DDA 6201 Online Decision-Making Lecture 11

Application 1: Linear Quadratic Control

Tongxin Li School of Data Science The Chinese University of Hong Kong (Shenzhen)

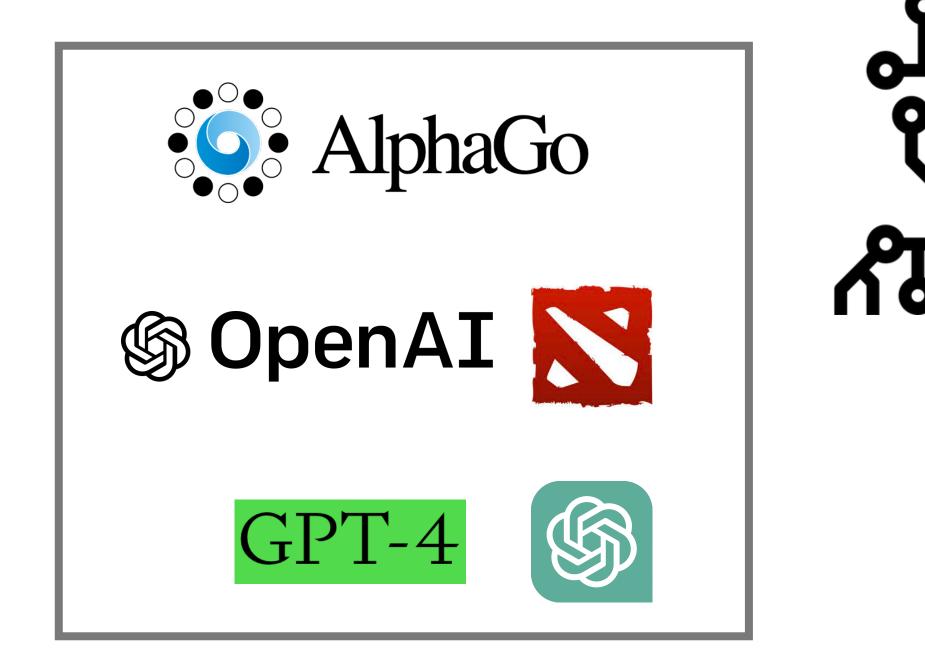
Motivation and General Picture

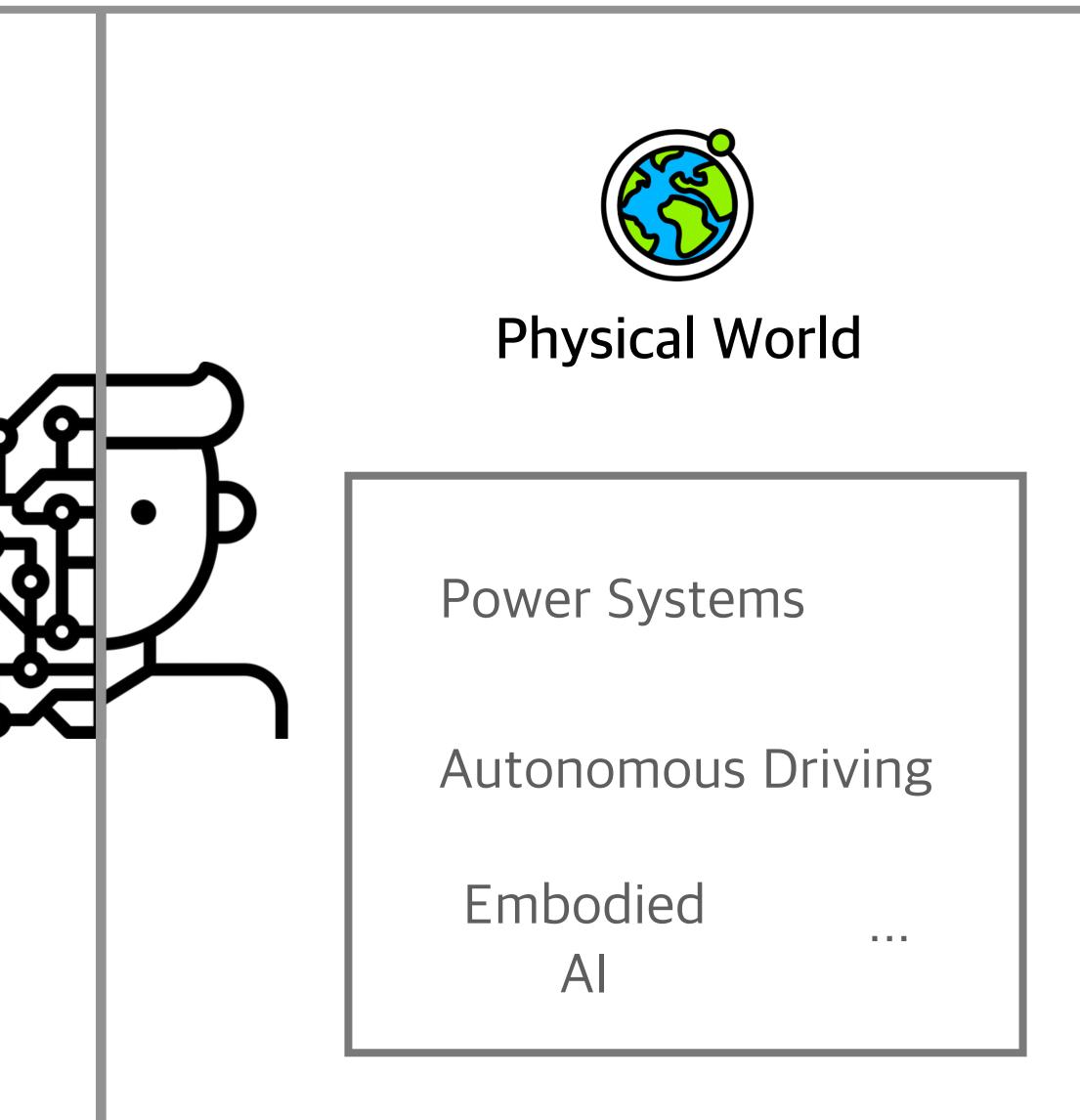
- The community has developed many AI/ML tools for making decisions in practical systems, e.g.
 - power systems, transportation ...
 - But it's hard to see them being widely used \cdots

- The community has developed many AI/ML tools for making decisions in practical systems, e.g.
 - power systems, transportation ...
 - But it's hard to see them being widely used \cdots
- How can we better introduce Al in practice to help make critical online decisions?

Going From Digital to Physical Worlds …

Digital World





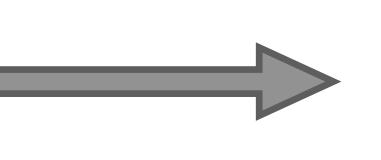
What Makes the AI Methods Less Responsible?

Digital World

Key Challenges:

- 1. Environments are more complicated and more sensitive to mistakes

e.g. Control Agent: Why should I use RL for scheduling?



Physical World

2. Many existing and well-established industrial methods that are hard to be replaced entirely (more unique in power systems)

Some Quick Thoughts

Classic Problems and Methods

Online Optimization

Bandit Problems

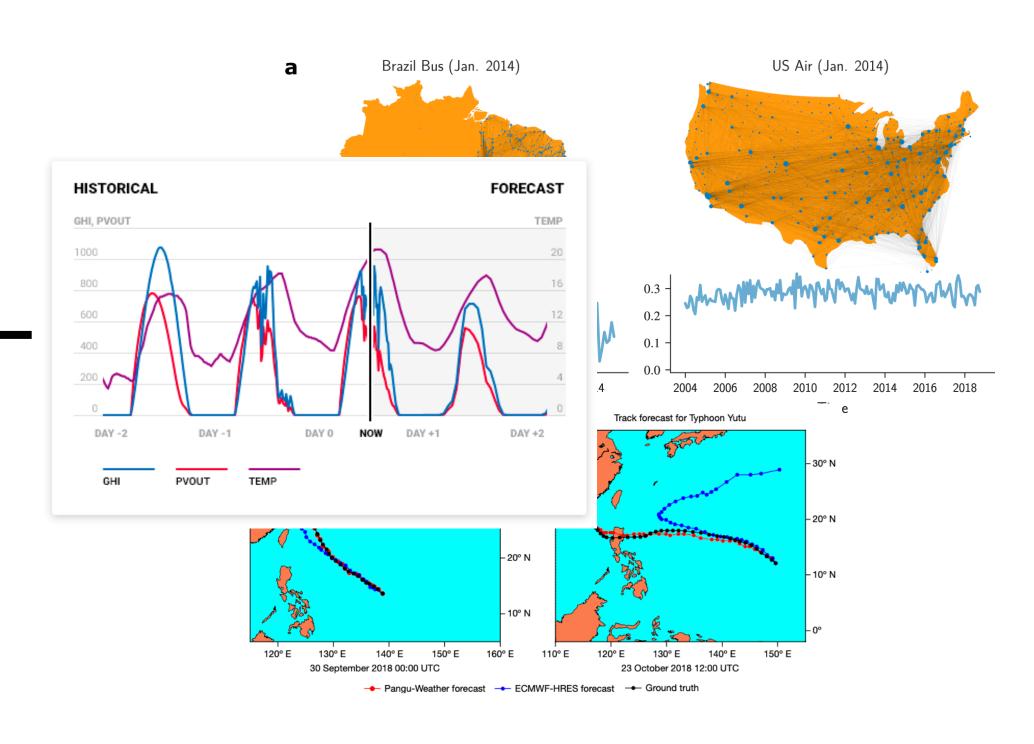
MDP

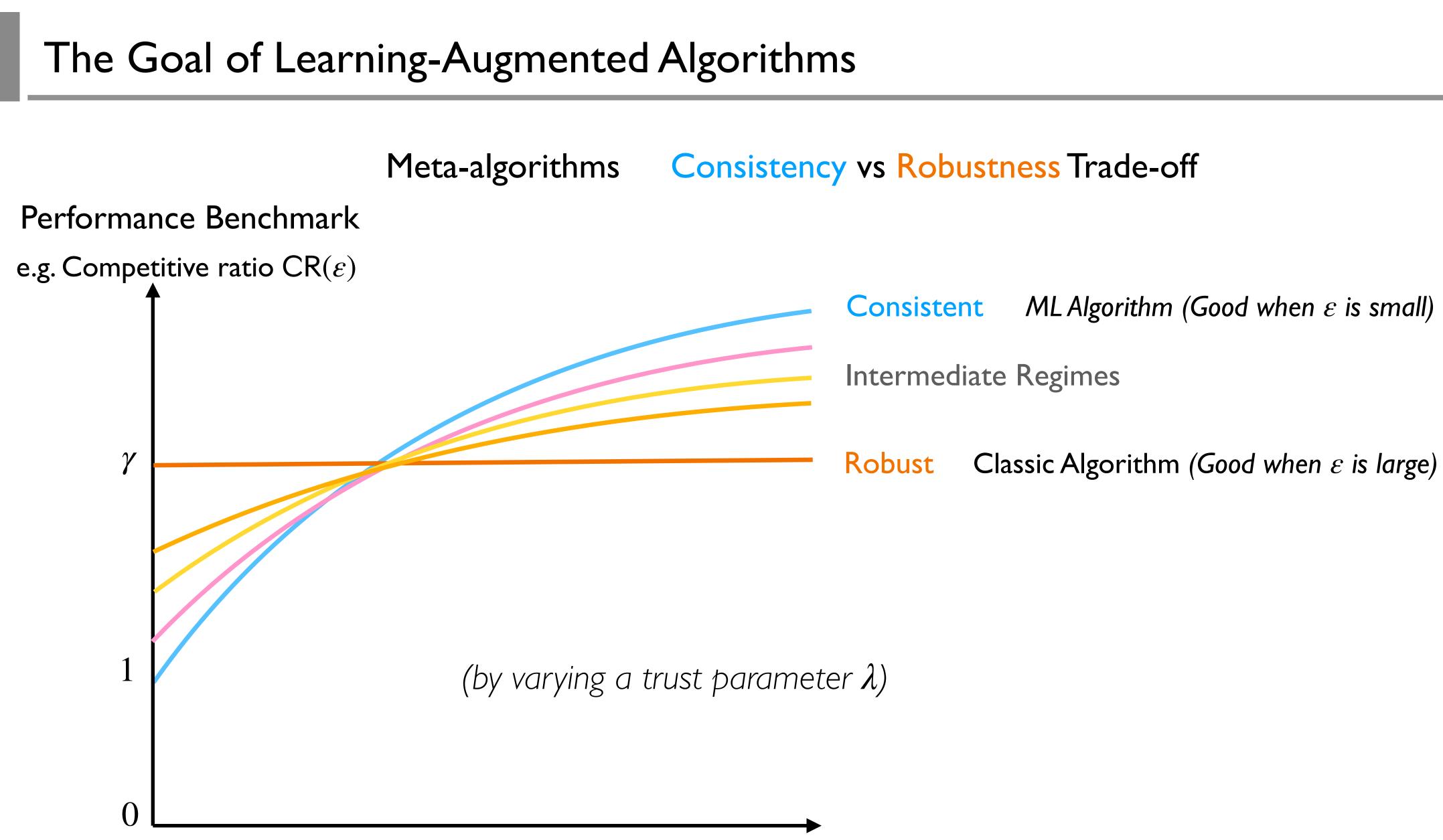
Linear Controller

Online Algorithms

Black-Box

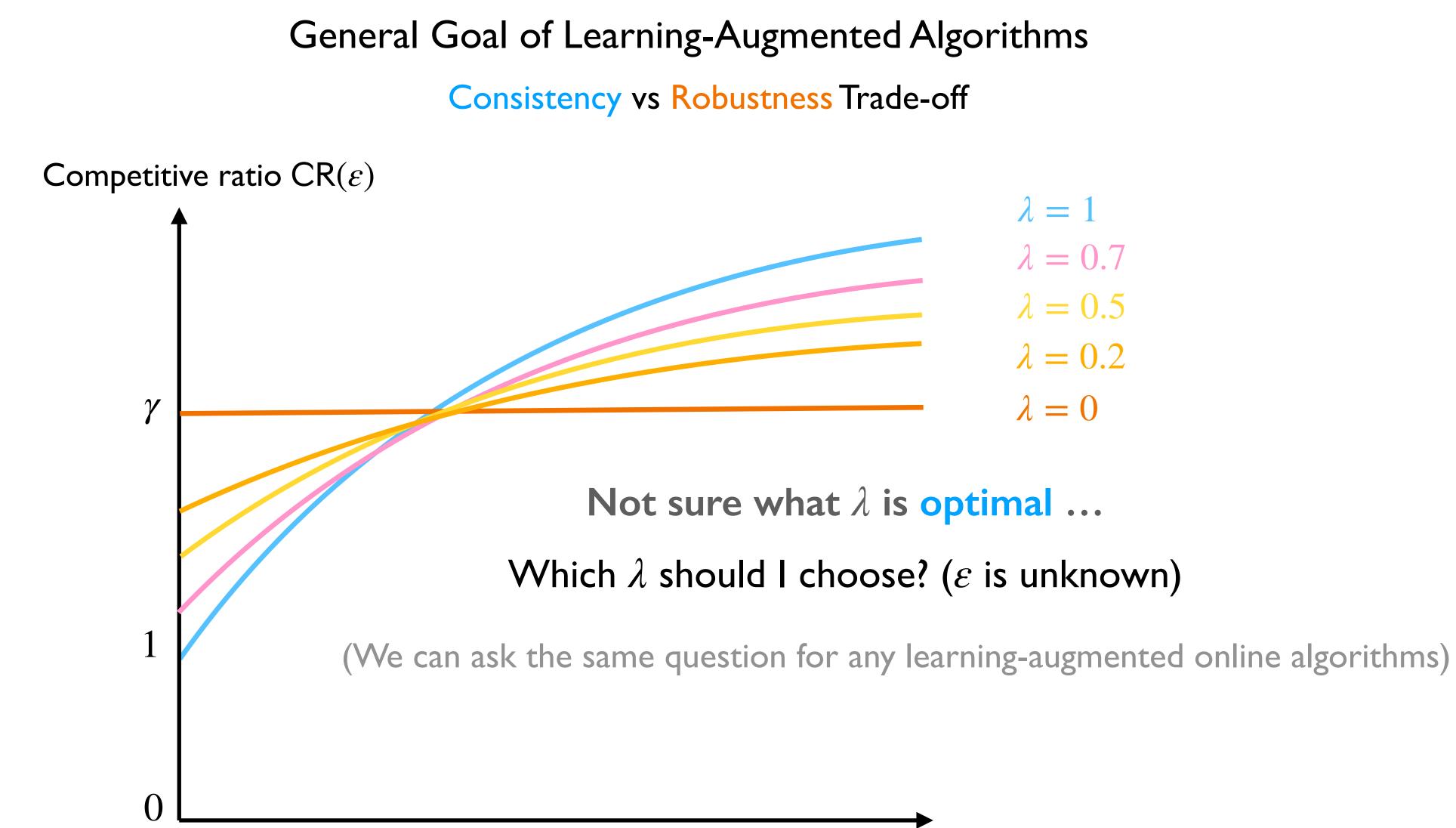
Machine-Learned Predictions





Prediction error ε

First Limitation

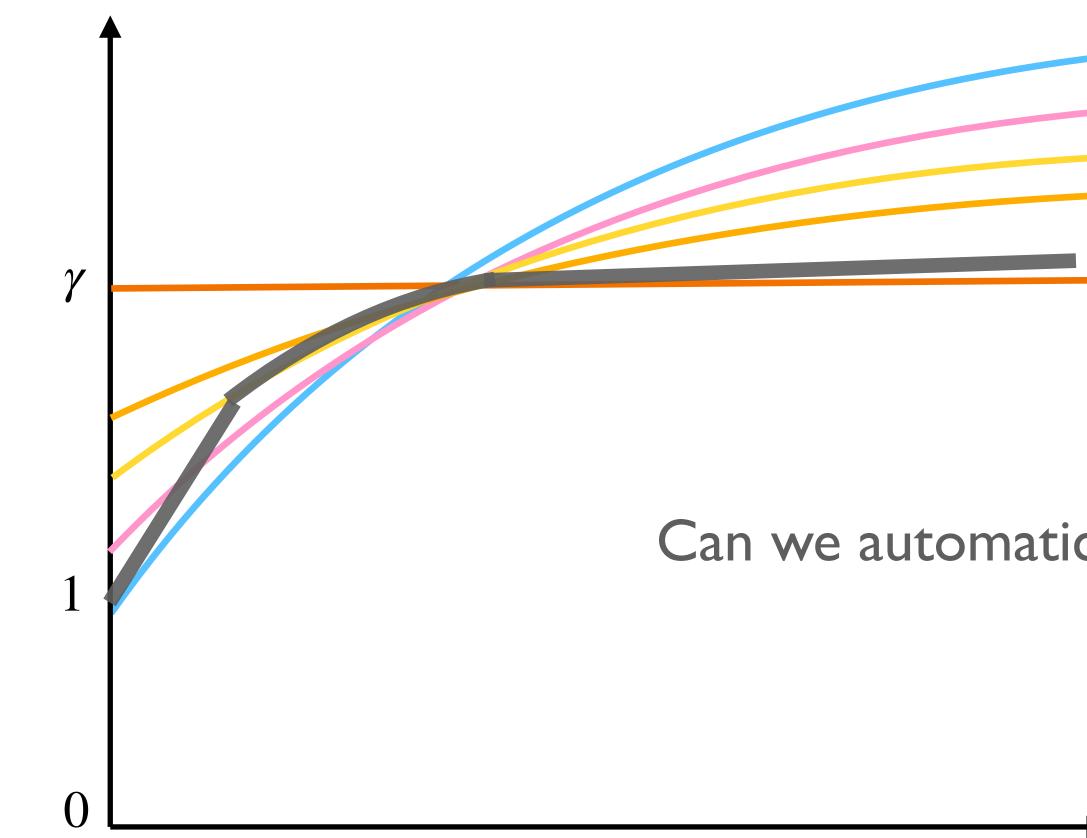


Prediction error ε

Issue: Prediction error ε is not known a priori

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error ε

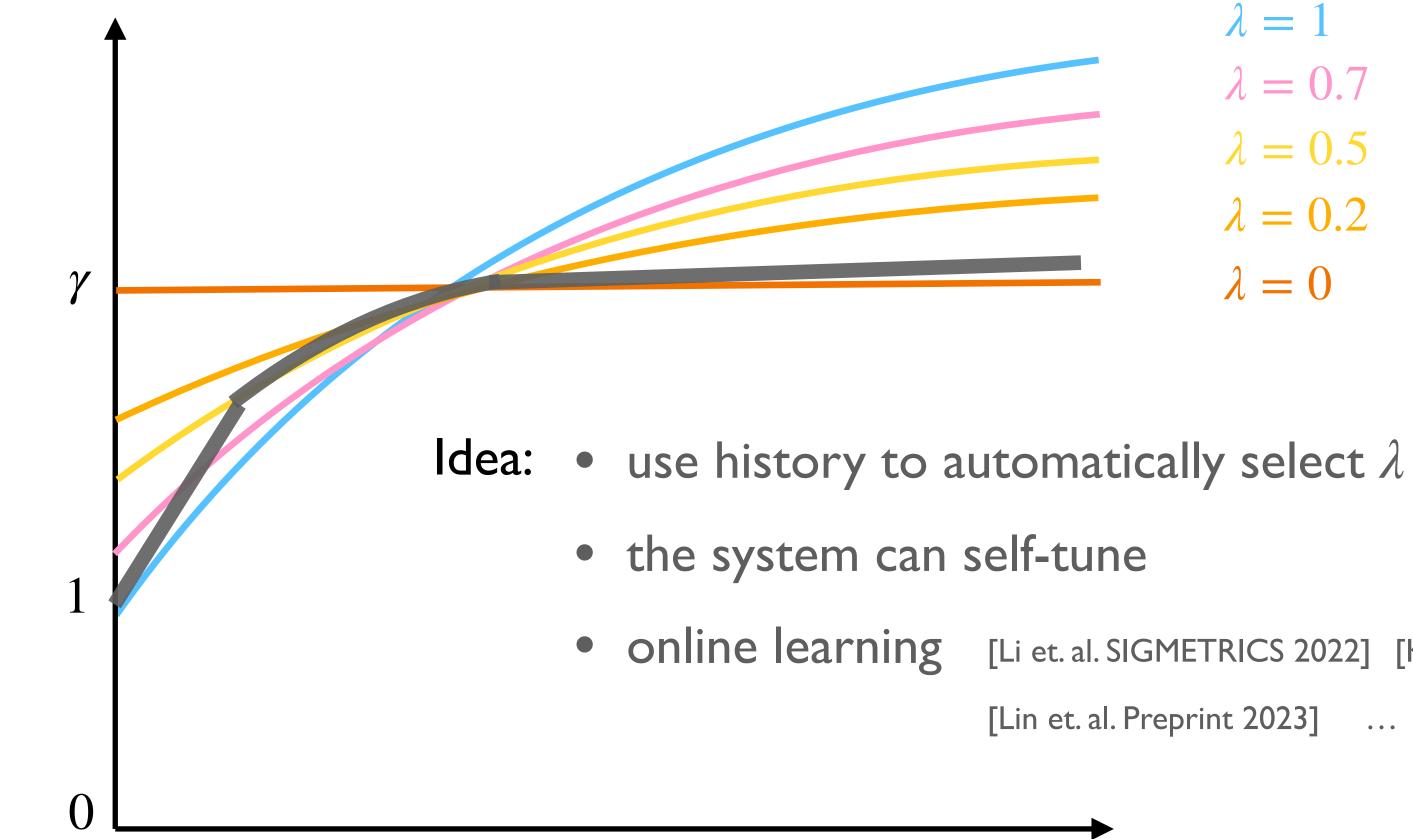
Competitive ratio $CR(\varepsilon)$



$$\lambda = 1$$
$$\lambda = 0.7$$
$$\lambda = 0.5$$
$$\lambda = 0.2$$
$$\lambda = 0$$

Can we automatically adjust λ ?

