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Consistent ML Algorithm (Good when  is small) ε

Consistency vs Robustness Trade-off

Prediction error ε

e.g. Competitive ratio 𝖢𝖱(ε)

0

1

Robust Classic Algorithm (Good when  is large) εγ

Intermediate Regimes

Meta-algorithms

(by varying a trust parameter )λ

Revisit: Learning-Augmented Algorithms

Performance Benchmark



General Goal of Learning-Augmented Algorithms

Consistency vs Robustness Trade-off

Prediction error ε
0

1

λ = 0γ
λ = 0.2
λ = 0.5
λ = 0.7
λ = 1

Competitive ratio 𝖢𝖱(ε)

Which  should I choose? (  is unknown)λ ε

(We can ask the same question for any learning-augmented online algorithms)

Not sure what  is optimal …λ

First Limitation



Issue: Prediction error  is not known a prioriε

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error ε

Prediction error ε
0

1

λ = 0γ
λ = 0.2
λ = 0.5
λ = 0.7
λ = 1

Competitive ratio 𝖢𝖱(ε)

Can we automatically adjust  ?λ

First Limitation



General Goal of Learning-Augmented Algorithms

Consistency vs Robustness Trade-off

Prediction error ε
0

1

λ = 0γ

One Solution: Online Learning

λ = 0.2
λ = 0.5
λ = 0.7
λ = 1

Idea: • use history to automatically select 

• the system can self-tune

• online learning 

λ

[Li et. al. SIGMETRICS 2022] [Khodak et. al. NeurIPS 2022] 

[Lin et. al. Preprint 2023] …

Competitive ratio 𝖢𝖱(ε)

[Li et. al. NeurIPS 2024] 



A Real-World Problem

The UC San Diego/EVgo projectImage: Paired Power



EV Charging with Uncertainties

The UC San Diego/EVgo project

Electricity price varies Solar generation Charging behavior

Main Sources of Uncertainties Data

Use RL for scheduling?

Question: Do they work well in practice?

Question: If so, why is it hard to see them being used?

•Tons of existing policies

Ideally, they work well, but …



Adaptive Charging Network (ACN@Caltech)

•A Parking lot with 54 chargers

•How to schedule EV charging is challenging

Large-Scale Adaptive Charging Network



Large-Scale Workplace EV Charging

Choose Model Select EnergyFina a Location Scan and Charge

Version 2.7.39 / 2022Commercialized



Classic Scheduling Algorithms

•Least laxity first (LLF)

•Earliest deadline first (EDF)

•Model predictive control (MPC)

(Currently used in Caltech ACNs)
…

Large-Scale Workplace EV Charging



Large-Scale Workplace EV Charging

Classic Scheduling Algorithms

•Least laxity first (LLF)

•Earliest deadline first (EDF)

•Model predictive control (MPC)

…
(Currently used in Caltech ACNs)



Statistical distributions shifted

due to: policy changes (COVID-19), weekends vs weekdays etc.COVID-19

Stay-At-Home Order

Pre-COVID-19 Post-COVID-19

Start Paid Charging

(Data from the real Caltech system)

 COVID-19 Caused Dataset Shift

Flattened Arriving times

RL policies trained on out-of-distribution data can perform poorly

[e-Energy ’19]



EV arrives at  αj

The adaptive charging network at Caltech. source: https://ev.caltech.edu

Combing MPC and RL Scheduling 

(et+1∥bt+1) = st+1 = g𝒮[Atst + Btg𝒜(at) + ℓ′￼t − Δh′￼t], t ≥ 0

Battery Dynamics (Uncertain) Behavior/Solar Perturbations

 is a charging session: At time , EV  arrives at charger , with an EV battery capacity , and departs at time  (αj, δj, κj, i) αj j i κj δj

EV departs at  δj



EV arrives at  αj

The adaptive charging network at Caltech. source: https://ev.caltech.edu

Combing MPC and RL Scheduling 

(et+1∥bt+1) = st+1 = g𝒮[Atst + Btg𝒜(at) + ℓ′￼t − Δh′￼t], t ≥ 0

Battery Dynamics (Uncertain) Behavior/Solar Perturbations

Battery SoC Charging Rates Change of 
Charging Rates

Human behaviors 
arrival/departure

Solar generation 

 is a charging session: At time , EV  arrives at charger , with an EV battery capacity , and departs at time  (αj, δj, κj, i) αj j i κj δj

EV departs at  δj



Combing MPC and RL Scheduling 

Projections  and  capture network constraints, such as line constraints by the Kirchhoff’s Current Law:g𝒮 g𝒜
N

