm



High Error Case: Optimal λ ≈ 0

Apply Our Algorithm



(  is unknown)ε

What  Should I Choose?λ

𝖢𝖱(ε)

Use online learning to tune λt [SIGMETRICS ’22]

𝖢𝖱(ε) ≤ 1 +
O(ε)

Θ(1) + Θ(ε)
+ 𝖵𝖺𝗋𝗂𝖺𝗍𝗂𝗈𝗇

𝖢𝖱(ε) ≤ 1 + O(λ2ε)

•Without online learning:

•With online learning:

Prediction error  is largeεPrediction error  is smallε



What  Should I Choose?λ

Low Error: Optimal λ ≈ 1

Medium Error: Optimal 0 < λ < 1

High Error: Optimal λ ≈ 0



Apply Our Algorithm

Low Error Case: Optimal λ ≈ 1



Medium Error Case: Optimal 0 < λ < 1

Apply Our Algorithm



High Error Case: Optimal λ ≈ 0

Apply Our Algorithm



Verify the Convergence of Trust Parameters



CR Theorem

𝖢𝖱λ−confident(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)

Sketched Proof

𝖢𝖱self(ε) ≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + Cε
+ O (μ𝖵𝖠𝖱(w) + μ𝖵𝖠𝖱( w̃ ))2

𝖮𝖯𝖳

Meta Theorem    -Confident Controlλ

Self-Tuning Control



Optimize the upper bound over λ𝖠𝖫𝖦(λ*)
𝖮𝖯𝖳

≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + εC

𝖢𝖱λ−confident(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)Meta Theorem    -Confident Controlλ

Sketched Proof



𝖱𝖾𝗀𝗋𝖾𝗍 := 𝖠𝖫𝖦(λ0, …, λT−1) − 𝖠𝖫𝖦(λ*)

Want: 𝖢𝖱self(ε) =
𝖠𝖫𝖦(λ0, …, λT−1)

𝖮𝖯𝖳
(depends on ; omitted)ε

Optimize the upper bound over λ𝖠𝖫𝖦(λ*)
𝖮𝖯𝖳

≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + εC

𝖢𝖱λ−confident(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)Meta Theorem    -Confident Controlλ

Sketched Proof



Want: 𝖢𝖱self(ε) =
𝖠𝖫𝖦(λ0, …, λT−1)

𝖮𝖯𝖳
(depends on ; omitted)ε

𝖲𝗍𝖺𝗍𝗂𝖼 𝖱𝖾𝗀𝗋𝖾𝗍 := 𝖠𝖫𝖦(λ0, …, λT−1) − 𝖠𝖫𝖦(λ*)

Optimize the upper bound over λ𝖠𝖫𝖦(λ*)
𝖮𝖯𝖳

≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + εC

𝖢𝖱λ−confident(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)Meta Theorem    -Confident Controlλ

Sketched Proof



Want: 𝖢𝖱self(ε) =
𝖠𝖫𝖦(λ0, …, λT−1)

𝖮𝖯𝖳
(depends on ; omitted)ε

Regret Lemma

Optimize the upper bound over λ𝖠𝖫𝖦(λ*)
𝖮𝖯𝖳

≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + εC

𝖢𝖱λ−confident(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)Meta Theorem    -Confident Controlλ

𝖲𝗍𝖺𝗍𝗂𝖼 𝖱𝖾𝗀𝗋𝖾𝗍 ≤ ∥H∥
T−1

∑
t=0

λt − λ*
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ

2

Sketched Proof



Want: 𝖢𝖱self(ε) =
𝖠𝖫𝖦(λ0, …, λT−1)

𝖮𝖯𝖳
(depends on ; omitted)ε

Regret Lemma

Optimize the upper bound over λ𝖠𝖫𝖦(λ*)
𝖮𝖯𝖳

≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + εC

𝖢𝖱λ−confident(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)Meta Theorem    -Confident Controlλ

Need a convergence bound𝖲𝗍𝖺𝗍𝗂𝖼 𝖱𝖾𝗀𝗋𝖾𝗍 ≤ ∥H∥
T−1

∑
t=0

λt − λ*
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ

2

Sketched Proof



𝖲𝗍𝖺𝗍𝗂𝖼 𝖱𝖾𝗀𝗋𝖾𝗍 ≤ ∥H∥
T−1

∑
t=0

λt − λ*
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ

2

𝖠𝖫𝖦(λ*)
𝖮𝖯𝖳

≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + εC

𝖢𝖱λ−confident(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)Meta Theorem

Regret Lemma

Lemma: Convergence of  λt λt − λ* = O ( μ𝖵𝖺𝗋(w) + μ𝖵𝖺𝗋( w̃ )
t )