One Solution: Online Learning



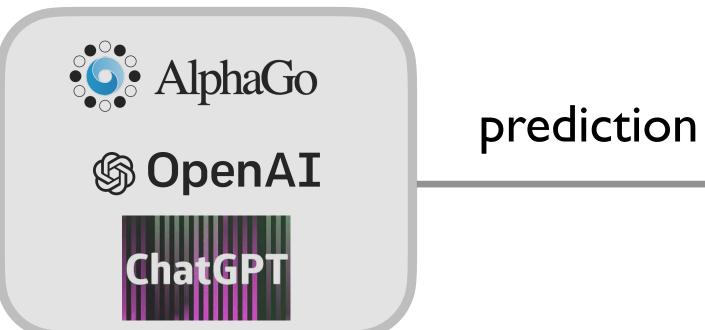
General Goal of Learning-Augmented Algorithms

Consistency vs Robustness Trade-off

• online learning [Li et. al. SIGMETRICS 2022] [Khodak et. al. NeurIPS 2022] [Lin et. al. Preprint 2023] ... [Li et. al. NeurIPS 2024]

Prediction error ε

Second Limitation



- Structural information of the model and ML tools can be helpful
 - specific forms of predictions [Li et. al. SIGMETRICS 2022]
 - grey-box ML models (Q-value functions of value-based policies)
 - can be used to self-tune λ (second solution)

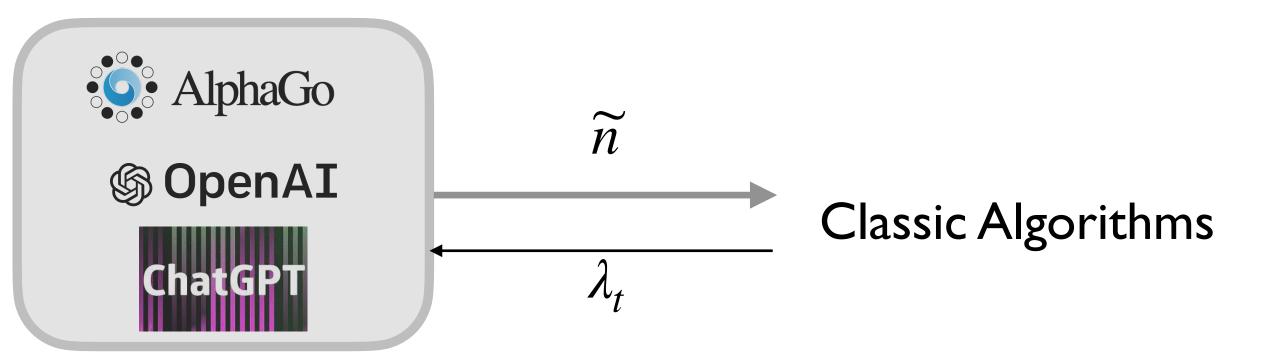
learning-augmented online algorithms

• The machine learning tools are considered as **black-boxes**

[Li et. al. Preprint 2023]

Second Limitation • Learning-augmented —> Learning-infused

- Q-learning
- Linear Regression
- Multi-arm bandit



- Structural information of the model and ML tools can be helpful
 - specific forms of predictions [Li et. al. SIGMETRICS 2022]
 - grey-box ML models (Q-value functions of value-based policies)
 - can be used to self-tune λ (second solution)

• The machine learning tools are considered as **black-boxes**

[Li et. al. Preprint 2023]

Learning-Augmented Algorithms

Online Problems	不准确预测 Imp	perfect Predictions	
Ski-rental	Number of Skiing Days	[Wei et. al. NeurIPS 2020] [Purohit et. al. NeurIPS 2018]	
Secretary Problem	Maximum Price	···· [Antoniadis et. al. NeurIPS 2020]	
Online Bipartite Matching	Adjacent Edge-weights		
Linear Quadratic Control	System Perturbations	[Li et. al. SIGMETRICS 2022] [Li et. al. NeruIPS 2024]	

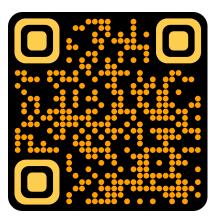
	个时后和建议。回答	ICK-DOX AI/I'IL AUVICE
Convex Body Chasing	Suggested Actions	[Christianson et. al. COLT 2022]
Online Subset Sum	Decision	[Xu et. al. Journal of Global Optimization 2022]
Online Set Cover	Predicted Covering	[Bamas et. al. NeurIPS 2020]
Q Learning	Q-Value Functions	[Golowich et. al. NeurIPS 2022]
Value-Based RL	Q-Value Functions (灰盒)/Actions (黑盒)	[Li et. al. NeurIPS 2023]
Stochastic Game	Type Beliefs	[Li et. al. NeurIPS 2024]
	Online Subset Sum Online Set Cover Q Learning Value-Based RL	Convex Body ChasingSuggested ActionsOnline Subset SumDecisionOnline Set CoverPredicted CoveringQ LearningQ-Value FunctionsValue-Based RLQ-Value Functions (灰盒)/Actions (黑盒)

. . .

Over 100 topics on this website:

. . .

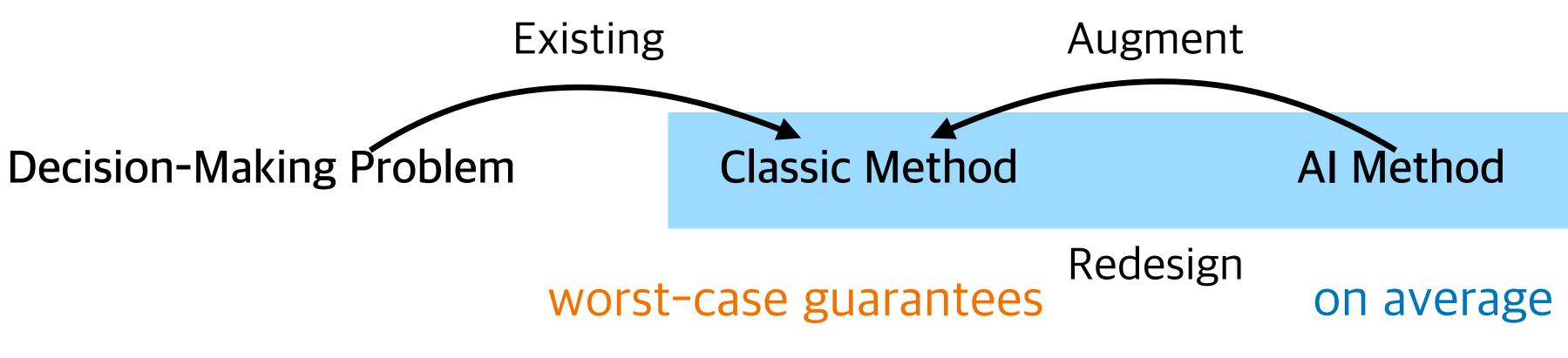
不可信AI建议 Black-box AI/MI Advice



https://algorithms-with-predictions.github.io/

Methods and Results

Partial Solution: Combine Classic and AI Algorithms

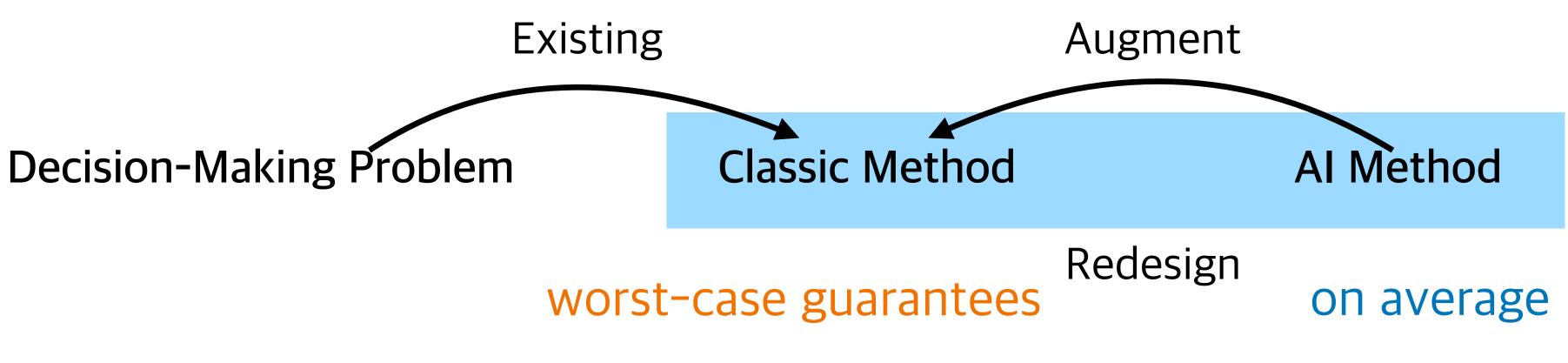


- Goal: take advantage of both worlds
- Al tools make decisions alone help classic algorithms make decisions

How to combine them?

- Switching
- Convex combination
- Projection …

Partial Solution: Combine Classic and AI Algorithms



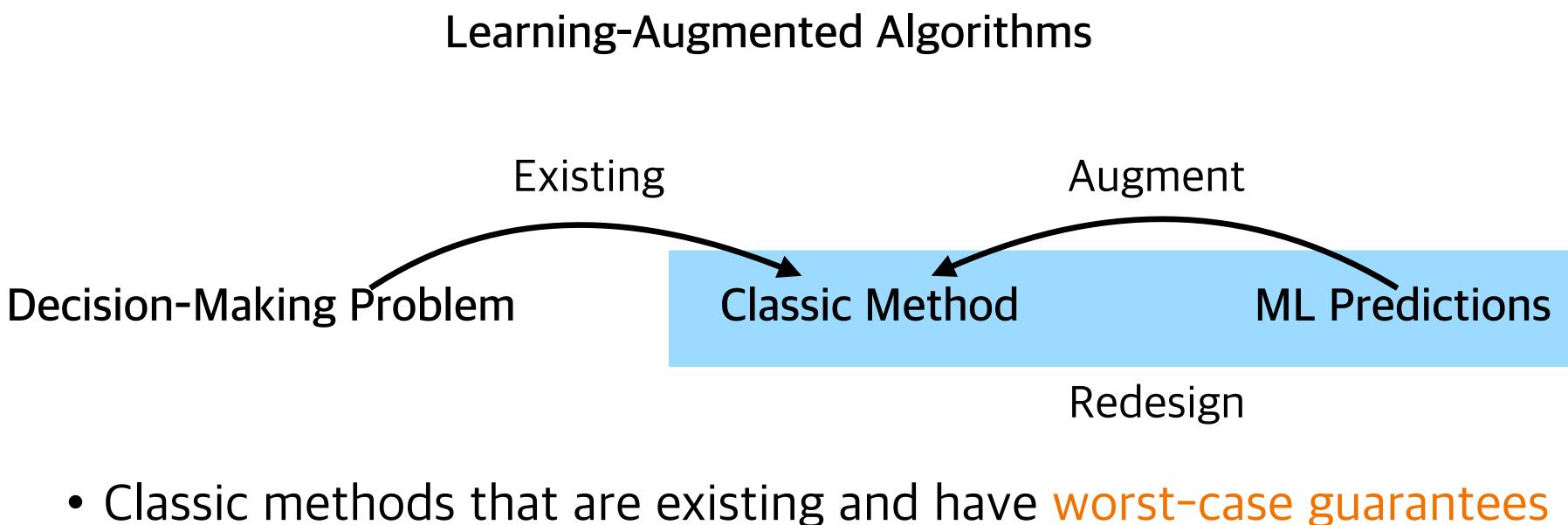
- Goal: take advantage of both worlds
- Al tools make decisions alone help classic algorithms make decisions

How to combine them?

- Switching
- Convex combination
- Projection …

Next: Stepping into concrete examples

Partial Solution: Combine Classic and AI Algorithms



- Al methods that are better on average

Augment ML predictions or advice to the classic method and redesign algorithms

Classic Agent ML Agent State Space: X Action Space: U $\widetilde{\pi}: \mathsf{X} \to \mathsf{U}$ $\overline{\pi}: \mathsf{X} \to \mathsf{U}$

• Goal: take advantage of both worlds

How to combine them?

- Switching
- Convex combination
- Projection …

Classic AgentState S $\overline{\pi}: X \rightarrow U$ Action S

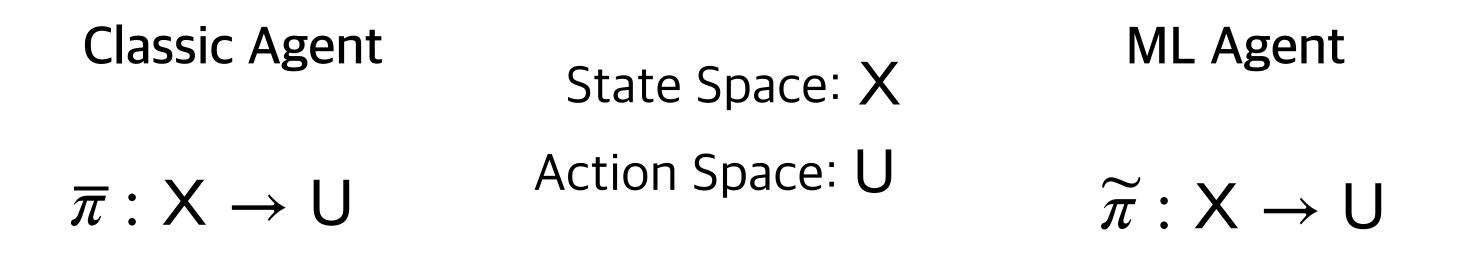
• Goal: take advantage of both worlds

How to combine them?

- Switching
- Convex combination
- Projection …

Next: Stepping into concrete examples

Concrete Models





ML Agent

MPC+Perturbation Predictions

[SIGMETRICS '22]

Concrete Models

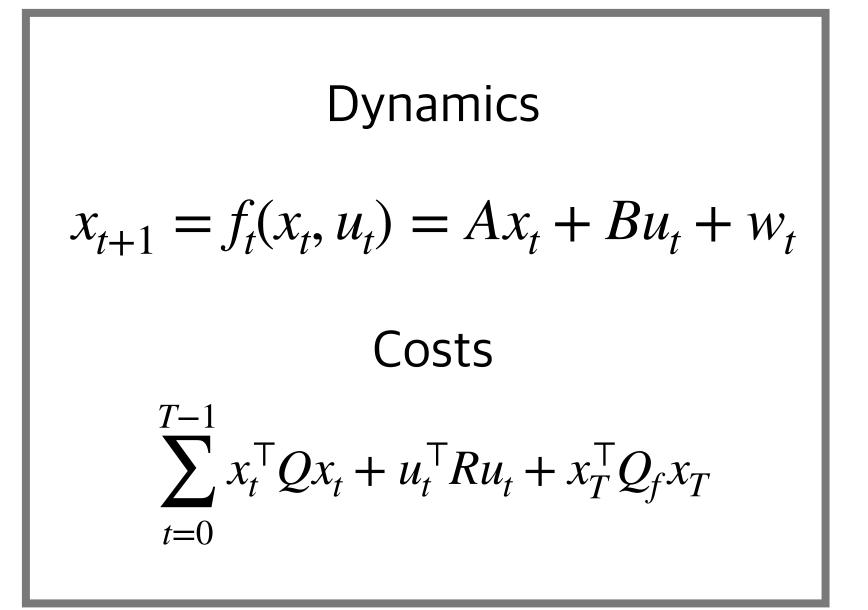
Classic Agent $\overline{\pi}: \mathsf{X} \to \mathsf{U}$

System Model	Classic Agent	ML Agent	
Linear Dynamics	LQR	MPC+Perturbation Predictions	[SIGMETRICS '22]
NonLinear Dynamics	LQR	Black-Box RL	[OJCSYS '23]

.

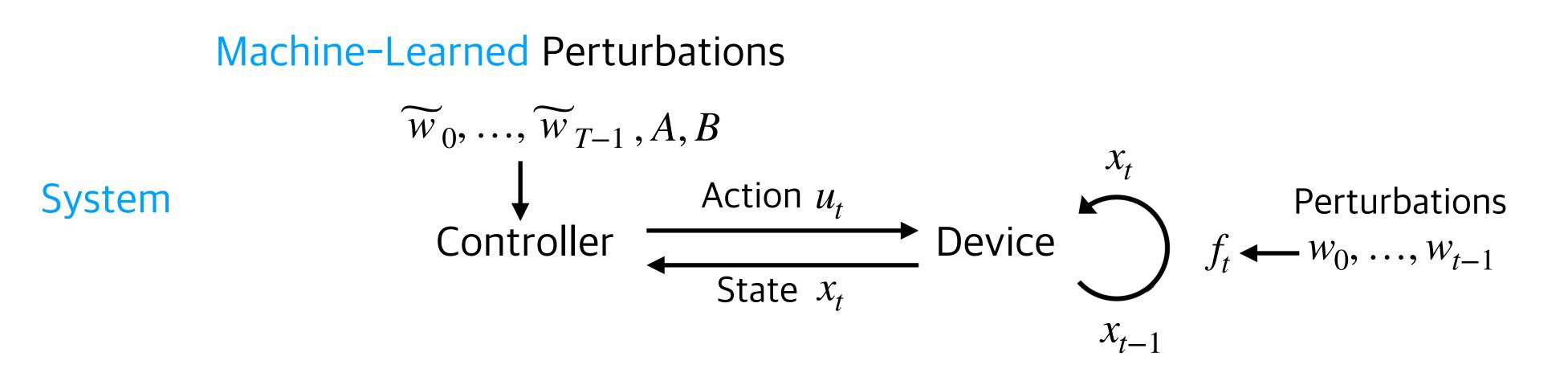
Decision-Making Problem Classic Method

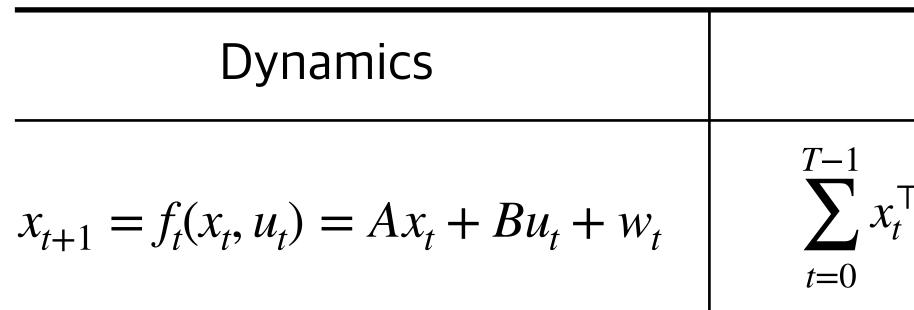
Linear Quadratic Control Linear Quadratic Regulator MPC with Perturbation Predictions



AI Method

Linear Quadratic Control

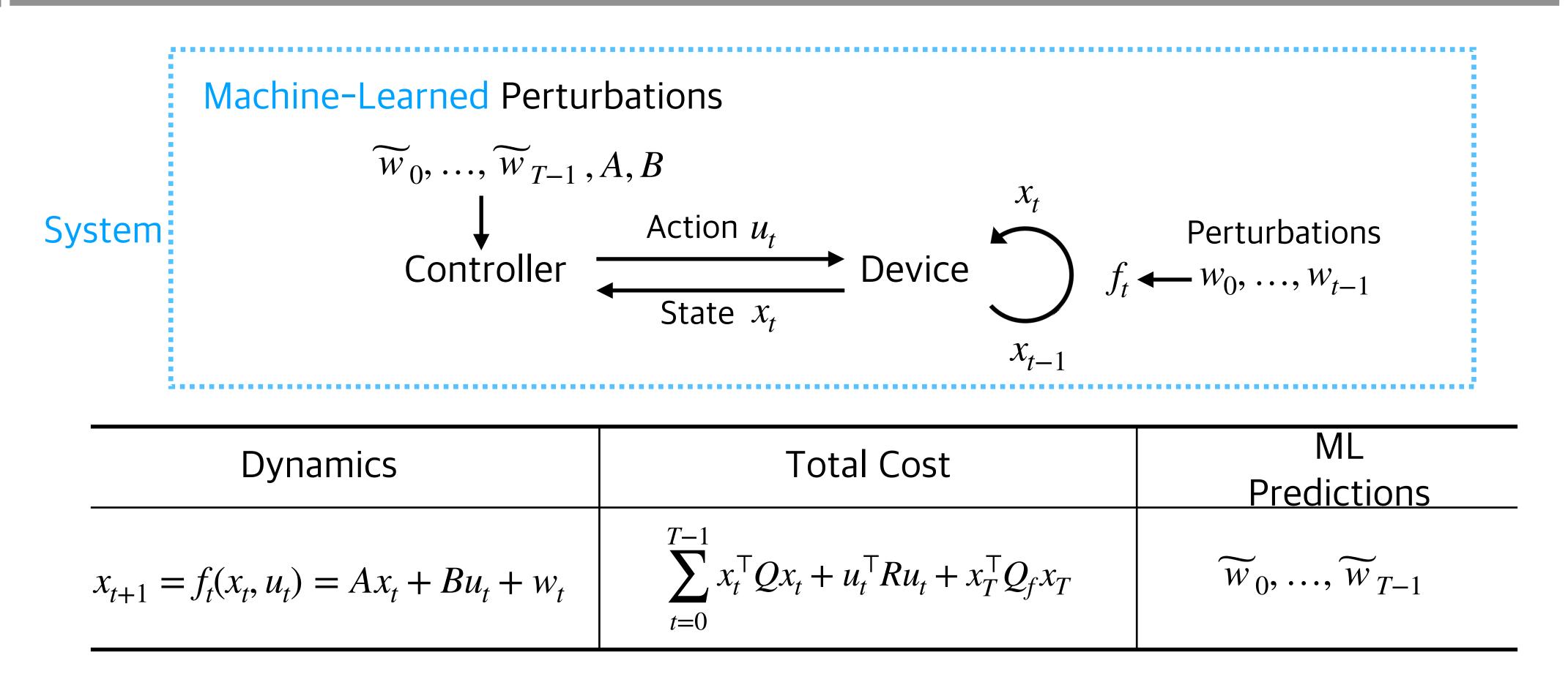




- The system is stabilizable
- $Q, R, Q_f > 0$

Total Cost	ML Predictions
${}^{T}Qx_t + u_t^{T}Ru_t + x_T^{T}Q_f x_T$	$\widetilde{w}_0, \ldots, \widetilde{w}_{T-1}$