∑
i=1

Dijbt(i)ejϕi ≤ γ, ∀t ∈ 𝒯$

EV arrives at  αj

The adaptive charging network at Caltech. source: https://ev.caltech.edu

(et+1∥bt+1) = st+1 = g𝒮[Atst + Btg𝒜(at) + ℓ′￼t − Δh′￼t], t ≥ 0

Battery Dynamics (Uncertain) Behavior/Solar Perturbations

EV departs at  δj

Formed by circuit analysis Current magnitude limitPhase angle of 
current phasor



Combing MPC and RL Scheduling 

•Robustness Classic algorithm (MPC) depends on battery dynamics and user inputs 

•Consistency RL policy can better learn uncertain residuals when they are not out-of-distribution

EV arrives at  αj

The adaptive charging network at Caltech. source: https://ev.caltech.edu

(et+1∥bt+1) = st+1 = g𝒮[Atst + Btg𝒜(at) + ℓ′￼t − Δh′￼t], t ≥ 0

Battery Dynamics (Uncertain) Behavior/Solar Perturbations

EV departs at  δj

•This is a general paradigm in many real-world applications



Text Generation

 Computer Vision 

Play Go …

Physical World

Control Power Systems

Autonomous Driving

Embodied AI …

ChallengingSuccessful

Existing well-established classic methods 

that are hard to be replaced entirely

Machine-learned policies have the 

advantage of utilizing data

Digital Applications

On average near-optimal performance Worst-case guarantee

ML in Real-World Decision-Making …



Consistent ML Policy (Good when  is small) ε

Trade-off

Prediction error ε

Performance f(ε)

0

1

Robust Classic Policy (Good when  is large) εγ

Intermediate Regimes

On average good performance Worst-case guaranteevs

Consistency vs Robustness

f(0)

sup
ε≥0

f(ε)

-consistent

-robust



Today’s Topic: Value-Based RL



Nonlinear Model is Harder if the ML Agent is a Black-Box

System Model Classic Agent ML Agent

LQR MPC+Perturbation Predictions

NonLinear Dynamics

Linear Dynamics

LQR Black-Box RL

Remarks

Convex Combination

Switching

Tradeoffs

Consistency vs Robustness

Consistency vs Stability

•Linear combination of two stabilizing controllers can be unstable

•Many learning-augmented online algorithms consider black-box predictions or 
advice

MDP Robust Policy ? ? ?

•What if we move beyond black-box advice?

Moving to general MDP …



In General MDP …

•Linear combination of two stabilizing controllers can be unstable

•Many learning-augmented online algorithms consider black-box predictions or advice

•What if we move beyond black-box advice?

•Need to consider more structural information, i.e., grey-box agents

Value-Based RL π̃ : 𝖷 → 𝖴

ũt = 𝖺𝗋𝗀𝗂𝗇𝖿u∈𝖴 Q̃ t(u, xt)

Q-value functions contain useful information

π̃t(xt)πt(xt)
Rt



In General MDP …

How to select ?Rt π̃t(xt)πt(xt)
Rt

•Linear combination of two stabilizing controllers can be unstable

•Many learning-augmented online algorithms consider black-box predictions or advice

•What if we move beyond black-box advice?

•Need to consider more structural information, i.e., grey-box agents



In General MDP …

ML AgentClassic Agent

π : 𝖷 → 𝖴 π̃ : 𝖷 → 𝖴
State Space: 𝖷

Action Space: 𝖴

Value-Based RL ũt = arginfu∈𝖴 Q̃ t(u, xt)

In the General MDP setting,  can Q-value advice provide a better consistency vs robustness tradeoff?



Idea: Use Temporal Difference (TD) Error

π̃t(xt)πt(xt)
Rt

Temporal Difference (TD)-Error: TDt = ct−1 + ℙt−1 Ṽ t − Q̃ t−1



Hard to compute since we don’t know ℙ

Idea: Use Temporal Difference (TD) Error

Temporal Difference (TD)-Error:

π̃t(xt)πt(xt)
Rt

TDt = ct−1 + ℙt−1 Ṽ t − Q̃ t−1



δt (xt, xt−1, ut−1) := ct−1 (xt−1, ut−1) + inf
v∈𝒰

Q̃ t (xt, v) − Q̃ t−1 (xt−1, ut−1)Approximate TD-Error:

 is a hyper-parameterβ

Idea: Use Temporal Difference (TD) Error

Rt

Temporal Difference (TD)-Error: TDt = ct−1 + ℙt−1 Ṽ t − Q̃ t−1

π̃t(xt)πt(xt)
Rt

Rt := [ ∥π̃t (xt) − πt (xt) ∥𝖴

Decision Discrepancyηt

−
β

LQ

t

∑
s=1

δs (xs, xs−1, us−1)
Approximate TD-Error

]
+

Lipschitz constant of costs/rewards



Robust Baseline π

Not all classic policies can be used …

We need to regulate the behaviors of the classic policies so they become 
baselines (to guarantee worst-case performance)