Want: 𝖢𝖱self(ε) =
𝖠𝖫𝖦(λ0, …, λT−1)

𝖮𝖯𝖳
(depends on ; omitted)ε

Sketched Proof



CR Theorem

𝖢𝖱self(ε) ≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + Cε
+ O (μ𝖵𝖠𝖱(w) + μ𝖵𝖠𝖱( w̃ ))2

𝖮𝖯𝖳 Self-Tuning Control

𝖲𝗍𝖺𝗍𝗂𝖼 𝖱𝖾𝗀𝗋𝖾𝗍 ≤ ∥H∥
T−1

∑
t=0

λt − λ*
T−1

∑
τ=t

(F⊤)τ−t P w̃ τ

2

𝖠𝖫𝖦(λ*)
𝖮𝖯𝖳

≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + εC

𝖢𝖱λ−confident(ε) ≤ 1 + 2∥H∥ min ( λ2

𝖮𝖯𝖳
ε +

(1 − λ)2

C ), ( 1
C

+
λ2

𝖮𝖯𝖳
W)Meta Theorem

Regret Lemma

Lemma: Convergence of  λt λt − λ* = O ( μ𝖵𝖺𝗋(w) + μ𝖵𝖺𝗋( w̃ )
t )

Sketched Proof



Prediction Noise σ2

•Empirically works well for the CartPole problem (nonlinear dynamics)

Generalize to Nonlinear Cases



Tradeoff in Linear Models

System Model Classic Agent ML Agent

LQR MPC+Perturbation Predictions

NonLinear Dynamics

Linear Dynamics

LQR Black-Box RL

𝖢𝖱(ε) ≤ 1 + 2∥H∥
ε

𝖮𝖯𝖳 + Cε
+ O ( w, w̃ ) .

Theorem (Informal; SIGMETRICS’22) Consistency vs Robustness

Under model assumptions, there exists an algorithm whose competitive ratio can be bounded by 

Variation of 

Remarks

Convex Combination

Switching

Tradeoffs

Consistency vs Robustness

Consistency vs Stability



Nonlinear Model is Harder

System Model Classic Agent ML Agent

LQR MPC+Perturbation Predictions

NonLinear Dynamics

Linear Dynamics

LQR Black-Box RL

Remarks

Convex Combination

Switching

Tradeoffs

Consistency vs Robustness

Consistency vs Stability

Theorem (Informal; OJCSYS ’23) Consistency vs Stability

Under model assumptions, there exists a policy satisfying

(1) If prediction error is smaller than a threshold, then the competitive ratio can be bounded;

(2) If prediction error is larger than that threshold, then the policy is exponentially stabilizing.



Given Disentangled Predictions in LQC …

•Disentangling time series to obtain higher prediction accuracy (FastICA, nonlinear ICA) 

•Learn to trust each independent components

[3] Joint work with Liu H, Yue Y, 2024.



Informally …

CR(ε) ≤ 1 + O ( ε
Ω(T) + ε ) + O(variability of w) CR(ε) ≤ 1 + O (

k

∑
i=1

ε(i)
Ω(T/w) + ε(i) ) + O(ρ2w)

Without disentangled predictions [1] … With disentangled predictions (this work) …

{

overall prediction error

time horizon

[1] Li T, Yang R, Qu G, Shi G, Yu C, Wierman A, Low S. Robustness and consistency in linear quadratic control with untrusted predictions. ACM SIGMETRICS 2022

prediction window size

summing over disentangled components

closed-loop system spectral radius 

individual component prediction error



CR(ε) ≤ 1 + O (
k

∑
i=1

ε(i)
Ω(T/w) + ε(i) ) + O(ρ2w)

prediction window size

summing over disentangled components

closed-loop system spectral radius 

With disentangled predictions (this work) …

Informally …

individual component prediction error

best-of-both-worlds 

utilization of  

untrusted ML predictions

• If , near-optimal ϵ(i) = 0

• If , bounded CRϵ(i) = ∞



Controlling a drone under challenging windy and rainy weather conditions

disentangled forces

Untrusted Trustworthy 
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