Linear Quadratic Control



[2005, Mayne et al.] Robust Model Predictive Control of Constrained Linear Systems with Bounded Disturbances [2019, Lopez et al.] Dynamic Tube MPC for Nonlinear Systems [2022, Bujarbaruah et al.] Robust MPC for Linear Systems with Parametric and Additive Uncertainty: A Novel Constraint Tightening Approach

Robust MPC cannot actively adapt based on predictions

Performance Benchmark

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error ${\cal E}$

Idea:

- Be conservative if ε is large
- Be aggressive if ε is small

$$\mathsf{CR}(\varepsilon) := \max_{\mathbf{w}, \widetilde{\mathbf{w}}: d(\mathbf{w}, \widetilde{\mathbf{w}}) \leq \varepsilon} \frac{\mathsf{ALG}(\varepsilon)}{\mathsf{OPT}}$$

OPT := Optimal cost knowing $w_0, ..., w_{t-1}$ in hindsight

$$\mathsf{CR} := \max_{\varepsilon \ge 0} \mathsf{CR}(\varepsilon)$$

 $ALG(\varepsilon)$:= Cost induced by an online algorithm with prediction error ε

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error ${\cal E}$

$$\varepsilon := \sum_{t=0}^{T-1} \left\| \sum_{\tau=t}^{T-1} \left(F^{\mathsf{T}} \right)^{\tau-t} P(w_t - \widetilde{w}_t) \right\|^2$$

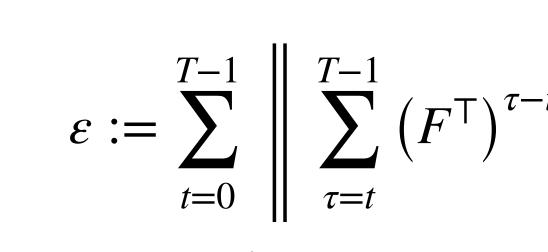
P := Solution of DARE

 $F := A - BK = A - B(R + B^{\top}PB)^{-1}B^{\top}PA$

Prediction error measures "how good the ML predictions are"

Prediction Error

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error ${\cal E}$



weighted sum

Why is it a "weighted sum"?

- Quick Answer:
- More fundamental Answers:

$$\tau^{-t} P(w_t - \widetilde{w}_t) \|^2$$

• Simplify expressions in our analysis

• Per-step error impact is not uniform in a dynamical system

• Impact decays exponentially

• It is actually the "error in the actions"

Model Predictive Control

(MPC as a widely used control policy ...)

$$u_t = \widetilde{\pi}(x_t) := \operatorname{argmin}_{(u_t, \dots, u_{T-1})} \left(\sum_{\tau=t}^{T-1} (x_{\tau})^{\mathsf{T}} \right)$$

$$x_{\tau+1} = Ax_{\tau} + Bu_{\tau} + \widetilde{w}_{\tau}, \forall$$

(Explicit Expressions [2020 Yu et al.])

$$\widetilde{\pi}(x_t) = -(R + B^{\mathsf{T}} P B)^{-1} B^{\mathsf{T}} \left(B^{\mathsf{T}} B \right)^{-1} B^{\mathsf{T}} \left(B^{\mathsf{T}} B^{\mathsf{T}} B^{\mathsf{T}} B^{\mathsf{T}} B^{\mathsf{T}} B^{\mathsf{T}} B^{\mathsf{T}} B^{\mathsf{T}} \right)^{-1} B^{\mathsf{T}} \left(B^{\mathsf{T}} B^$$

[2020 Yu et al.] The power of predictions in online control, NeurIPS, 2020

 $\int_{\tau}^{T} Q x_{\tau} + u_{\tau}^{T} R u_{\tau} + x_{T}^{T} P x_{T} \right) \qquad \text{Good when } \varepsilon \text{ is small}$

 $\forall \tau = t, \dots, T-1.$

 $\left(PAx_t + \sum_{\tau=t}^{T-1} \left(F^{\mathsf{T}}\right)^{\tau-t} P\widetilde{w}_{\tau}\right)$

Taking benefit of Two Policies …

$$\widetilde{\pi}(x_t) = -(R + B^{\top} P B)^{-1} B^{\top} \left(P A x_t + \sum_{\tau=t}^{T-1} \left(F^{\top} \right)^{\tau-t} P \widetilde{w}_{\tau} \right) \qquad \text{Good when } \varepsilon \text{ is small}$$
$$\overline{\pi}(x_t) = -(R + B^{\top} P B)^{-1} B^{\top} P A x_t = -K x_t \quad \text{Drop the predictions} \quad \text{Good when } \varepsilon \text{ is large}$$

(Optimal linear controller for LQR with Gaussian perturbations)

large **ix**_t

Taking benefit of Two Policies …

$$\widetilde{\pi}(x_t) = -(R + B^{\top} P B)^{-1} B^{\top} \left(P A x_t + \sum_{\tau=t}^{T-1} (F^{\top})^{\tau-t} P \widetilde{w}_{\tau} \right) \quad \text{Good when } \varepsilon \text{ is small}$$
$$\overline{\pi}(x_t) = -(R + B^{\top} P B)^{-1} B^{\top} P A x_t = -K x_t \quad \text{Drop the predictions Good when } \varepsilon \text{ is large}$$

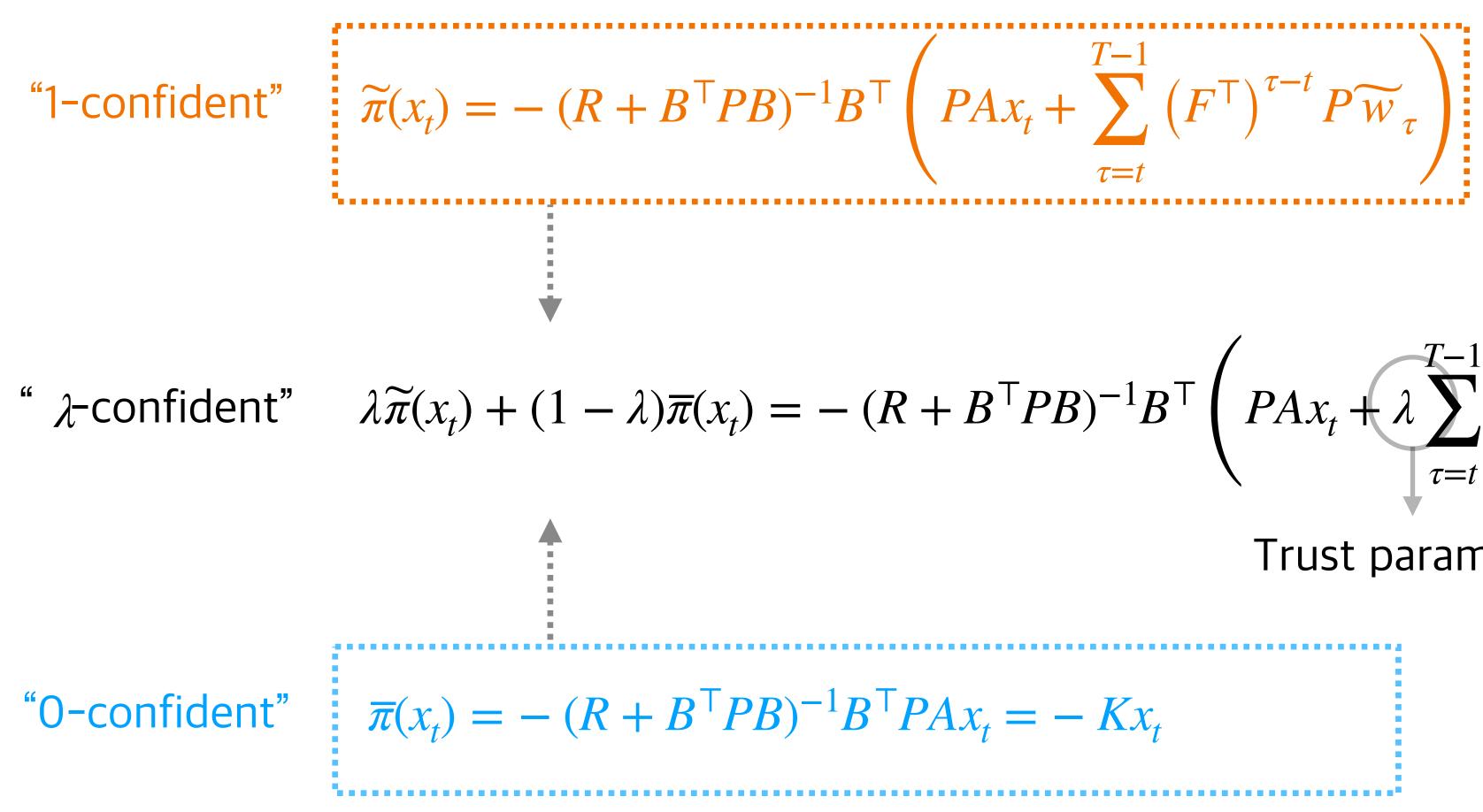
(LQR; optimal with Gaussian perturbations)

MPC Policy + LQR Policy How about a convex combination?

$$\lambda \widetilde{\pi}(x_t) + (1 - \lambda) \overline{\pi}(x_t)$$

Trust Parameter

λ -Confident Control



" λ -confident" $\lambda \widetilde{\pi}(x_t) + (1 - \lambda)\overline{\pi}(x_t) = -(R + B^{\mathsf{T}}PB)^{-1}B^{\mathsf{T}}\left(PAx_t + \lambda \sum_{\tau=t}^{T-1} (F^{\mathsf{T}})^{\tau-t} P\widetilde{w}_{\tau}\right)$

Trust parameter

"
$$\lambda$$
-confident" $\pi(x_t) = \lambda \widetilde{\pi}(x_t) + (1-\lambda)\overline{\pi}(x_t) = -(R+B^{\top}PB)^{-1}B^{\top} \left(PAx_t + \lambda \sum_{\tau=t}^{T-1} (F^{\top})^{\tau-t} P\widetilde{w}_{\tau}\right)$

(Equivalent to)

$$\pi(x_t) := \operatorname{argmin}_{(u_t, \dots, u_{T-1})} \left(\sum_{\tau=t}^{T-1} \left(x_\tau^\top Q x_\tau + u_\tau^\top R u_\tau \right) + x_T P x_T \right)$$

 $x_{\tau+1} = Ax_{\tau} + B$

Trust parameter

Trust parameter

$$Bu_{\tau} + \lambda \widetilde{w}_{\tau}, \forall \tau = t, ..., T - 1.$$

Revisit Our Paradigm

Decision-Making Problem Classic Method

Linear Quadratic Regulator MPC with Machine Learned Predictions Linear Quadratic Control

 $\overline{\pi}(x_t) = -(R + B^{\mathsf{T}} P B)$

P := Solution of DARE

Al Method

$$)^{-1}B^{\top}PAx_{t} = -Kx_{t}$$

 $F := A - BK = A - B(R + B^{\top}PB)^{-1}B^{\top}PA$

Decision-Making Problem Classic Method

Linear Quadratic Regulator MPC with Machine Learned Predictions Linear Quadratic Control

 $\overline{\pi}(x_t) = -(R + B^{\top} P B)$

P := Solution of DARE

$$F := A - BK = A -$$

$$\widetilde{\pi}(x_t) := \operatorname{argmin}_{(u_t, \dots, u_{T-1})} \left(\sum_{\tau=t}^{T-1} \left(x_{\tau}^{\mathsf{T}} Q x_{\tau} + u_{\tau}^{\mathsf{T}} R u_{\tau} \right) + x_T^{\mathsf{T}} P x_T \right)$$

 $x_{\tau+1} = Ax_{\tau} + Bu$

AI Method

$$)^{-1}B^{\top}PAx_t = -Kx_t$$

 $-B(R+B^{\mathsf{T}}PB)^{-1}B^{\mathsf{T}}PA$

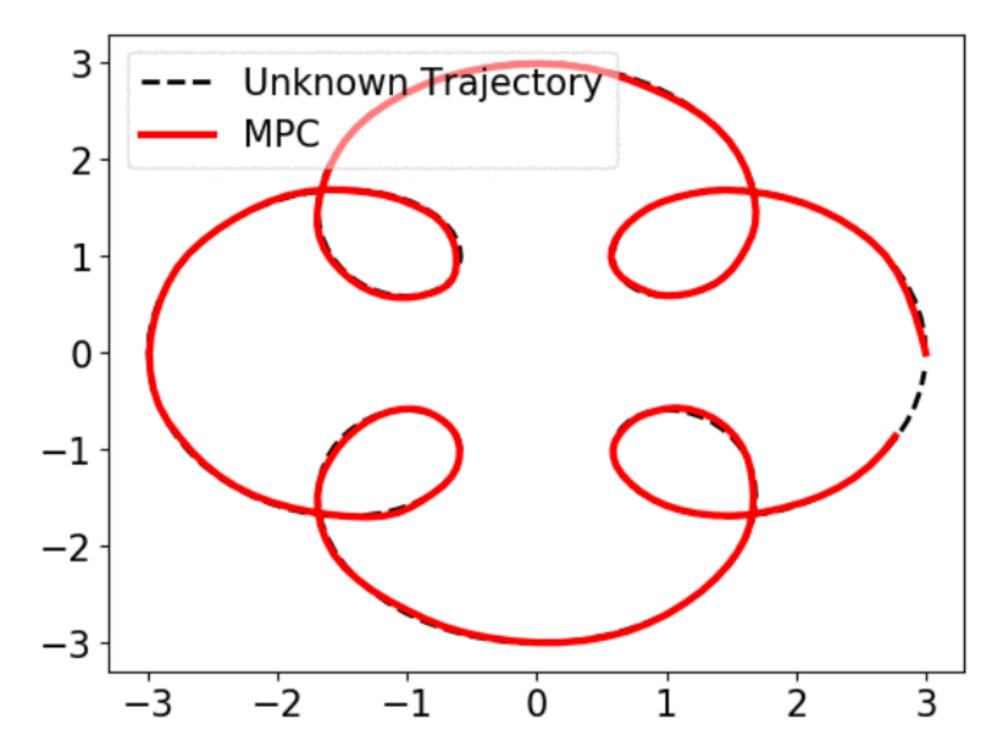
$$u_{\tau} + (\widetilde{w}_{\tau}) \forall \tau = t, ..., T-1$$

Predictions

MPC with Untrusted Predictions

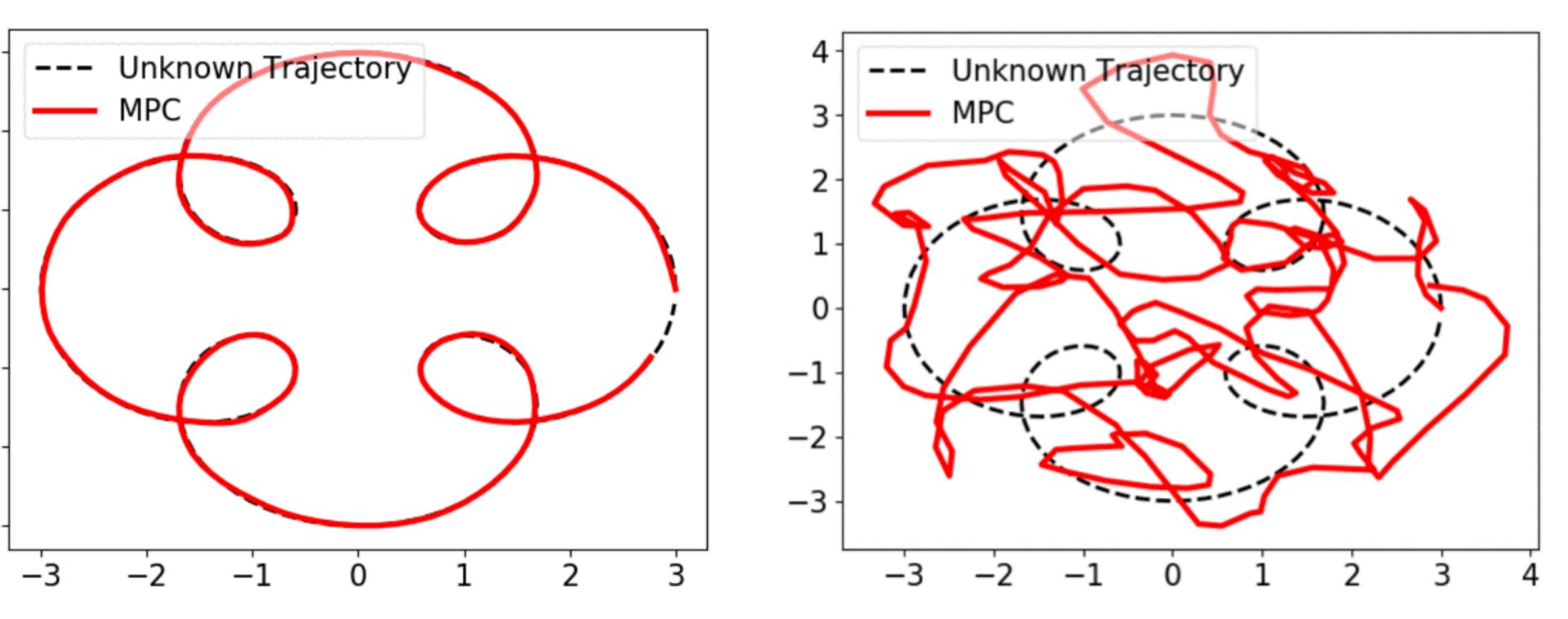
$$\widetilde{\pi}(x_t) := \operatorname{argmin}_{(u_t, \dots, u_{T-1})} \left(\sum_{\tau=t}^{T-1} \sum_{\tau=t}^{T-1} \right) \left(\sum_{\tau=t}^{T-1} \sum_{\tau$$

Prefect Predictions

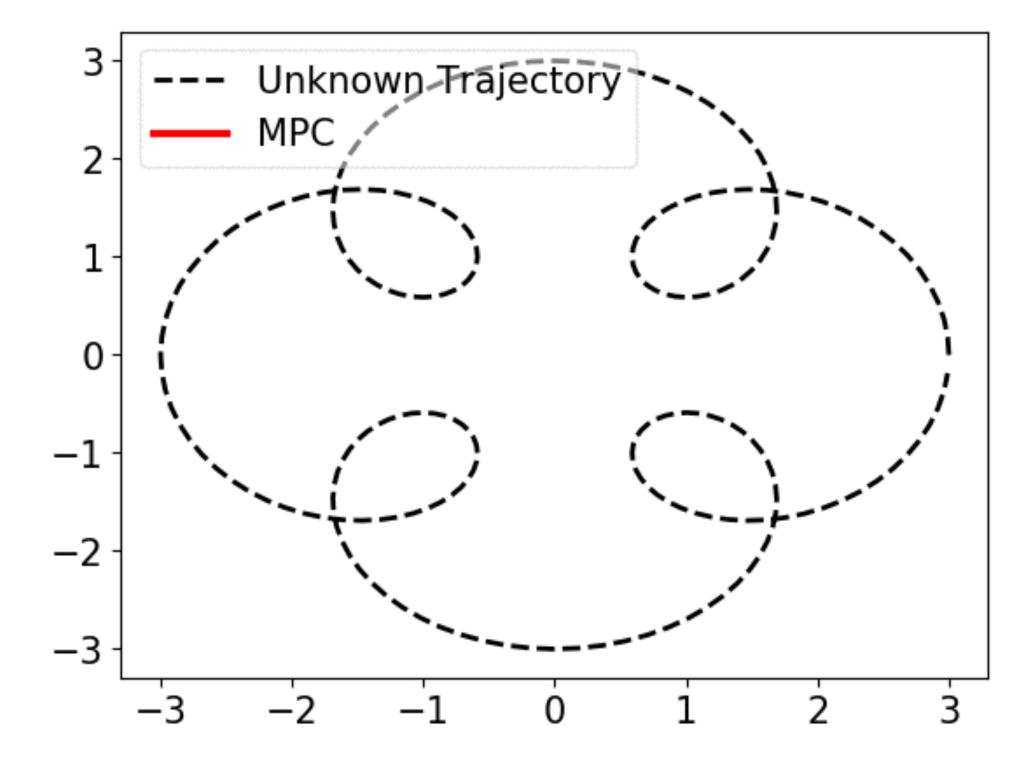


 $\left(x_{\tau}^{\mathsf{T}}Qx_{\tau}+u_{\tau}^{\mathsf{T}}Ru_{\tau})+x_{T}^{\mathsf{T}}Px_{T}\right)$