Definition ( -locally -Wasserstein robustness)r p

A policy  is -locally -Wasserstein-robust if for any  and state-action 

distributions  such that , for some radius ,

π = (πt : t ∈ [T]) r p 0 ≤ t1 ≤ t2 < T

ρ, ρ′￼ Wp(ρ, ρ′￼) ≤ r r > 0

Wp (ρt1:t2(ρ), ρt1:t2(ρ′￼)) ≤ s(t2 − t1)Wp (ρ, ρ′￼)

for some function  such that  for some constants .s : [T] → ℝ+ ∑
t∈[T]

s(t) ≤ Cs Cs > 0

Robust Baseline π



A general class of robust classic policies

Many practical instances: •Discrete MDP:  Any Policy that Induced a Regular Markov Chain 

•Time-varying LQR:  MPC with Robust Predictions 

•Extends a contraction property in [Lin 2022]

Wasserstein Distance
of state-action distributions  and ρ ρ′￼

after applying a robust policy π
from  to h1 h2Wasserstein Distance

of state-action distributions  and ρ ρ′￼

Robust Policy

Lin, Y., Hu, Y., Qu, G., Li, T. and Wierman, A., 2022. Bounded-regret mpc via perturbation analysis: Prediction error, constraints, and nonlinearity. NeurIPS 2022.



PROjection Pursuit Policy (PROP)

Algorithm PROjection Pursuit (PROP)

Initialize:  and π̃ = (π̃t : t ∈ [T]) π = (πt : t ∈ [T])

Get  using approximate TD-errorRt

Take  whereut = 𝖯𝗋𝗈𝗃𝖴t
(ũt) 𝖴t := {u ∈ 𝒰 : ∥u − πt (xt) ∥𝖴 ≤ Rt}

Sample next state xt+1 ∼ ℙt(xt, ut)

for t = 0,…, T − 1



OOD-Aware EV Charging

Algorithm OOD-Aware EV Charging (OOD-Charging)

Initialize:  and π̃ = (π̃t : t ∈ [T]) π = (πt : t ∈ [T])
for t = 0,…, T − 1

Get  using approximate TD-errorRt

Take  whereut = 𝖯𝗋𝗈𝗃𝖴t
(ũt) 𝖴t := {u ∈ 𝒰 : ∥u − πt (xt) ∥𝖴 ≤ Rt}

Sample next state xt+1 ∼ ℙt(xt, ut)

MPC Procedure with user inputs and estimated state

Approximately Wasserstein robust
Receive user inputs

Estimate previous state x̃t

NN that updates every t

Update replay buffer and retrain π̃



Pre-COVID19 Post-COVID19

Training Testing

Out-of_Distribution EV Charging

ACN-Data



Out-of_Distribution EV Charging



Out-of_Distribution EV Charging

λ(Rt) = min {1,Rt /∥π̃t(xt) − πt(xt)∥2}

Trust Coefficient



Theoretical Guarantees



Consistency and Robustness

-Consistency: Ratio of Expectations (RoE) satisfies  for k 𝖱𝗈𝖤(ε) ≤ k ε = 0

-Robustness: Ratio of Expectations (RoE) satisfies  for any l 𝖱𝗈𝖤(ε) ≤ k ε

ε(p, ρ) := ∑
t∈[T] (∥ Q̃ t − Q⋆

t ∥p,ρt
+ inf

v∈𝒰
Q̃ t − inf

v∈𝒰
Q⋆

t ∥p,ϕt)

ε := ∑
t∈[T]

(∥ Q̃ t − Q⋆
t ∥∞ + ∥ inf

v∈𝒰
Q̃ t − inf

v∈𝒰
Q⋆

t ∥∞)where

(can be generalize to:)



Black-Box Impossibility

Theorem (Informal) Impossibility

Any algorithm with a black-box agent cannot be both -consistent and 

-robust for any . 

(1 + o((1 − λ)γ))
(ROB + o(λγ)) 0 ≤ λ ≤ 1

Theorem (Informal)

There exists an algorithm with a black-box agent that is -consistent and 

-robust where  is a hyper-parameter.