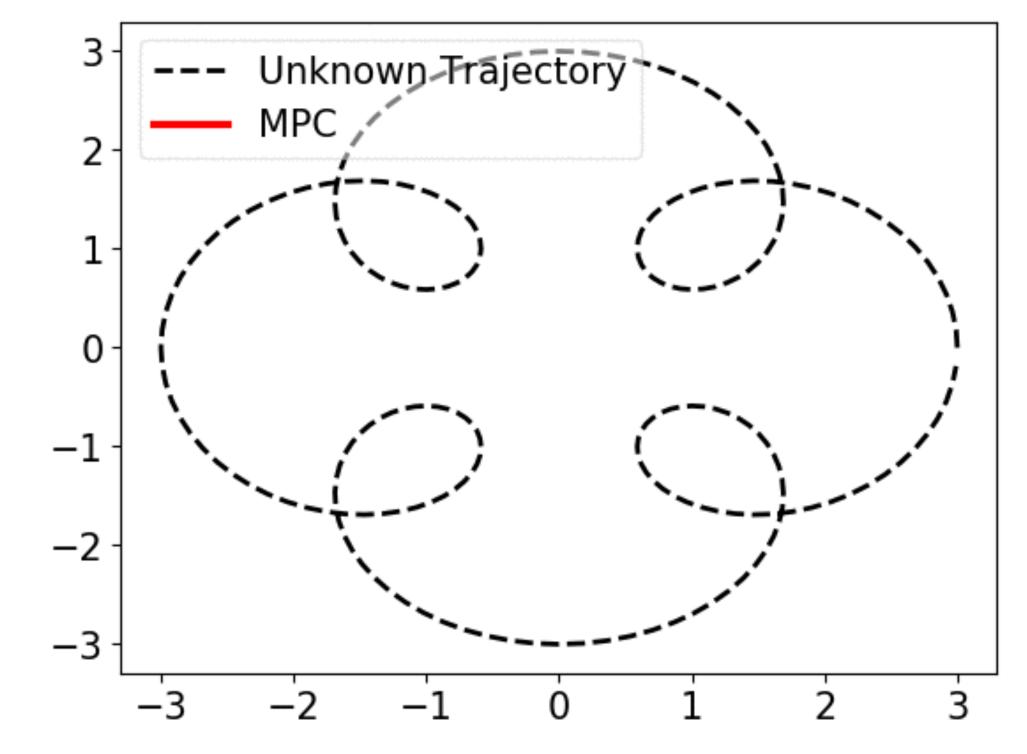
Untrusted ML Predictions



MPC with Untrusted Predictions



Prefect Predictions



Untrusted ML Predictions

Revisit Our Paradigm

Decision-Making Problem Classic Method

Linear Quadratic Control Linear Quadratic Regulator MPC with Machine Learned Predictions

 $\overline{\pi}(x_t) = -(R + B^{\top} P B)$

 $\widetilde{\pi}(x_t) = -(R + B^{\mathsf{T}} P B)$ Alternatively,

Al Method

$$)^{-1}B^{\top}PAx_{t} = -Kx_{t}$$
$$)^{-1}B^{\top}\left(PAx_{t} + \sum_{\tau=t}^{T-1} \left(F^{\top}\right)^{\tau-t} P\widetilde{w}_{\tau}\right)$$

Revisit Our Paradigm

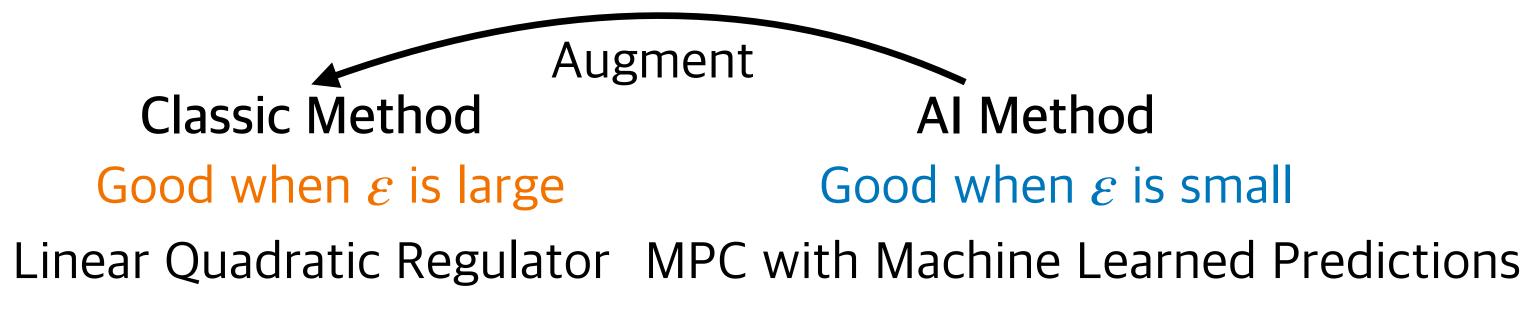
Decision-Making Problem Classic Method Linear Quadratic Control

 $\overline{\pi}(x_t) = -(R + B^{\top} P B)^{-1} B^{\top} A$

 $\widetilde{\pi}(x_t) = -(R + B^{\top} P B)$ Alternatively,

How about a convex combination?

 $\lambda \widetilde{\pi}(x_t) + (1 - \lambda) \overline{\pi}(x_t)$ Trust Parameter $\lambda \in [0,1]$



$$)^{-1}B^{\top}PAx_{t} = -Kx_{t}$$
$$)^{-1}B^{\top}\left(PAx_{t} + \sum_{\tau=t}^{T-1} \left(F^{\top}\right)^{\tau-t} P\widetilde{w}_{\tau}\right)$$

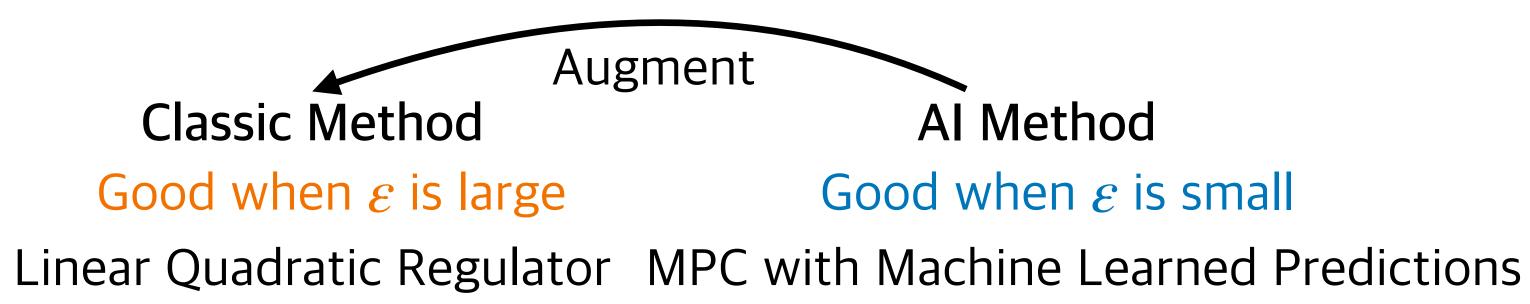
Revisit Our Paradigm

Decision-Making Problem

Linear Quadratic Control

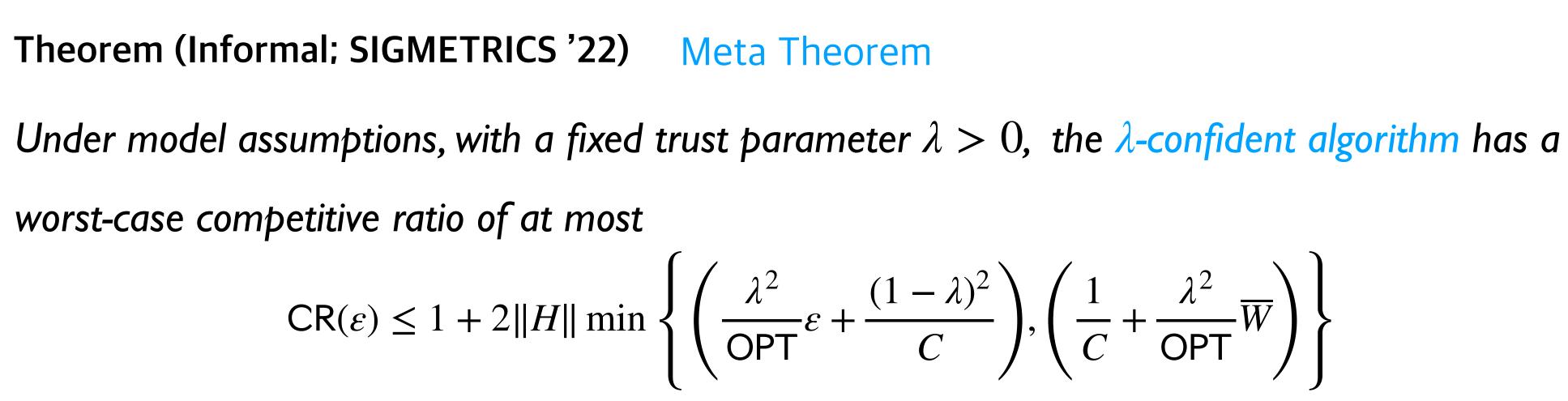
Classic Method

" λ -confident" $\lambda \widetilde{\pi}(x_t) + (1 - \lambda)\overline{\pi}(x_t) = -(\lambda \overline{\pi}(x_t))$



$$(R + B^{\top}PB)^{-1}B^{\top}\left(PAx_{t} + \lambda \sum_{\tau=t}^{T-1} (F^{\top})^{\tau-t} P\widetilde{w}_{\tau}\right)$$

Trust parameter

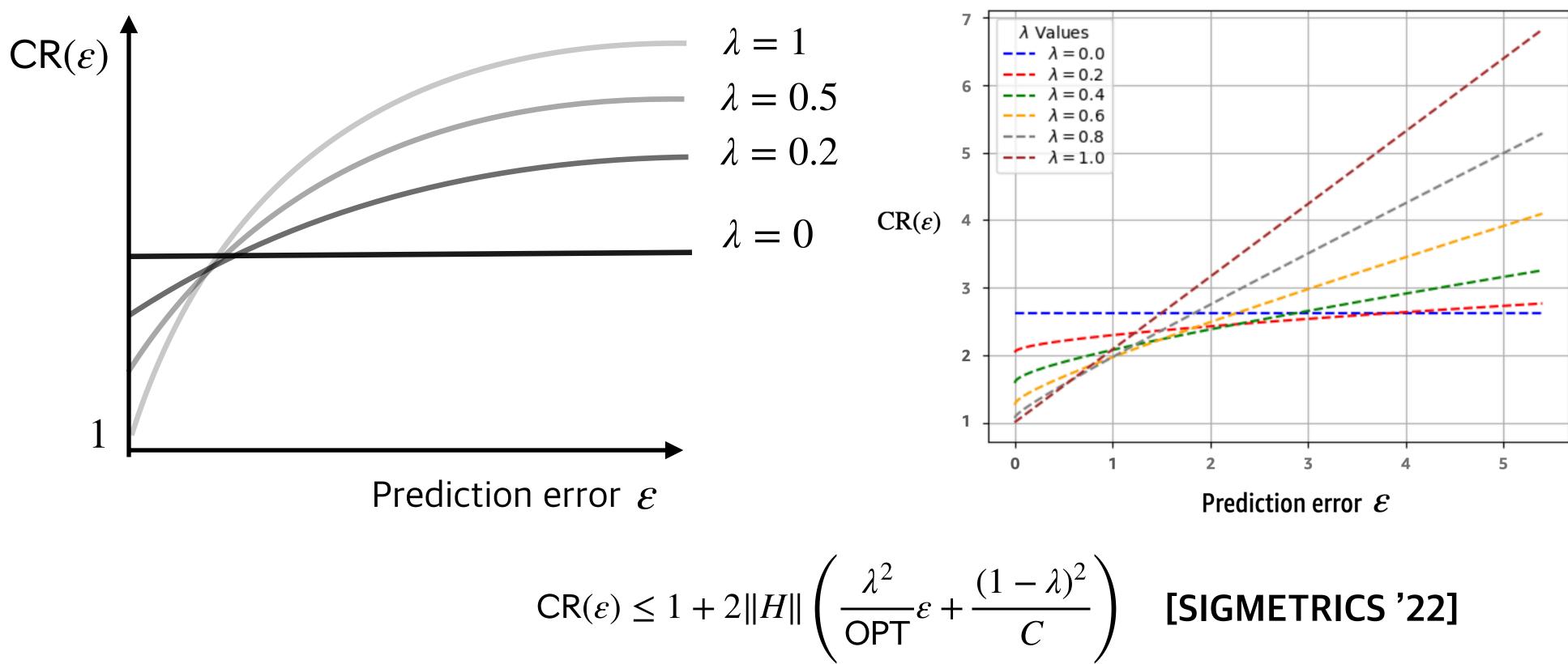


- Useful in the proof of the main results

$$=\varepsilon + \frac{(1-\lambda)^2}{C} \right), \left(\frac{1}{C} + \frac{\lambda^2}{\mathsf{OPT}}\overline{W}\right) \bigg\}$$

• Establish the classic trade-off between "robustness" and "consistency"

Varying Trust Parameter λ

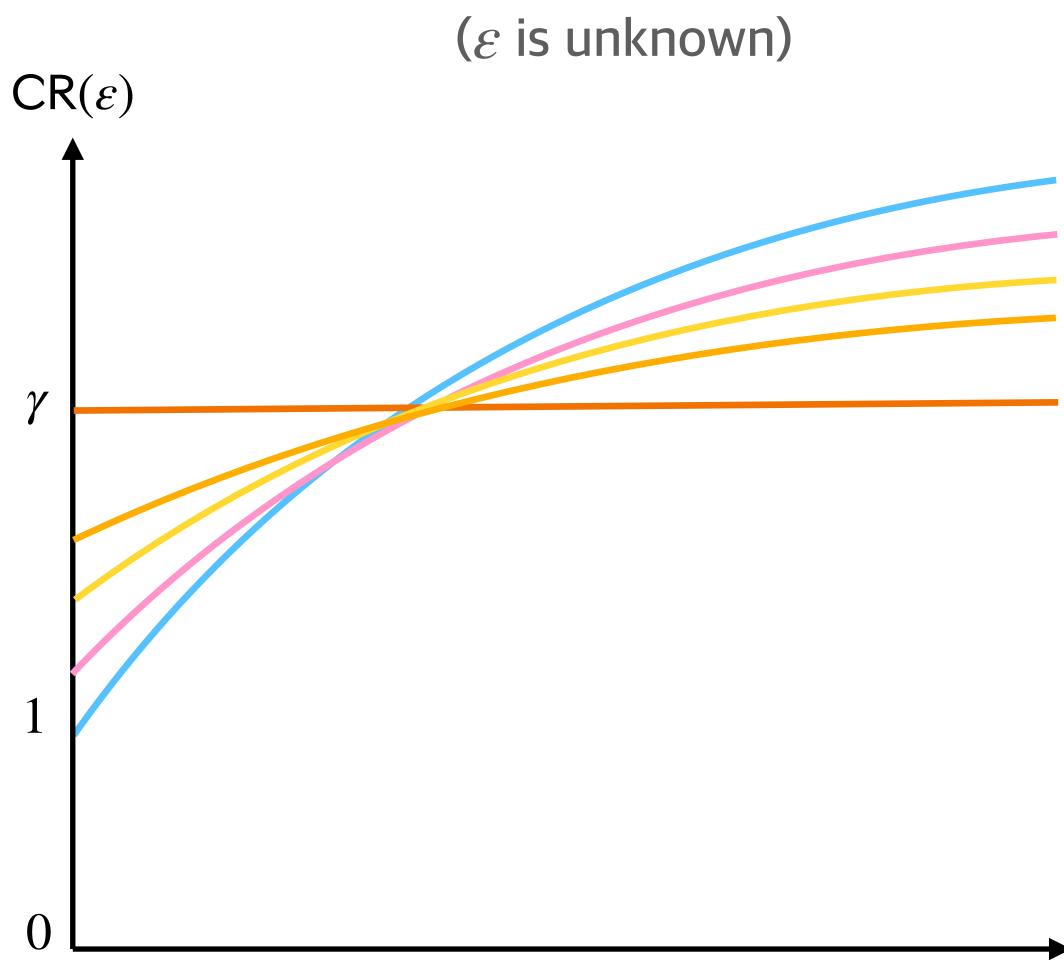


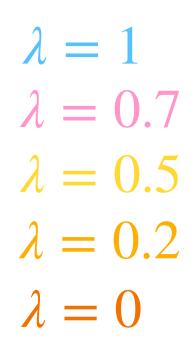
Consistency vs Robustness Trade-off

• When ε is large, the linear component dominates

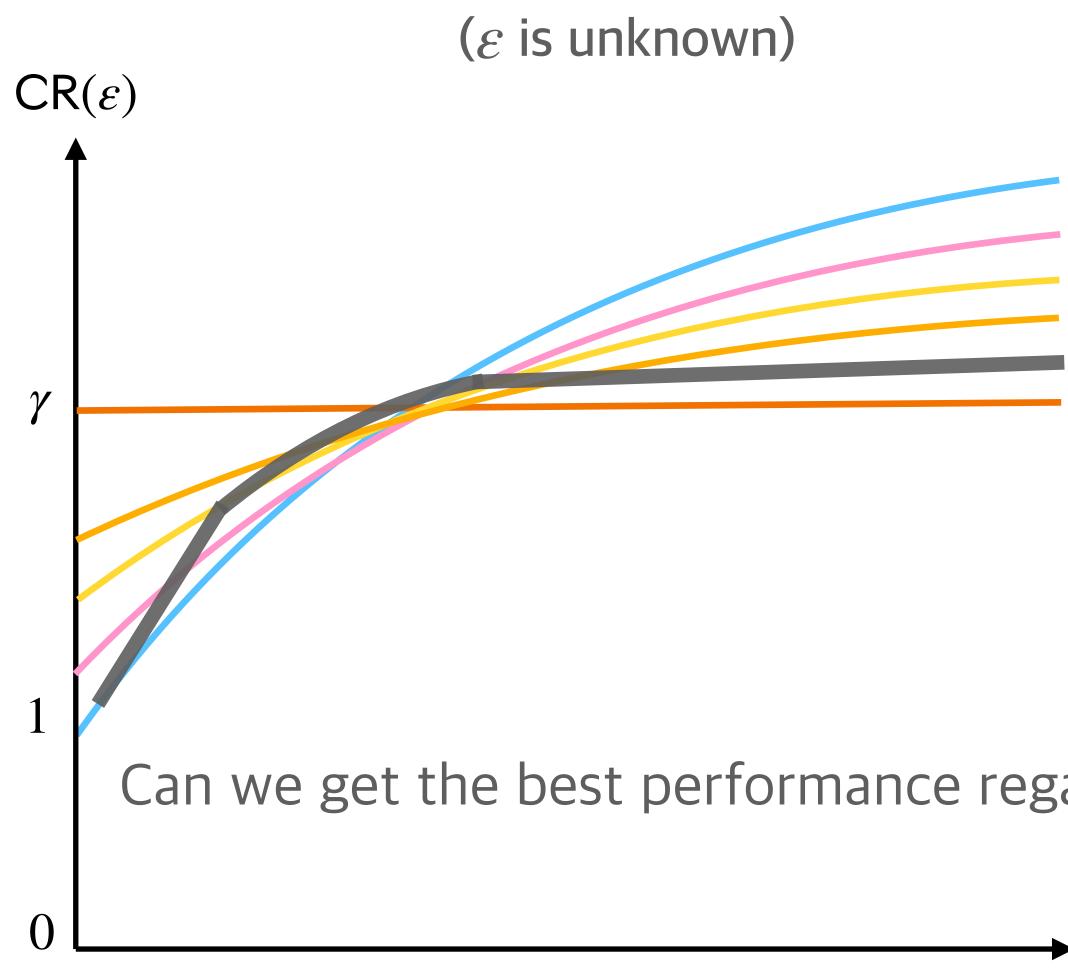
• Selecting different λ realizes different performance trade-offs

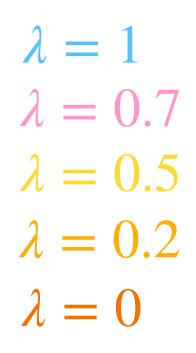
What λ Should I Choose?





What λ Should I Choose?





Can we get the best performance regardless of prediction error?