(1 + 𝒪((1 − λ)γ))
(ROB + 𝒪(λγ)) 0 ≤ λ ≤ 1

(  is a ratio of expectation upper bound for the robust baseline)ROB



Theorem (Informal) Impossibility

Any algorithm with a black-box agent cannot be both -consistent and 

-robust for any . 

(1 + o((1 − λ)γ)) (ROB + o(λγ))

0 ≤ λ ≤ 1

Time step t

Proof Idea: 

Construct a special case (satisfying all model assumptions) with decoupled and identical cost at each  t

Stateless

⋯
Q*(u) Q*(u) Q*(u) Q*(u) Q*(u) Q*(u)

Q̃ (u) Q̃ (u) Q̃ (u) Q̃ (u) Q̃ (u) Q̃ (u)

Then argue with fixed , can separate  and  so that a lower bound can be derived λ Q* Q̃

ε

Proof Highlights



ut = λũt + (1 − λ)ut

Q*t (u)

Action space 𝒰

ΔQ*t − Δ Q̃ t

Per-Step Cost

Q̃ t(u)

[

Dynamic regret:

ΔQ*t := 𝔼P,π [Q⋆
t (xt, ut) − inf

v∈𝒰
Q⋆

t (xt, v)]
Δ Q̃ t := 𝔼P,π [ Q̃ t(xt, ut) − inf

v∈𝒰
Q̃ t(xt, v)]

black-box procedure

(diameter )γ

Lipschitz constant LQ

Proof Highlights

𝖣𝖱 (𝖯𝖱𝖮𝖯(Black-Box)) = ∑
t∈[T]

𝔼P,π [Q⋆
t (xt, ut) − inf

v∈𝒰
Q⋆

t (xt, v)]
𝖣𝖱 (𝖯𝖱𝖮𝖯(Black-Box)) ≥ ∑

t∈[T]
(ΔQ⋆

t (P, π) − Δ Q̃ t(P, π) + (1 − λ)LQγ)



u*t

ut

θ ( 𝖱𝖮𝖡
T )

ũt

ut = λũt + (1 − λ)ut

θ (λγLc)

Q*t (u)

Action space 𝒰

ΔQ*t − Δ Q̃ t

Per-Step Cost

θ ( ε
T )

ε(p, ρ) := ∑
t∈[T]

Q̃ t − Q⋆
t

p,ρt

+ inf
v∈𝒰

Q̃ t − inf
v∈𝒰

Q⋆
t

p,ϕt

Q̃ t(u)

[
⟹

(cannot be both -consistent and -robust for any ) (1 + o((1 − λ)γ)) (ROB + o(λγ)) 0 ≤ λ ≤ 1

Proof Highlights

∑t∈[T] (ΔQ⋆
t (P, π) − Δ Q̃ t(P, π))

𝖮𝖯𝖳
≥ Ω (ROB +

λγLc

𝖮𝖯𝖳
T) 𝖱𝗈𝖤(PROP(Black-Box)) = 1 + Ω((1 − λ)LQγ + min{ε, λγLc + ROB})



Theorem (Informal)

PROP with a grey-box agent that is -consistent and -robust for some .1 (ROB + o(1)) β > 0

Take-Aways: Grey-box information can grant nontrivial improvements on the consistency 

and robustness tradeoff

Grey-Box Setting



Theorem (Informal)

OOD-Charging with a grey-box agent that is -consistent and -robust for 

some .

1 + 𝒪(W) (MPC + 𝒪(W) + o(1))
β > 0

Out-of-Distribution EV Charging

State estimation error: ℓ′￼t − Δh′￼t ≤ W

MPC ≤
2ξC2(1 + C2)(1 + A2 + B2)

μ(1 − λ)2
λ := ((σ − σ)/(σ + σ))

1
2 C :=

4(ξ + 1 + A + B)
σ2 ⋅ λ

σ := min{μ,1}(A + B + 1)(ξ/(2μξ + μσ2))
1
2

σ := 2(ξ + A + B + 1)

∥At∥ ≤ AStandard assumptions: ∥Bt∥ ≤ B μIn ⪯ Qt ⪯ ξIn, μIm ⪯ Rt ⪯ ξIm, μIn ⪯ P ⪯ ξIn

Constant



Theorem (Informal)

PROP with a grey-box agent that is -consistent and -robust for some .1 (ROB + o(1)) β > 0

Assume  for all , we can bound ct > 0 t 𝖱𝗈𝖤

μt := ζV
t − ζQ

t ζQ
t (xt, ut) := Q̃ t (xt, ut) − Q⋆

t (xt, ut)
ζV

t (xt) := inf
v∈𝒰

Q̃ t (xt, v) − inf
v∈𝒰

Q⋆
t (xt, v)