Prediction error ε

Our Solution: Online Learning Approach

Quadratic function of λ

$$\lambda_{t} = \operatorname{argmin}_{\lambda} \sum_{s=0}^{t-1} \left[\left(\sum_{\tau=s}^{t-1} \left(F^{\mathsf{T}} \right)^{\tau-s} P(w_{\tau} - \lambda \widetilde{w}_{\tau}) \right)^{\mathsf{T}} H\left(\sum_{\tau=s}^{t-1} \left(F^{\mathsf{T}} \right)^{\tau-s} P(w_{\tau} - \lambda \widetilde{w}_{\tau}) \right) \right]$$
$$\operatorname{ALG}_{t-1} - \operatorname{OPT}_{t-1}^{*} \operatorname{Optimize based on History}^{*}$$
$$\lambda_{t} = \frac{\sum_{s=0}^{t-1} \left(\eta(w; s, t-1) \right)^{\mathsf{T}} H\left(\eta(\widetilde{w}; s, t-1) \right)}{\sum_{t=0}^{t-1} \left(\eta(\widetilde{w}; s, t-1) \right)^{\mathsf{T}} H\left(\eta(\widetilde{w}; s, t-1) \right)} \quad \text{where } \eta(w; s, t) := \sum_{\tau=s}^{t} \left(F^{\mathsf{T}} \right)^{\tau-s} Pw_{\tau}$$

$$\lambda_{t} = \operatorname{argmin}_{\lambda} \left[\sum_{s=0}^{t-1} \left[\left(\sum_{\tau=s}^{t-1} \left(F^{\mathsf{T}} \right)^{\tau-s} P(w_{\tau} - \lambda \widetilde{w}_{\tau}) \right)^{\mathsf{T}} H\left(\sum_{\tau=s}^{t-1} \left(F^{\mathsf{T}} \right)^{\tau-s} P(w_{\tau} - \lambda \widetilde{w}_{\tau}) \right) \right] \right]$$

$$\operatorname{ALG}_{t-1} - \operatorname{OPT}_{t-1}^{*} \operatorname{Optimize \ based \ on \ History}^{*}$$

$$\Longrightarrow \quad \lambda_{t} = \frac{\sum_{s=0}^{t-1} \left(\eta(w; s, t-1) \right)^{\mathsf{T}} H\left(\eta(\widetilde{w}; s, t-1) \right)}{\sum_{s=0}^{t-1} \left(\eta(\widetilde{w}; s, t-1) \right)^{\mathsf{T}} H\left(\eta(\widetilde{w}; s, t-1) \right)} \quad \text{where } \eta(w; s, t) := \sum_{\tau=s}^{t} \left(F^{\mathsf{T}} \right)^{\tau-s} Pw_{\tau}$$

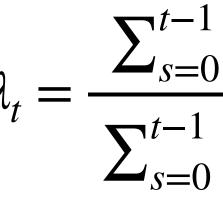
- "Follow-the-leader" design
- Only previously observed info is needed
- Computational complexity linear in T
- If \widetilde{w} and w are closer, λ_t is closer to 1

Self-Tuning Control Algorithm

For
$$t = 0, ..., T - 1$$

If
$$t = 0$$
 Initialize λ_0

Else Compute



where $\eta(w; s, t)$

Update $x_{t+1} = Ax_t + Bu_t + w_t$

$$\frac{1}{2} \left(\eta(w; s, t-1) \right)^{\mathsf{T}} H \left(\eta(\widetilde{w}; s, t-1) \right)^{\mathsf{T}} H \left(\eta(\widetilde{w}; s, t-1) \right)^{\mathsf{T}} H \left(\eta(\widetilde{w}; s, t-1) \right)$$
$$:= \sum_{\tau=s}^{t} \left(F^{\mathsf{T}} \right)^{\tau-s} P w_{\tau}$$

Generate an action using the λ_t -confident algorithm

Competitive Ratio Bound for Self-tuning Control

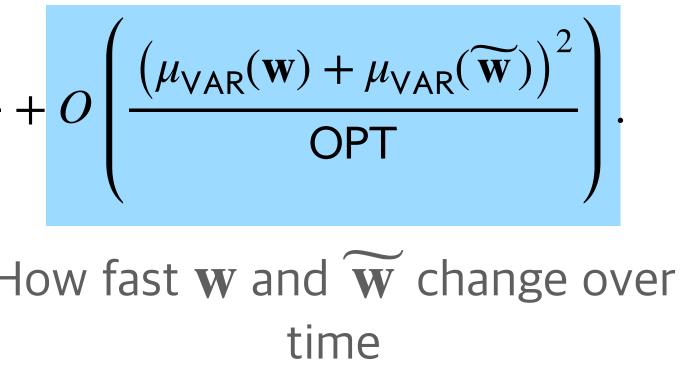
Theorem (Informal; SIGMETRICS '22) CR Theorem

Under model assumptions, the competitive ratio of the self-tuning control algorithm is bounded by

$$CR(\varepsilon) \le 1 + 2||H|| \frac{\varepsilon}{OPT + C\varepsilon}$$

"maximal variation" (variation terms appear in many online learning literature)

•
$$\mu_{\mathsf{VAR}}(\mathbf{x}) := \sum_{s=1}^{T-1} \max_{\tau=0,\dots,s-1} \| x_{\tau} - x_{\tau+T-s} \|$$

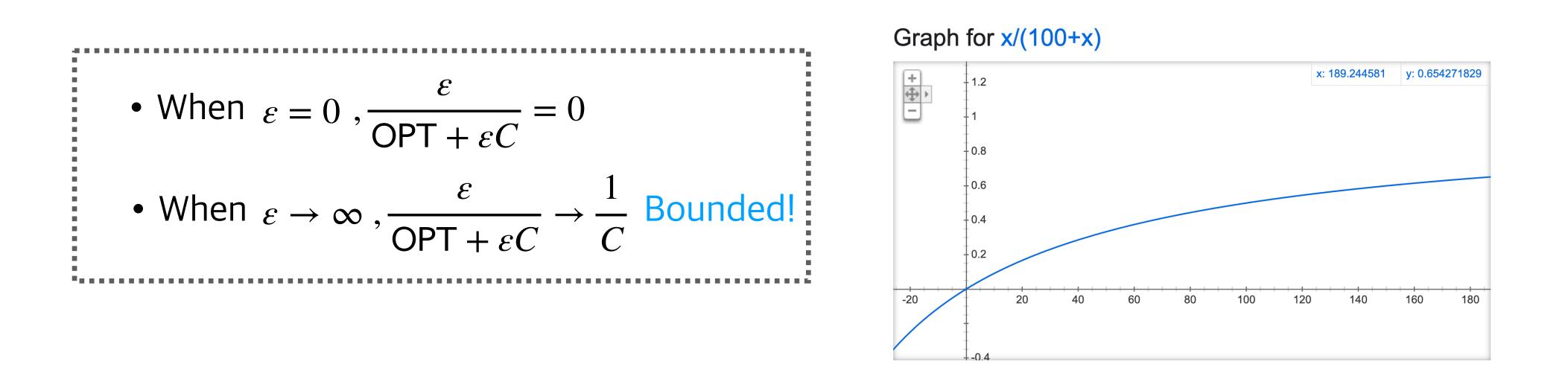


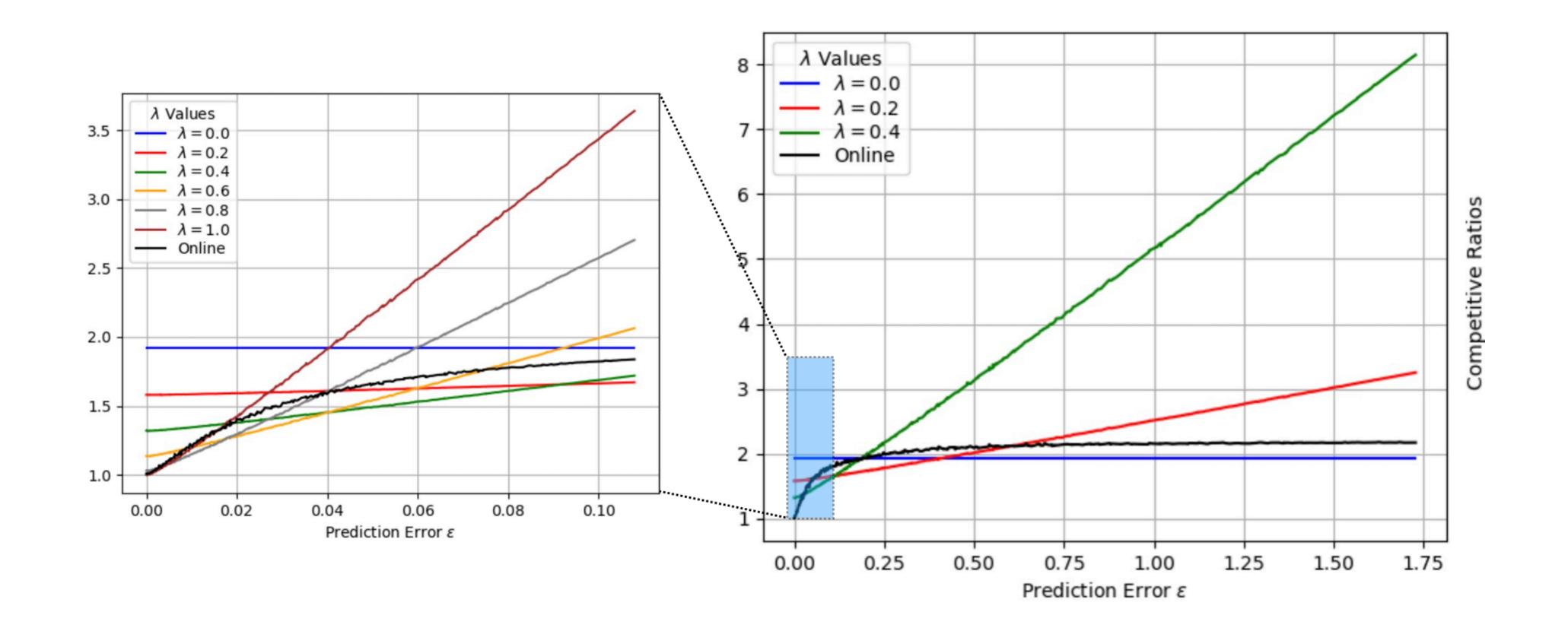
Competitive Ratio Bound for Self-tuning Control

Theorem (Informal; SIGMETRICS '22) CR Theorem

Under model assumptions, the competitive ratio of the self-tuning control algorithm is bounded by

$$\mathsf{CR}(\varepsilon) \le 1 + 2\|H\| \frac{\varepsilon}{\mathsf{OPT} + C\varepsilon} + O\left(\frac{\left(\mu_{\mathsf{VAR}}(\mathbf{w}) + \mu_{\mathsf{VAR}}(\widetilde{\mathbf{w}})\right)^2}{\mathsf{OPT}}\right)$$

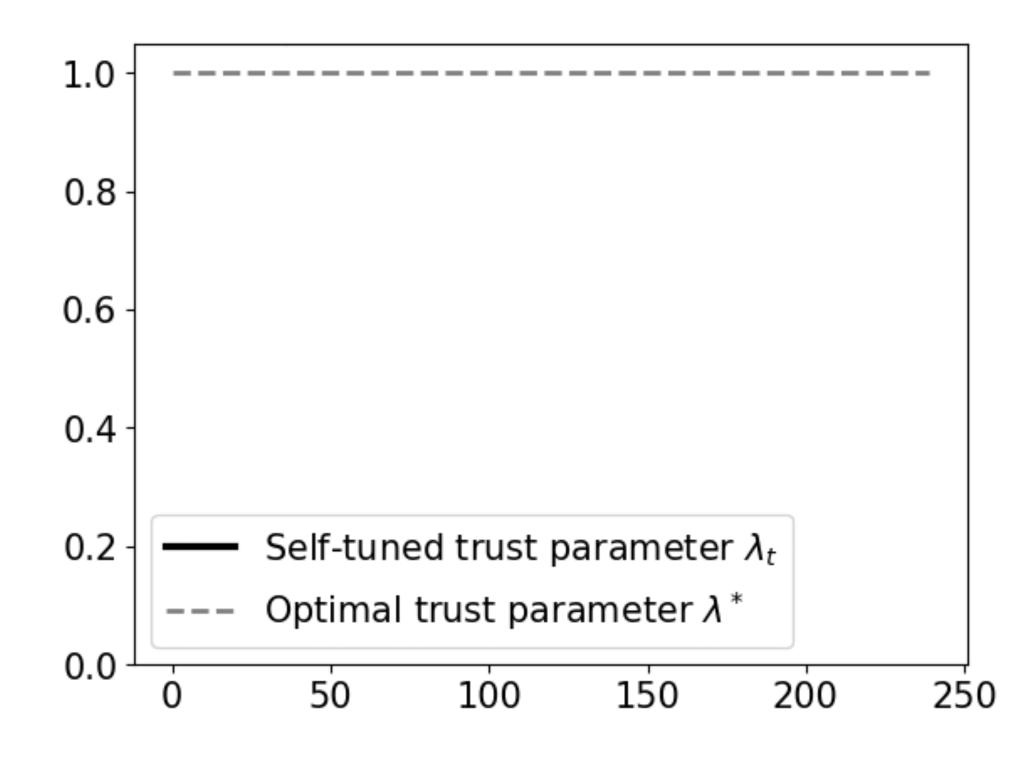


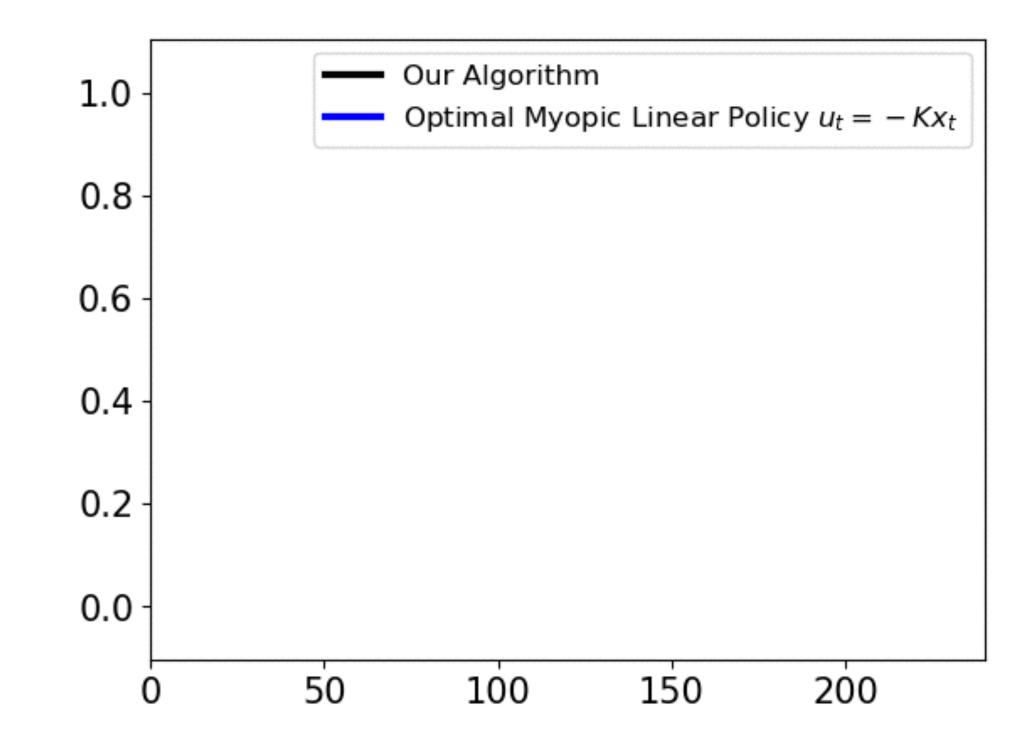


Main Results:

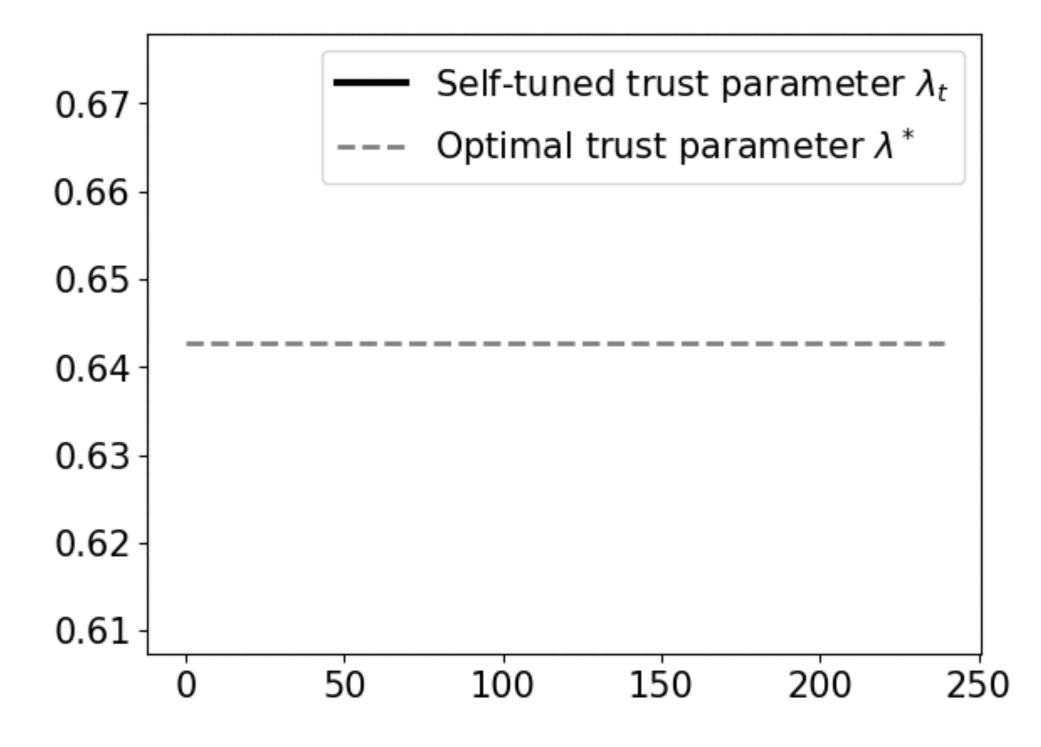
 $\mathsf{CR}(\varepsilon) \le 1 + O(\lambda^2 \varepsilon)$ $CR(\varepsilon) \le 1 + \frac{O(\varepsilon)}{\Theta(1) + \Theta(\varepsilon)}$ + Variation

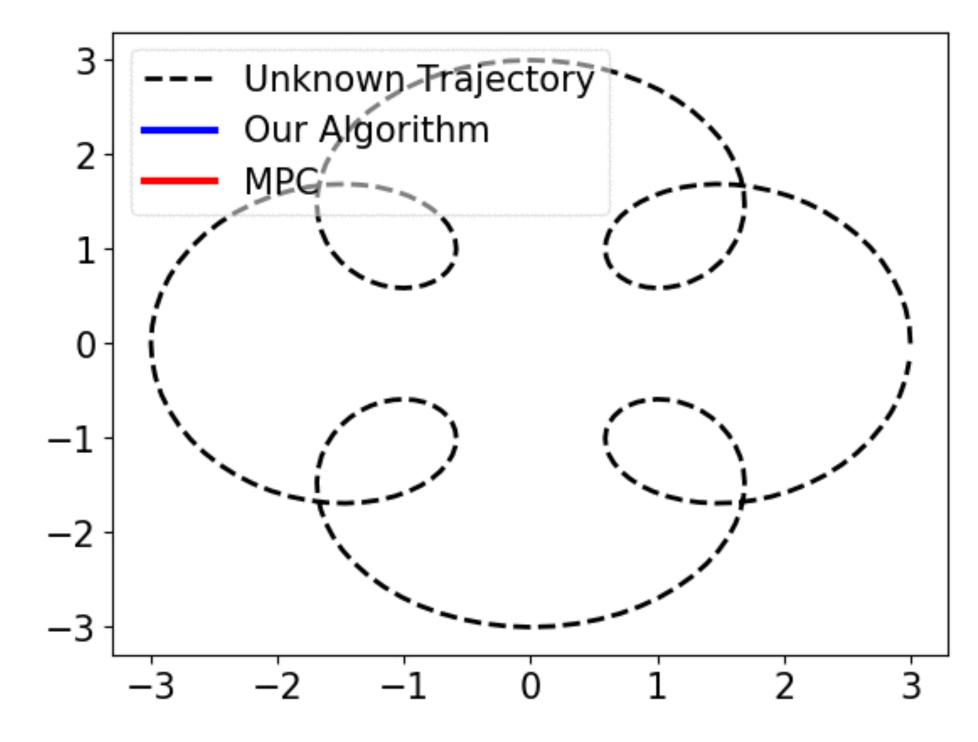
Low Error Case: Optimal $\lambda \approx 1$



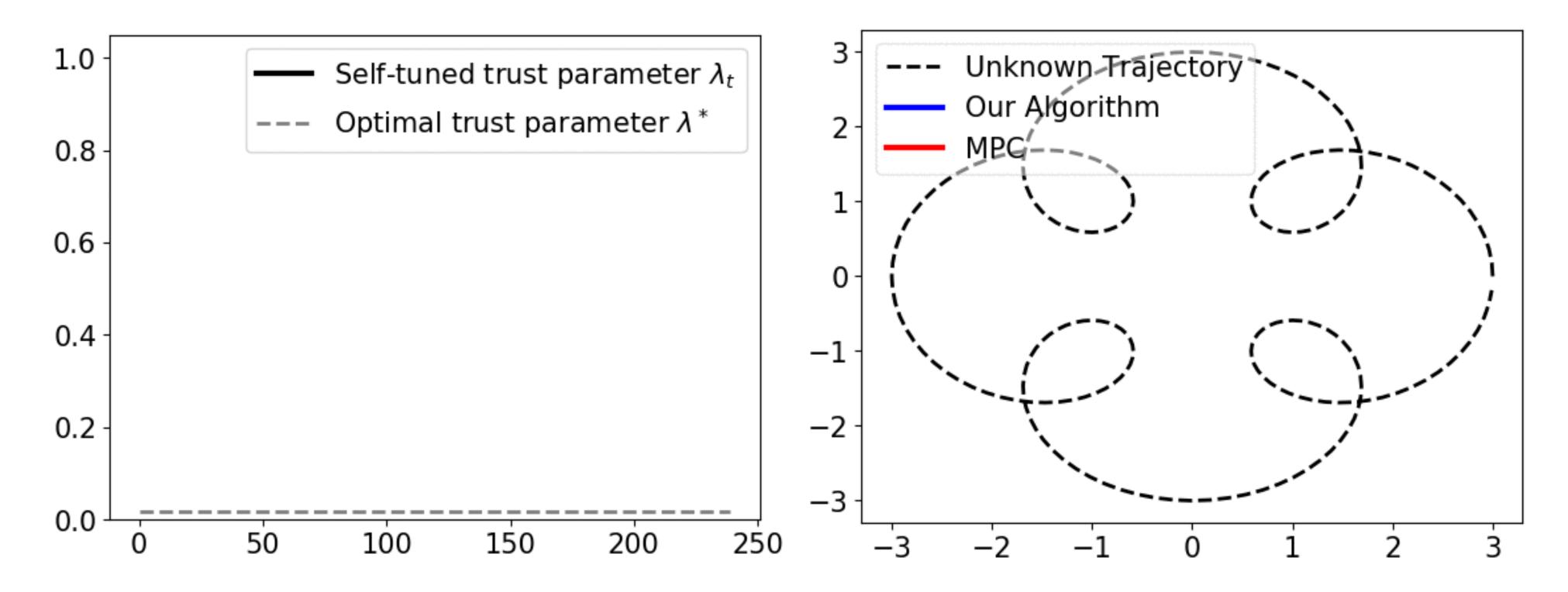


Medium Error Case: Optimal $0 < \lambda < 1$

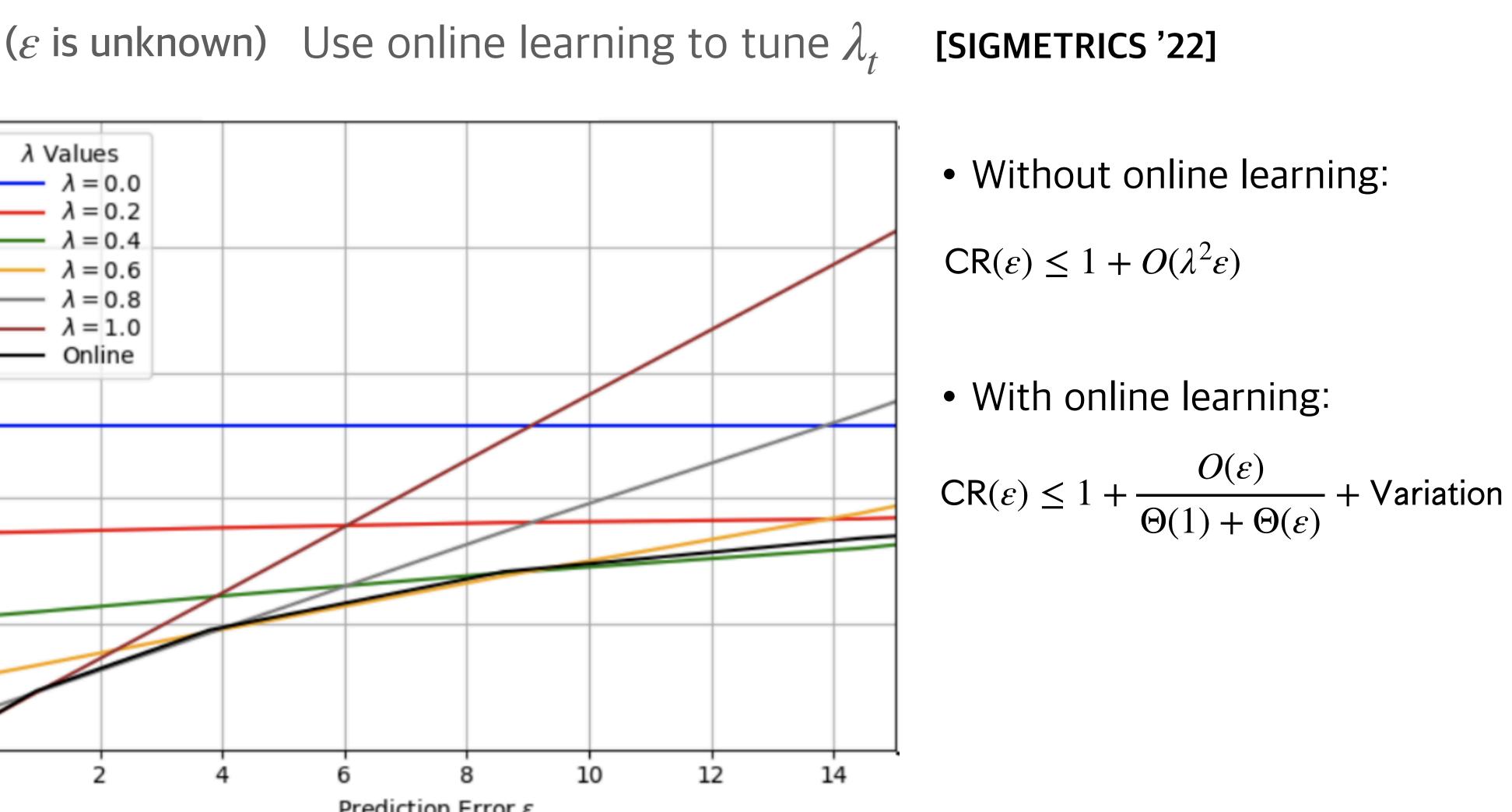


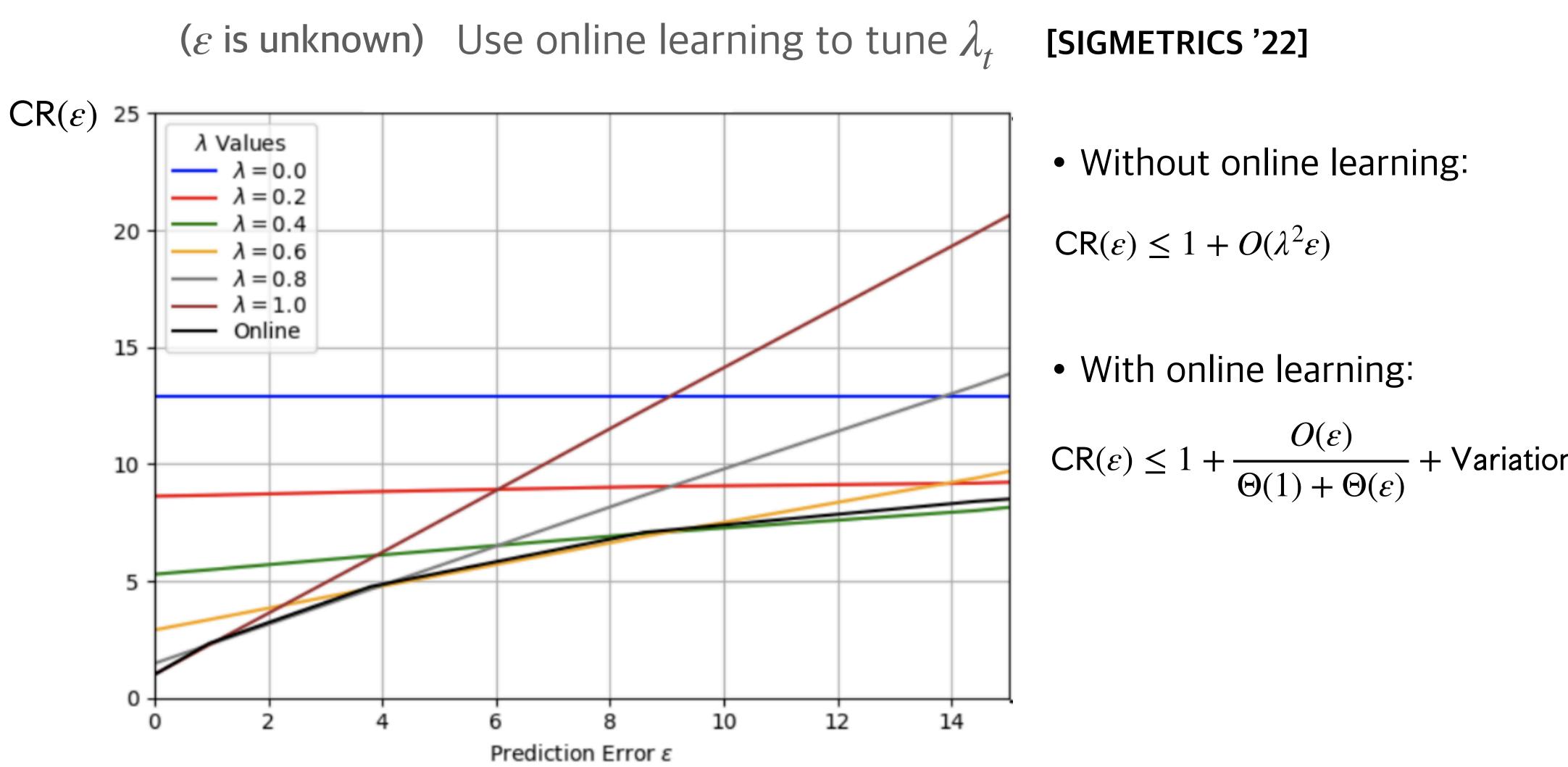


High Error Case: Optimal $\lambda \approx 0$



What λ Should I Choose?

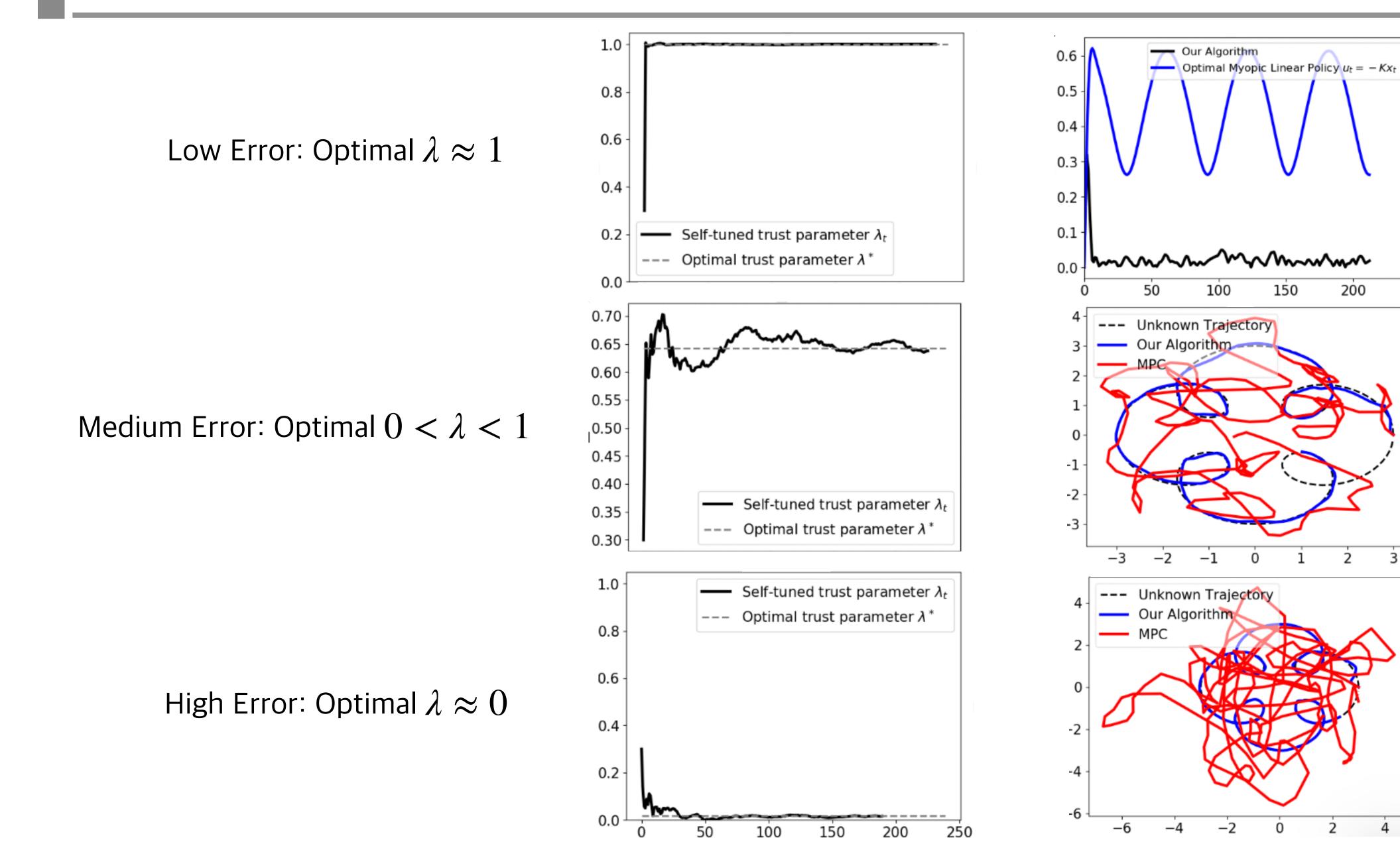




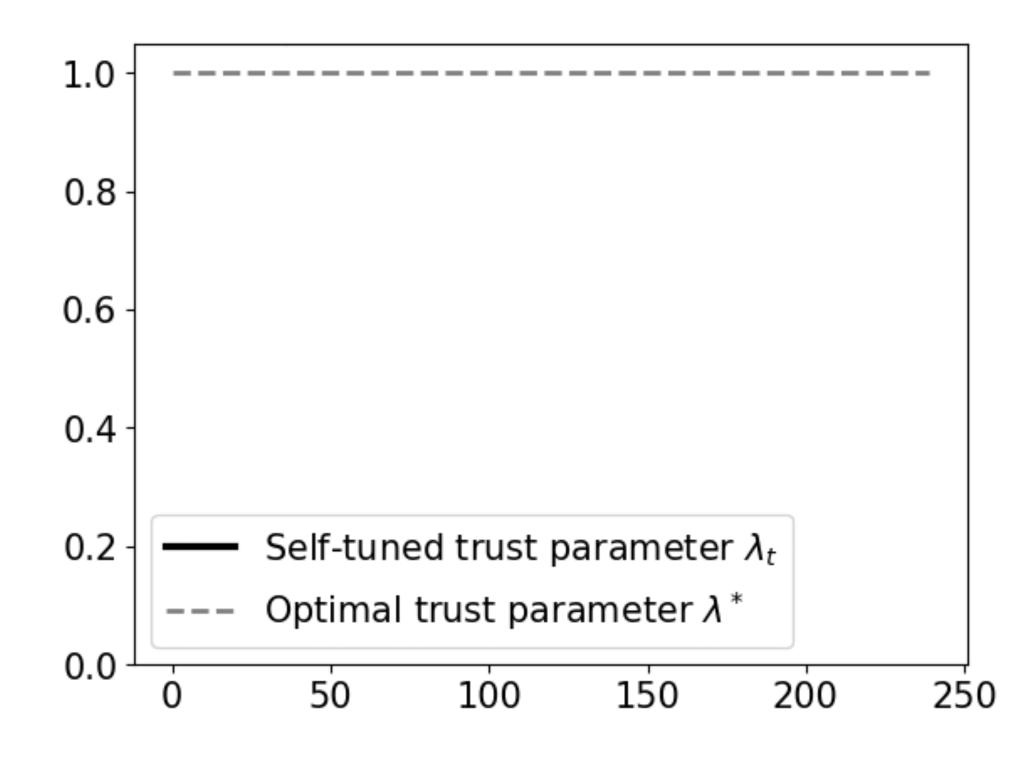
Prediction error ε is small

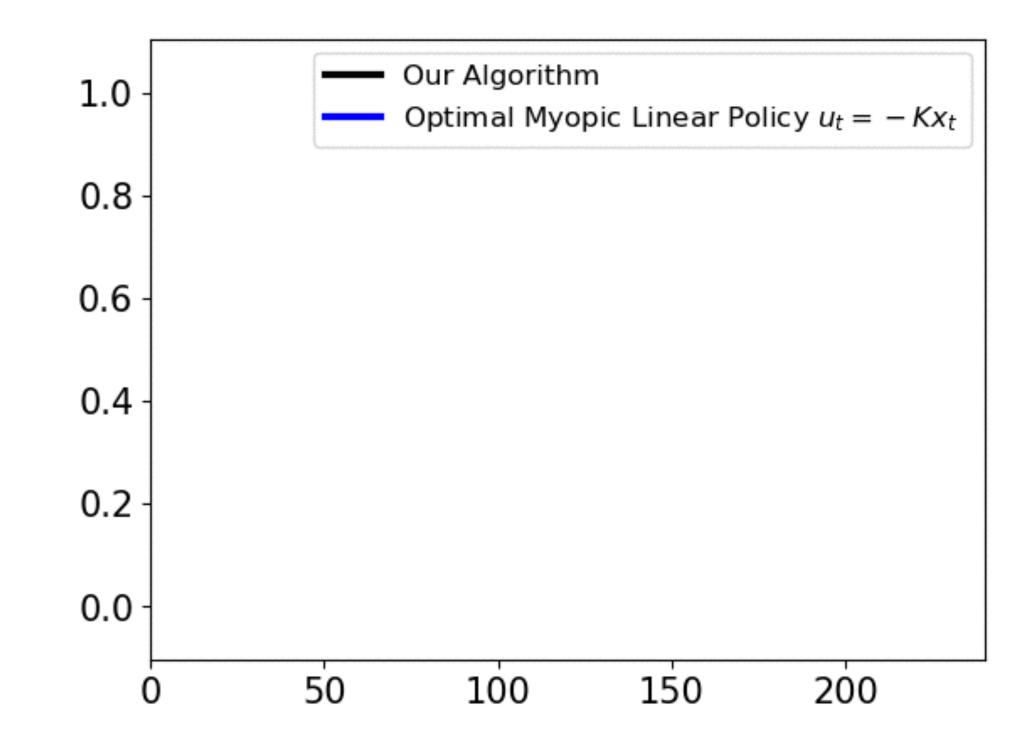
Prediction error ε is large

What λ Should I Choose?

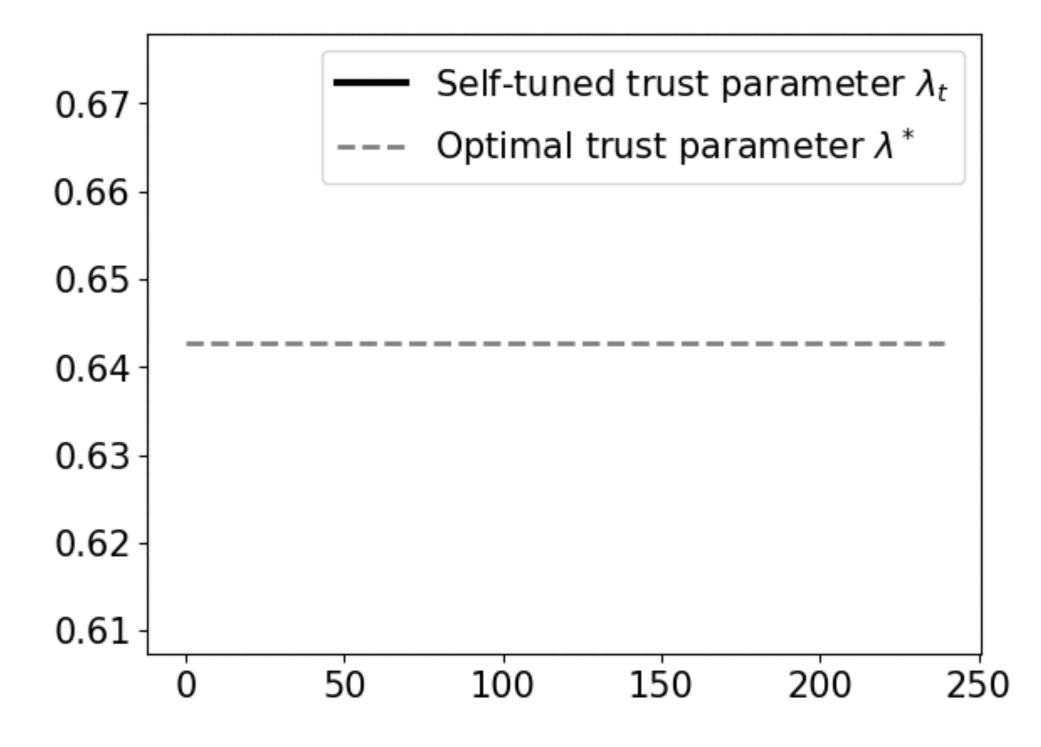


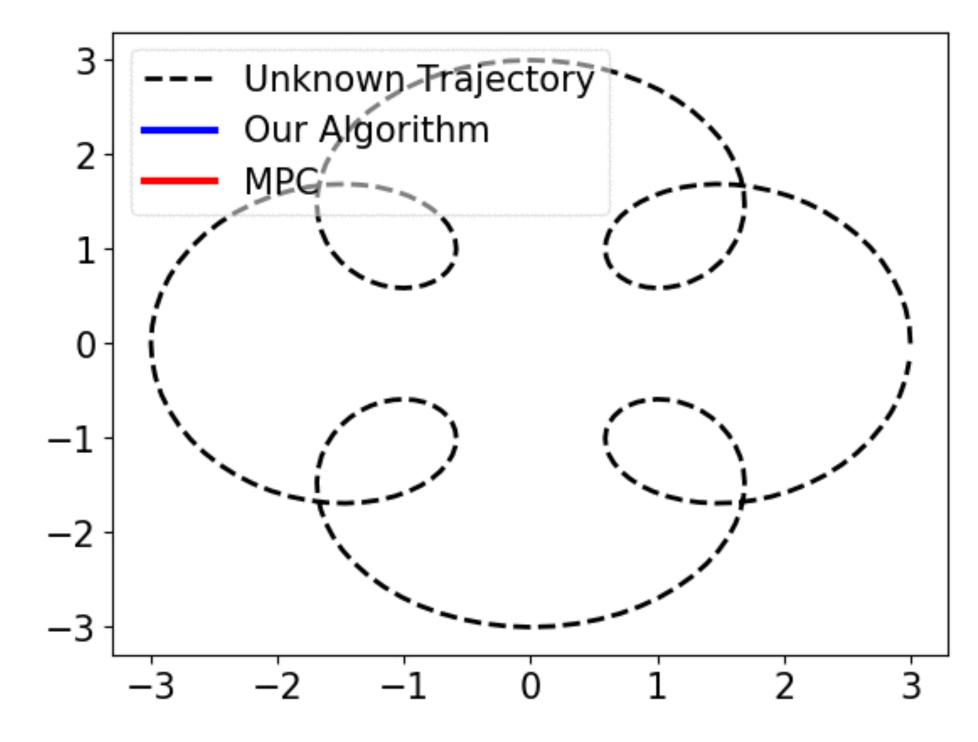
Low Error Case: Optimal $\lambda \approx 1$



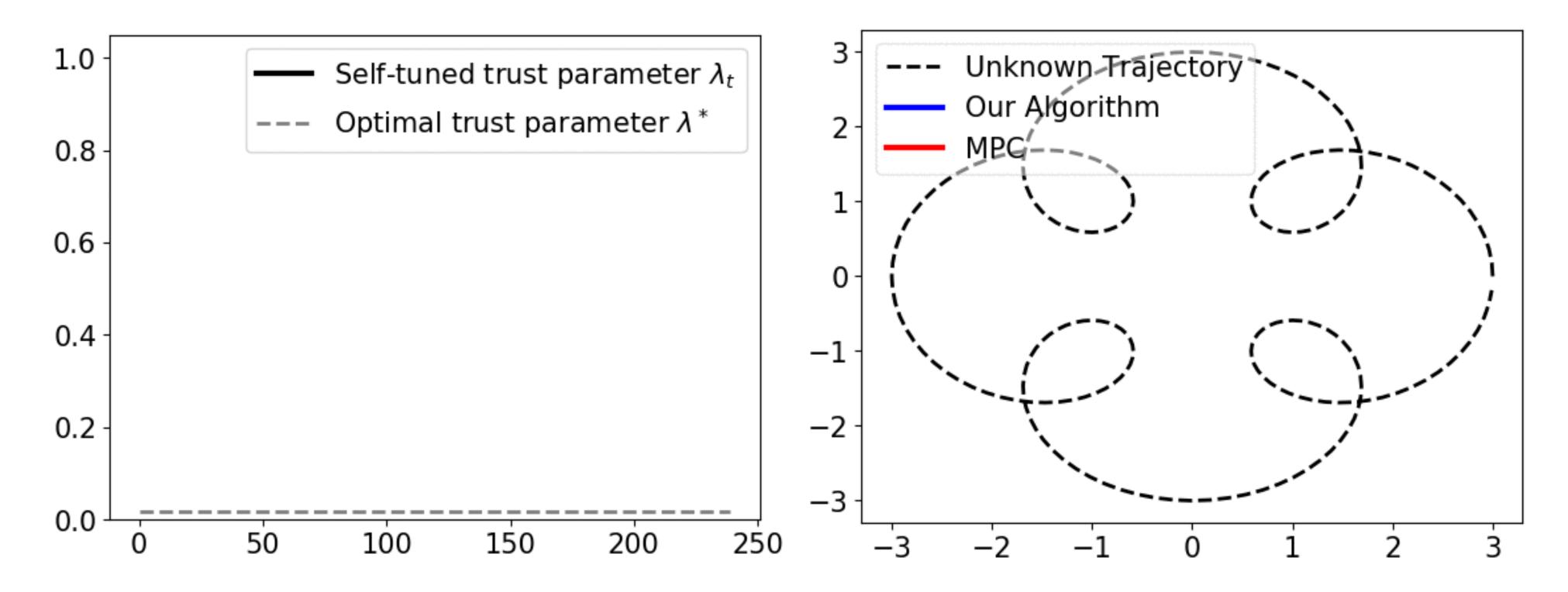


Medium Error Case: Optimal $0 < \lambda < 1$

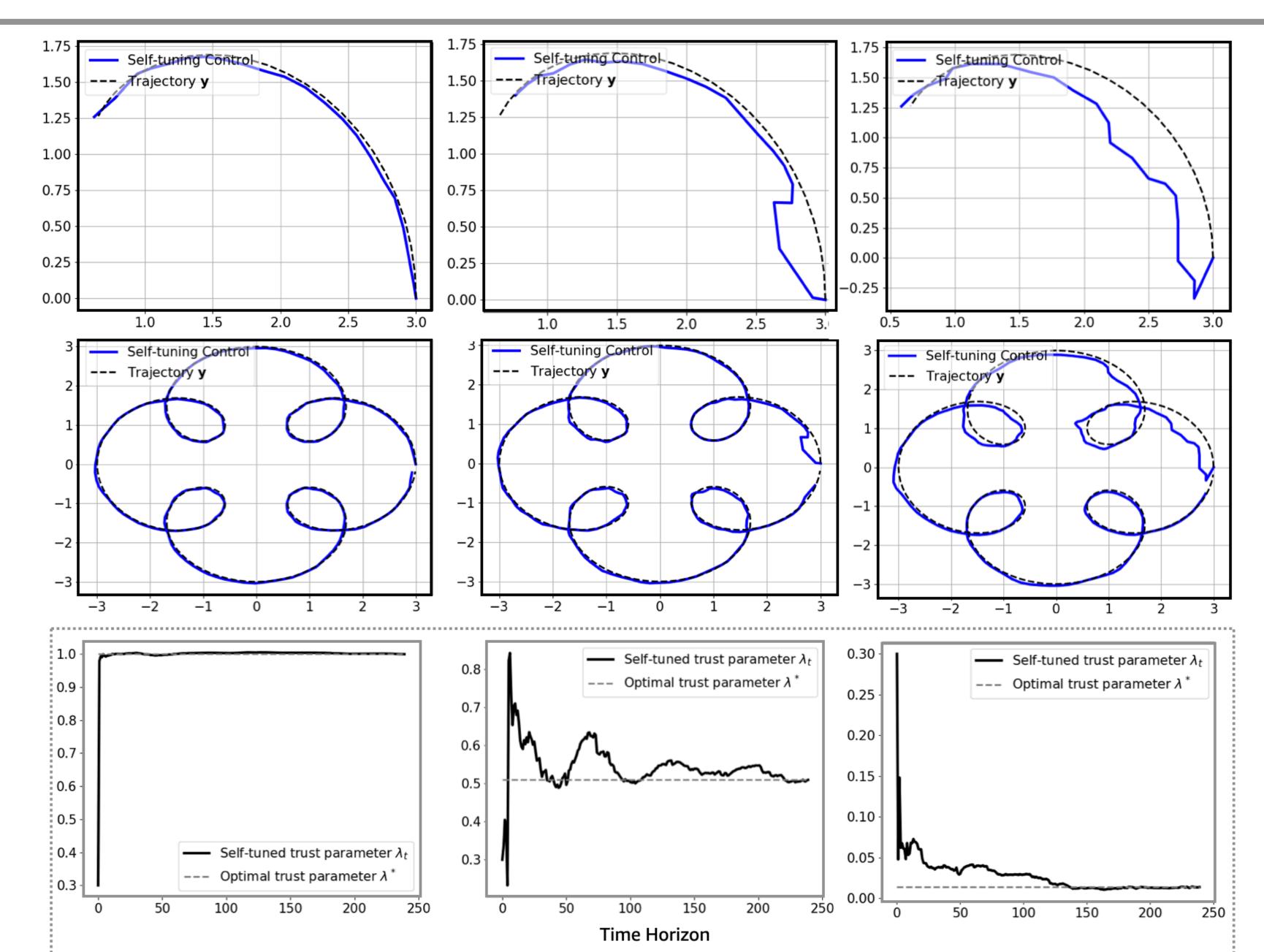


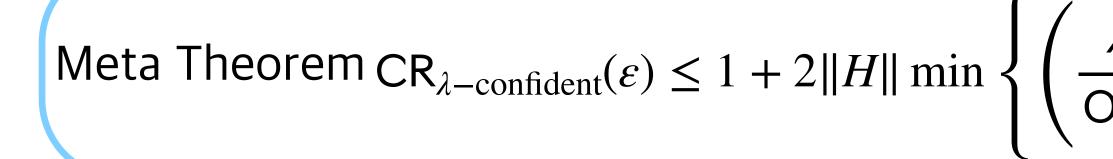


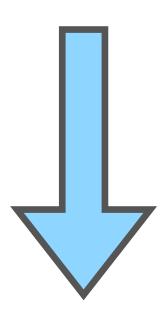
High Error Case: Optimal $\lambda \approx 0$

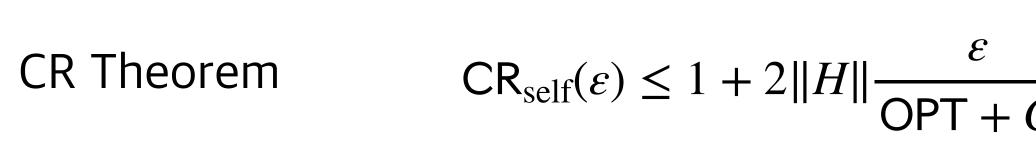


Verify the Convergence of Trust Parameters









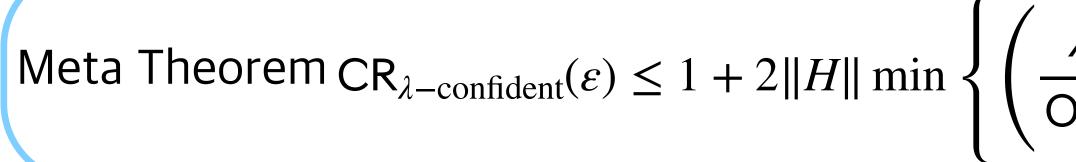
$$\frac{\lambda^2}{\mathsf{OPT}}\varepsilon + \frac{(1-\lambda)^2}{C}\right), \left(\frac{1}{C} + \frac{\lambda^2}{\mathsf{OPT}}\overline{W}\right)\right\}$$

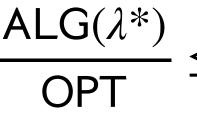
λ -Confident Control

$$\frac{1}{1 \cdot C\varepsilon} + O\left(\frac{\left(\mu_{\mathsf{VAR}}(\mathbf{w}) + \mu_{\mathsf{VAR}}(\widetilde{\mathbf{w}})\right)^{2}}{\mathsf{OPT}}\right)$$

Self-Tuning Control

Sketched Proof

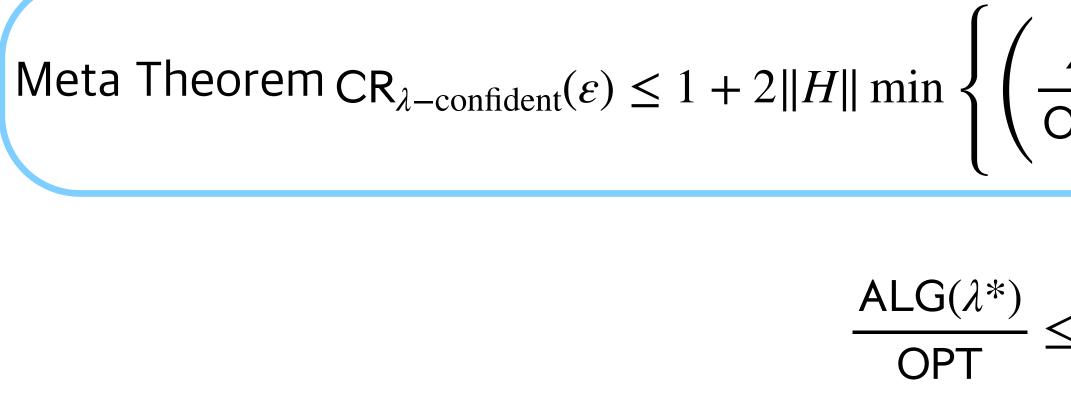




$$\frac{\lambda^2}{\mathsf{OPT}}\varepsilon + \frac{(1-\lambda)^2}{C}\right), \left(\frac{1}{C} + \frac{\lambda^2}{\mathsf{OPT}}\overline{W}\right)\right\} \qquad \lambda \text{-Confident Con}$$

 $\frac{ALG(\lambda^*)}{OPT} \le 1 + 2\|H\| \frac{\varepsilon}{OPT + \varepsilon C}$ Optimize the upper bound over λ

Sketched Proof



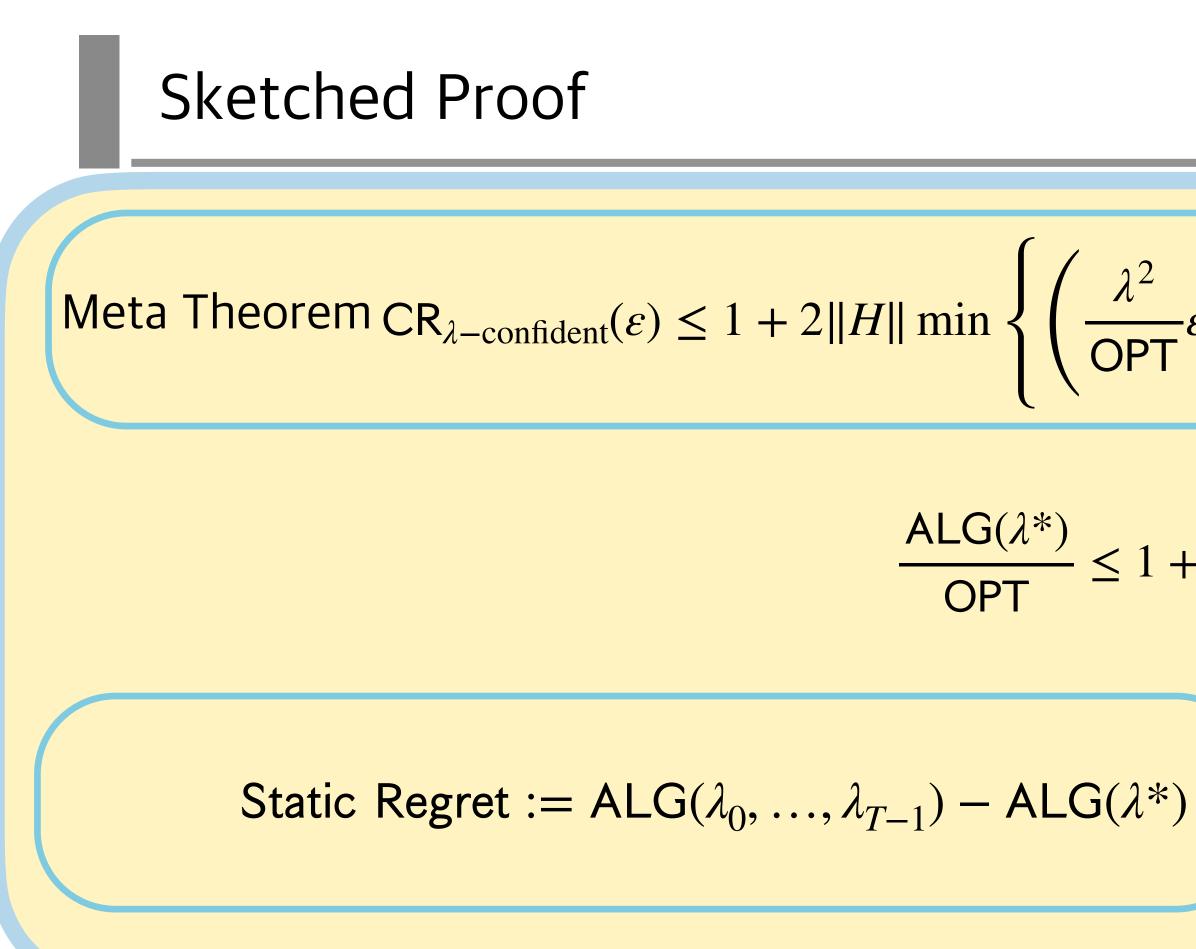
$$\mathsf{Regret} := \mathsf{ALG}(\lambda_0, \dots, \lambda_{T-1}) - \mathsf{ALG}(\lambda^*)$$

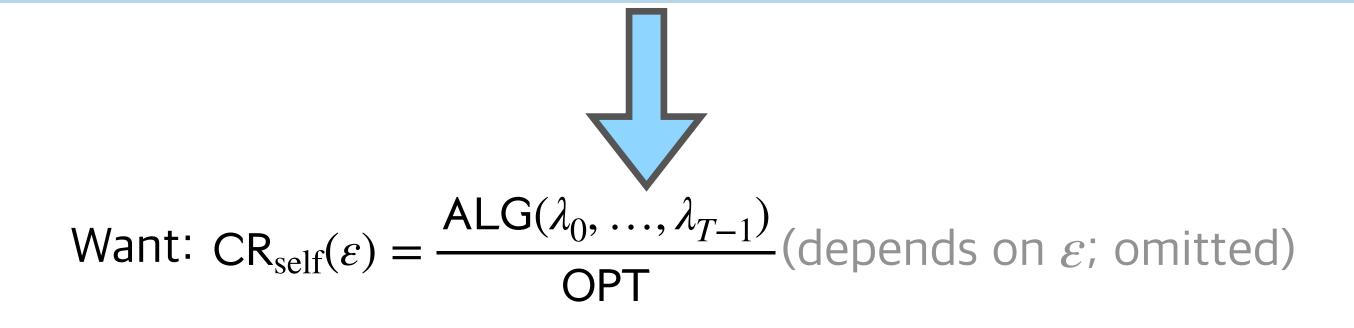
Want:
$$CR_{self}(\varepsilon) = \frac{ALG(\lambda_0, ..., \lambda_{T-1})}{OPT}$$
 (depend

$$\frac{\lambda^2}{\mathsf{OPT}}\varepsilon + \frac{(1-\lambda)^2}{C}\right), \left(\frac{1}{C} + \frac{\lambda^2}{\mathsf{OPT}}\overline{W}\right)\right\} \qquad \lambda \text{-Confident Con}$$

 $\frac{ALG(\lambda^*)}{OPT} \le 1 + 2\|H\| \frac{\varepsilon}{OPT + \varepsilon C}$ Optimize the upper bound over λ

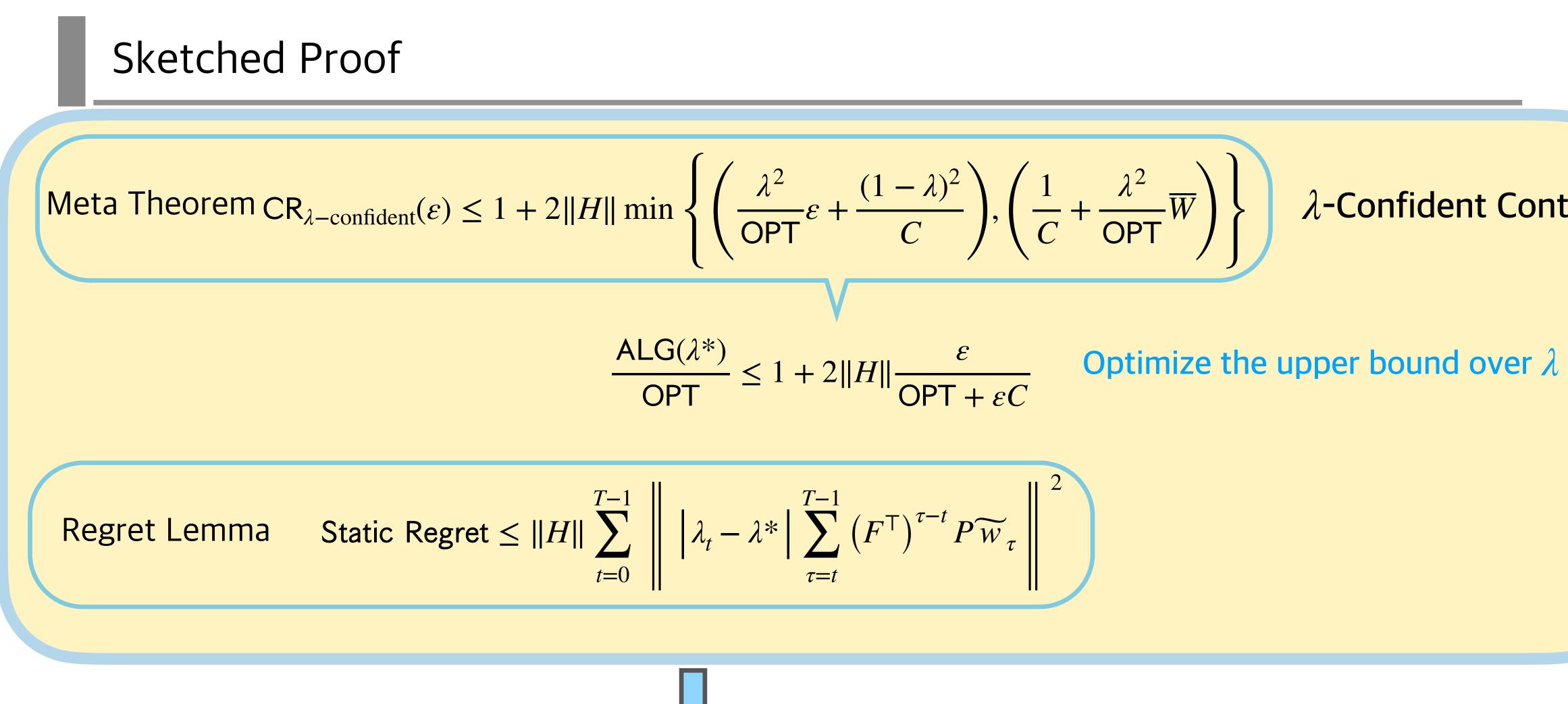
is on ε ; omitted)

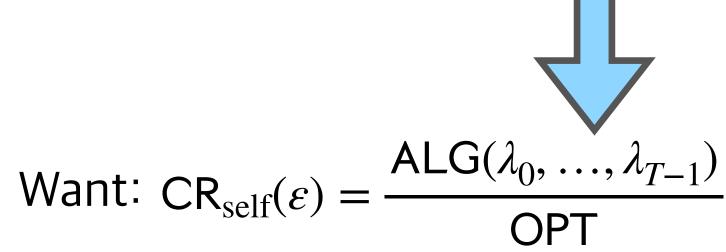




$$\frac{2}{2} \varepsilon + \frac{(1-\lambda)^2}{C} , \left(\frac{1}{C} + \frac{\lambda^2}{OPT} \overline{W} \right) \right\} \qquad \lambda - \text{Confident Control}$$

 $\frac{ALG(\lambda^*)}{OPT} \le 1 + 2\|H\| \frac{\varepsilon}{OPT + \varepsilon C}$ Optimize the upper bound over λ

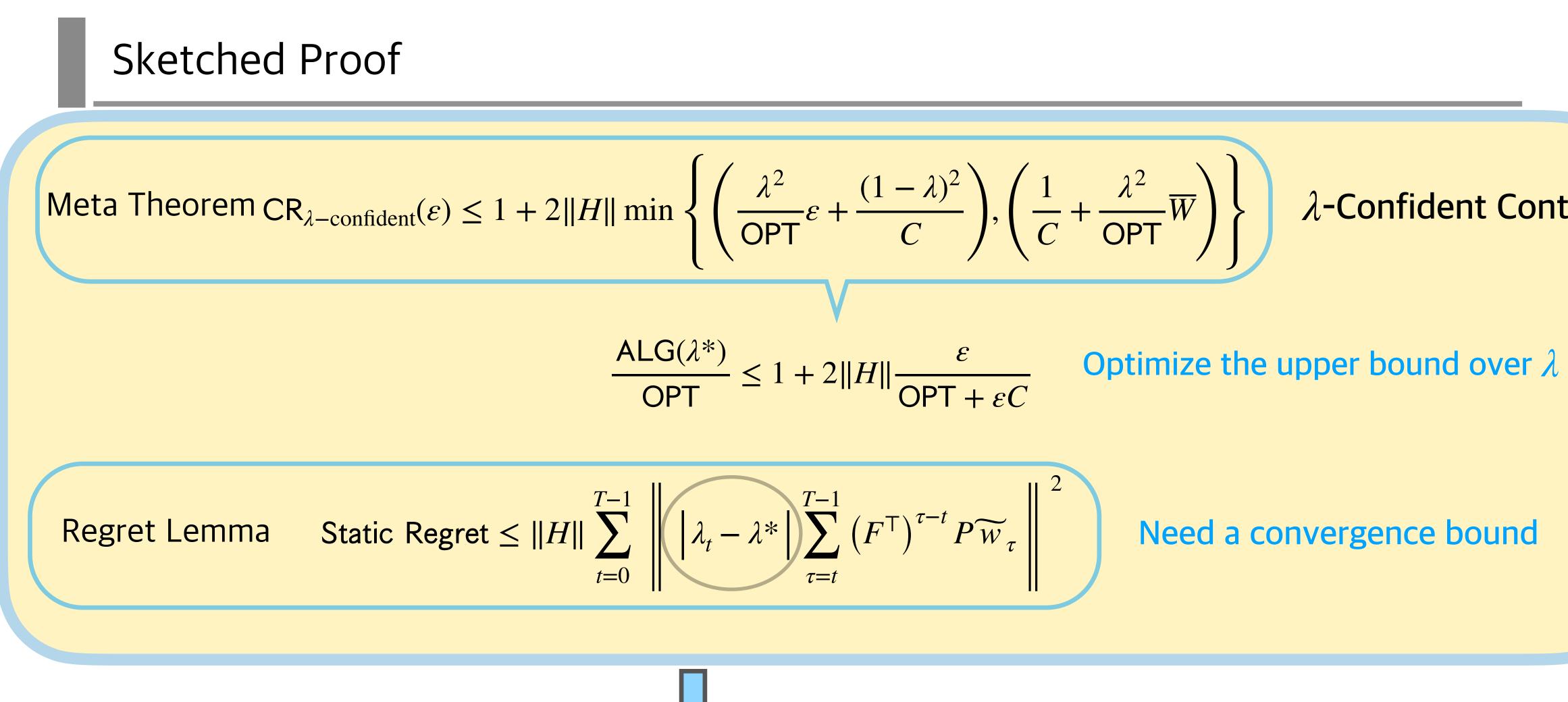




$$\frac{2}{PT}\varepsilon + \frac{(1-\lambda)^2}{C}\right), \left(\frac{1}{C} + \frac{\lambda^2}{OPT}\overline{W}\right)\right\} \qquad \lambda - \text{Confident Contraction}$$

$$\left\| \sum_{\tau=t}^{T-1} \left(F^{\mathsf{T}} \right)^{\tau-t} P \widetilde{w}_{\tau} \right\|^{2}$$

(depends on
$$\varepsilon$$
; omitted)



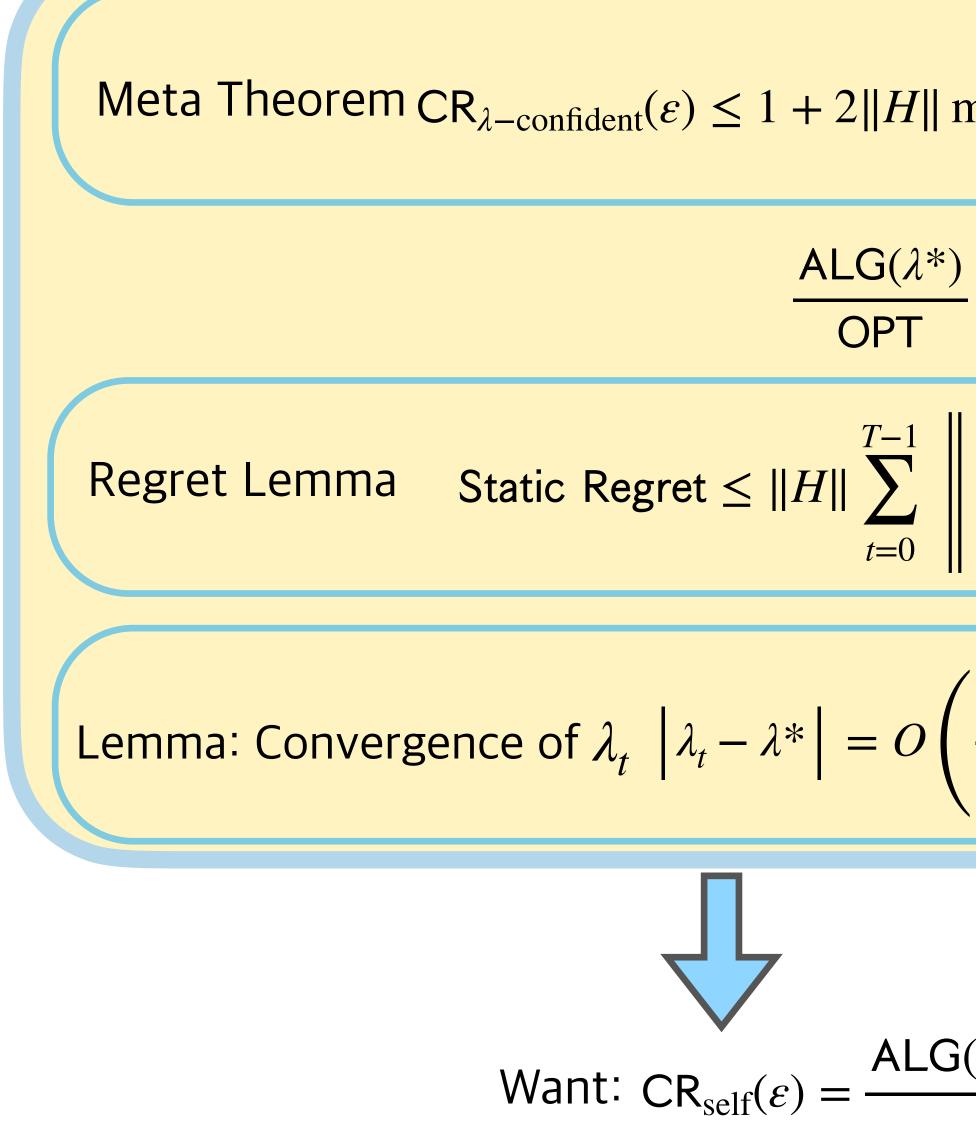


$$\frac{2}{2} + \frac{(1-\lambda)^2}{C}, \left(\frac{1}{C} + \frac{\lambda^2}{OPT}\overline{W}\right) \right\} \quad \lambda \text{-Confident Contr}$$

$$\left\|\sum_{\tau=t}^{T-1} \left(F^{\mathsf{T}}\right)^{\tau-t} P\widetilde{w}_{\tau}\right\|^{2}$$

Need a convergence bound

Sketched Proof



$$\min\left\{ \left(\frac{\lambda^{2}}{\mathsf{OPT}} \varepsilon + \frac{(1-\lambda)^{2}}{C} \right), \left(\frac{1}{C} + \frac{\lambda^{2}}{\mathsf{OPT}} \overline{W} \right) \right\}$$

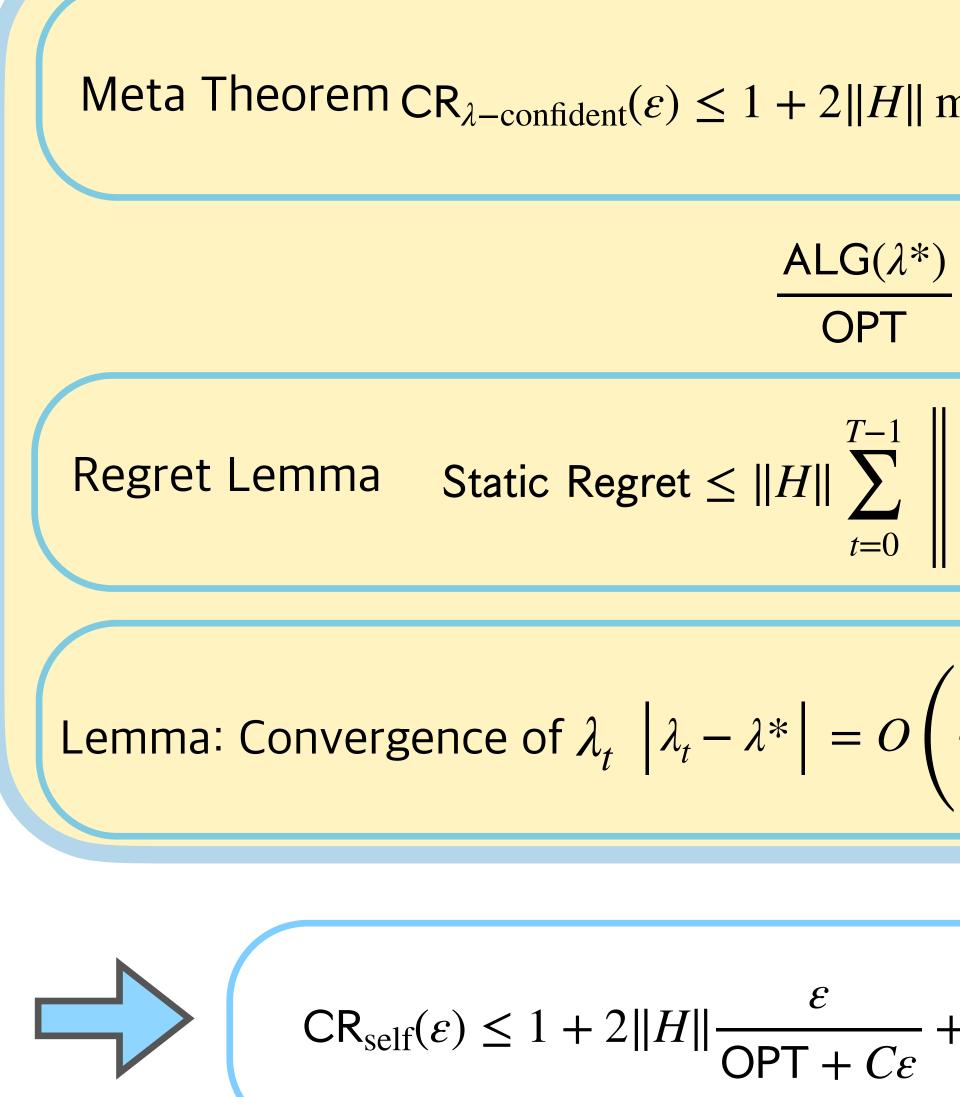
$$E \leq 1 + 2 \|H\| \frac{\varepsilon}{\mathsf{OPT} + \varepsilon C}$$

$$\left\| \lambda_{t} - \lambda^{*} \right\| \sum_{\tau=t}^{T-1} (F^{\mathsf{T}})^{\tau-t} P \widetilde{w}_{\tau} \right\|^{2}$$

$$\left(\frac{\mu_{\mathsf{Var}}(\mathbf{w}) + \mu_{\mathsf{Var}}(\widetilde{\mathbf{w}})}{t} \right)$$

$$\frac{(\lambda_0, \dots, \lambda_{T-1})}{OPT}$$
 (depends on ε ; omitted)

Sketched Proof



$$\min \left\{ \left(\frac{\lambda^{2}}{\mathsf{OPT}} \varepsilon + \frac{(1-\lambda)^{2}}{C} \right), \left(\frac{1}{C} + \frac{\lambda^{2}}{\mathsf{OPT}} \overline{w} \right) \right\}$$

$$e \leq 1 + 2 \|H\| \frac{\varepsilon}{\mathsf{OPT} + \varepsilon C}$$

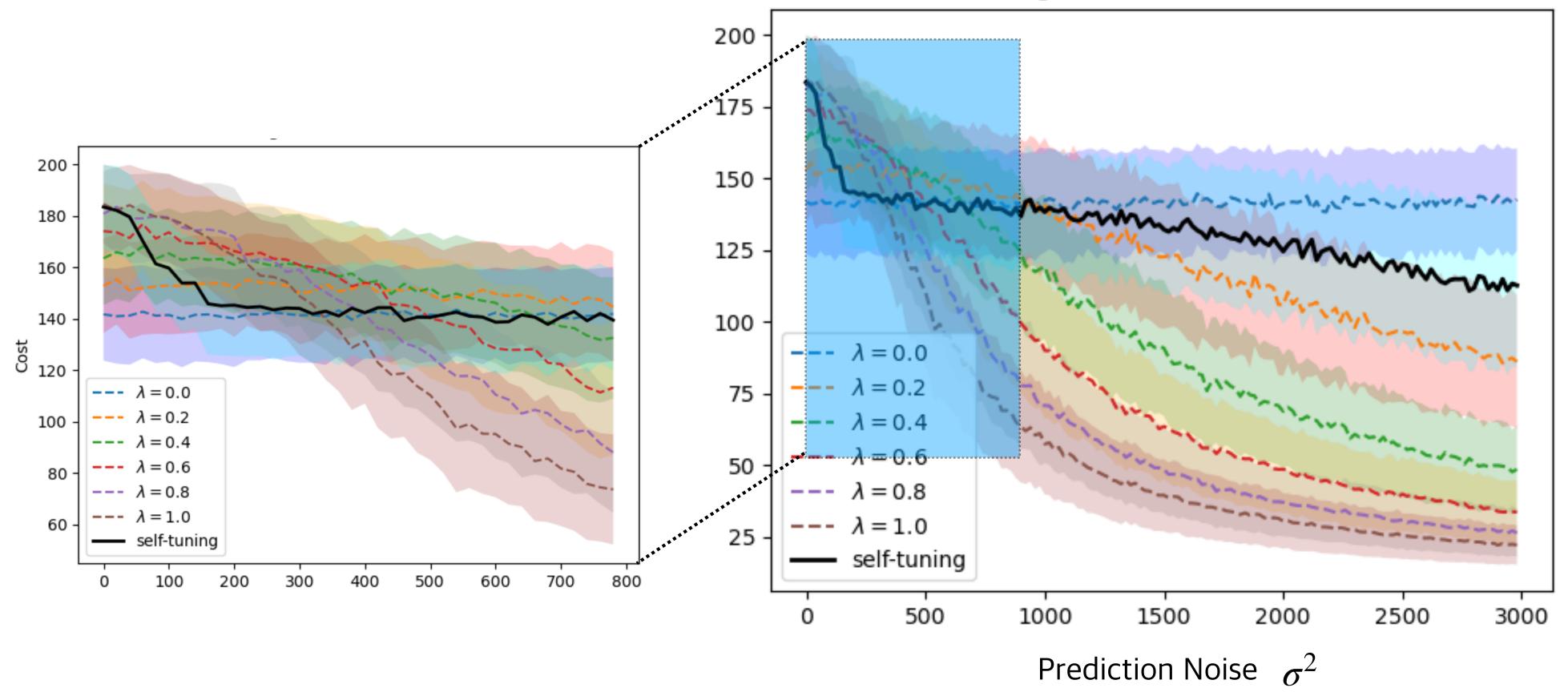
$$\left\| \lambda_{t} - \lambda^{*} \left\| \sum_{\tau=t}^{T-1} \left(F^{\top} \right)^{\tau-t} P \widetilde{w}_{\tau} \right\|^{2}$$

$$\left(\frac{\mu_{\mathsf{Var}}(\mathbf{w}) + \mu_{\mathsf{Var}}(\widetilde{\mathbf{w}})}{t} \right)$$

$$\mathsf{CR Theorem}$$

$$\mathsf{Self-Tuning Control}$$

Generalize to Nonlinear Cases



• Empirically works well for the CartPole problem (nonlinear dynamics)

Algorithm Performance

Tradeoff in Linear Models

System Model	Classic Agent	ML Agent	Remarks	Tradeoffs
Linear Dynamics	LQR	MPC+Perturbation Predictions	Convex Combination	Consistency vs Robustness
NonLinear Dynamics	LQR	Black-Box RL	Switching	Consistency vs Stability

Theorem (Informal; SIGMETRICS'22) Consi

Under model assumptions, there exists an algorithm whose competitive ratio can be bounded by

$$CR(\varepsilon) \le 1 + 2||H|| \frac{\varepsilon}{OPT + C\varepsilon} + O(Variation of w, \widetilde{w}).$$

Consistency vs Robustness

Nonlinear Model is Harder

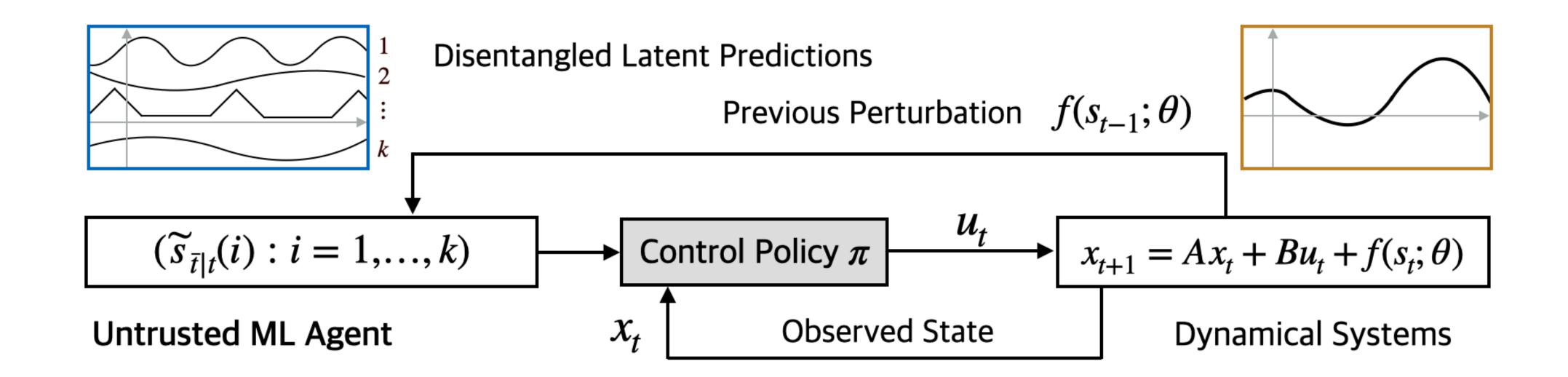
System Model	Classic Agent	ML Agent	Remarks	Tradeoffs
Linear Dynamics	LQR	MPC+Perturbation Predictions	Convex Combination	Consistency vs Robustness
NonLinear Dynamics	LQR	Black-Box RL	Switching	Consistency vs Stability

Theorem (Informal; OJCSYS '23) Under model assumptions, there exists a policy satisfying

Consistency vs Stability

- (1) If prediction error is smaller than a threshold, then the competitive ratio can be bounded;
- (2) If prediction error is larger than that threshold, then the policy is exponentially stabilizing.

Given Disentangled Predictions in LQC …



- Disentangling time series to obtain higher prediction accuracy (FastICA, nonlinear ICA)
- Learn to trust each independent components

[3] Joint work with Liu H, Yue Y, 2024.

Informally ···

Without disentangled predictions [1] …

[1] Li T, Yang R, Qu G, Shi G, Yu C, Wierman A, Low S. Robustness and consistency in linear quadratic control with untrusted predictions. ACM SIGMETRICS 2022

With disentangled predictions (this work) ...

$$CR(\varepsilon) \le 1 + O\left(\sum_{i=1}^{k} \frac{\varepsilon(i)}{\Omega(T/w) + \varepsilon(i)}\right) + O(\rho^{2w})$$

closed-loop system spectral radius

summing over disentangled components

prediction window size

individual component prediction error

Informally ····

best-of-both-worlds utilization of untrusted ML predictions

- If $\epsilon(i) = 0$, near-optimal
- If $\epsilon(i) = \infty$, bounded CR

With disentangled predictions (this work) ...

$$CR(\varepsilon) \le 1 + O\left(\sum_{i=1}^{k} \frac{\varepsilon(i)}{\Omega(T/w) + \varepsilon(i)}\right) + O(\rho^{2w})$$

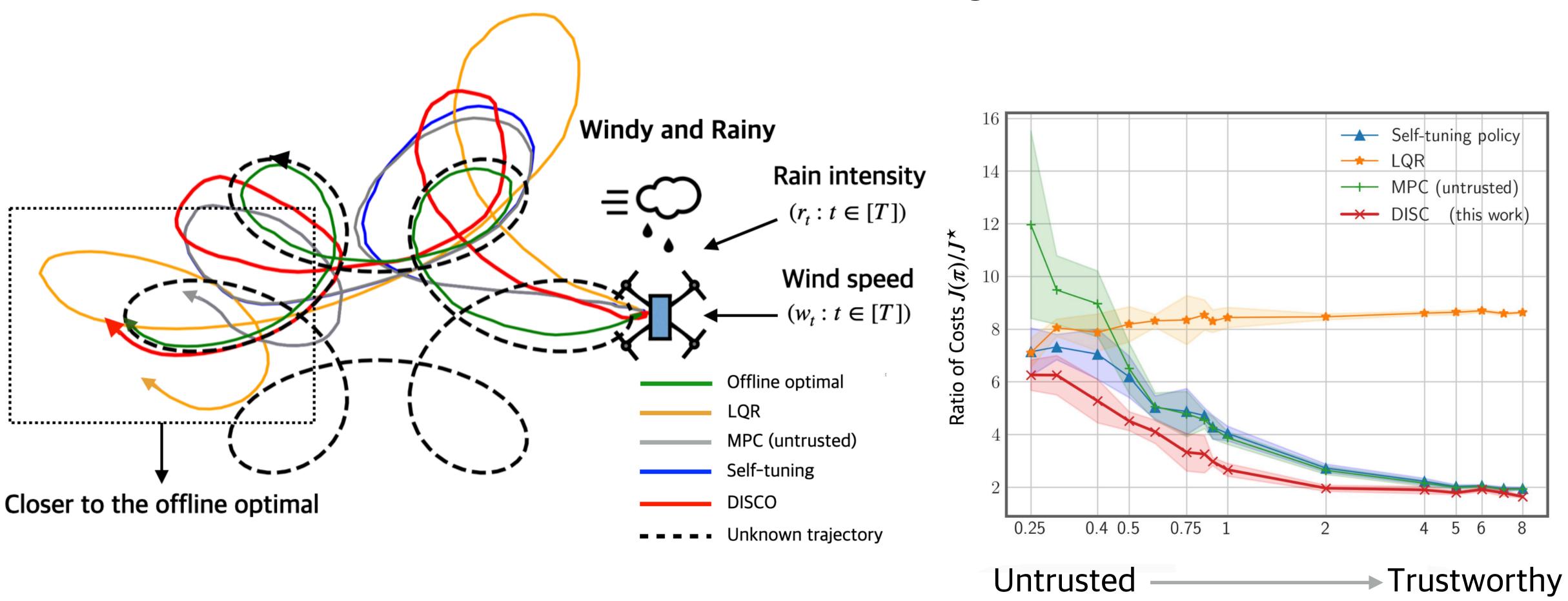
closed-loop system spectral radius

summing over disentangled components

prediction window size

individual component prediction error

Controlling a drone under challenging windy and rainy weather conditions



(1) Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, and Steven Low.
 "Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions." Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, no. 1 (2022): 1–35.

(2) Tongxin Li,, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven Low, and Adam Wierman. **"Certifying Black-Box Policies with Model-Based Advice for Stable Nonlinear Control."** arXiv preprint arXiv:2206.01341 (2022).

(3) Jianyi Yang, Pengfei Li, Tongxin Li, Adam Wierman, Shaolei Ren. "Anytime-Constrained Reinforcement Learning with Policy Prior." (Accepted NeruIPS 2023)