Here, Q-value error

V-value error

∥ũt − ut∥

-Wasserstein robustnesspProof Idea: A general bound on therefore :𝖣𝖱, 𝖱𝗈𝖤

Proof Highlights

𝖣𝖱(𝖯𝖱𝖮𝖯) ≤ ∑
t∈[T]

min {𝔼P,π [μt] + LQ𝔼P,π (ηt (xt) − Rt)
Consistency Bound

, φt + LCCs𝔼P,π [(Rt)p]
1/p

Robustness Bound

}



Applying a projection 
lemma

Applying the Kantorovich-Rubinstein duality theorem

J(π) − J(π) = ∑
t∈[T]

𝔼(x,u)∼ρt [ct (x, u)] − 𝔼(x,x)∼ρt [ct (x, u)]

≤ LC ∑
t∈[T]

t−1

∑
τ=0

s(τ)𝔼P,π [(Rt−τ)p]
1/p

≤ LCCs ∑
t∈[T]

𝔼P,π [(Rt)p]
1/p

Applying the Wasserstein robustness definition

Fix a choice of projection radii . (Rt : t ∈ [T])

Proof Highlights

𝖣𝖱(𝖯𝖱𝖮𝖯) ≤ ∑
t∈[T]

min {𝔼P,π [μt] + LQ𝔼P,π (ηt (xt) − Rt)
Consistency Bound

, φt + LCCs𝔼P,π [(Rt)p]
1/p

Robustness Bound

}



Consistency: Let ,  and the consistency bound becomesε = 0 𝔼P,π [μt] = 0

𝔼P,π [ηt − Rt] ≤ 𝔼P,π [ β
LQ

t

∑
s=1

δs] = 0 Applying the radius update rule:

Proof Highlights

𝖣𝖱(𝖯𝖱𝖮𝖯) ≤ ∑
t∈[T]

min {𝔼P,π [μt] + LQ𝔼P,π (ηt (xt) − Rt)
Consistency Bound

, φt + LCCs𝔼P,π [(Rt)p]
1/p

Robustness Bound

}

Rt := [ π̃t (xt) − πt (xt)
𝖴

Decision Discrepancy ηt

−
β

LQ

t

∑
s=1

δs (xs, xs−1, us−1)
Approximate TD-Error

]
+



Robustness:

δt (xt, xt−1, ut−1) := ct−1 (xt−1, ut−1) + inf
v∈𝒰

Q̃ t (xt, v) − Q̃ t−1 (xt−1, ut−1)
TD-Error: 𝖳𝖣t = ct−1 + ℙt−1 Ṽ t − Q̃ t−1

Approximate TD-Error:

μt − δt = ζQ
t−1 − ζQ

tKey observation: (ζQ
−1 = 0)

t

∑
s=0

(μs − δs) =
t

∑
s=0

(ζQ
s−1 − ζQ

s ) = ζQ
t⟹

Proof Highlights

Rt := [ π̃t (xt) − πt (xt)
𝖴

Decision Discrepancy ηt

−
β

LQ

t

∑
s=1

δs (xs, xs−1, us−1)
Approximate TD-Error

]
+

𝖣𝖱(𝖯𝖱𝖮𝖯) ≤ ∑
t∈[T]

min {𝔼P,π [μt] + LQ𝔼P,π (ηt (xt) − Rt)
Consistency Bound

, φt + LCCs𝔼P,π [(Rt)p]
1/p

Robustness Bound

}



Robustness:

Consider two cases:

Case I

  such that  for all  (model assumption)∃ Δ = o(T) |ζQ
t | ≤ Δ t ∈ [T]

Case II

∑
t∈[T]

μt ≤ Δ

∑
t∈[T]

μt > Δ

Automatically obtain  by the consistency bound𝖱𝗈𝖤(ε) ≤ ROB + o(1)

(Cont.)

Proof Highlights

𝖣𝖱(𝖯𝖱𝖮𝖯) ≤ ∑
t∈[T]

min {𝔼P,π [μt] + LQ𝔼P,π (ηt (xt) − Rt)
Consistency Bound

, φt + LCCs𝔼P,π [(Rt)p]
1/p

Robustness Bound

}
Rt := [ π̃t (xt) − πt (xt)

𝖴

Decision Discrepancy ηt

−
β

LQ

t

∑
s=1

δs (xs, xs−1, us−1)
Approximate TD-Error

]
+



 ∑
t∈[T]

δt > 0 (Applying )
t

∑
s=0

(μs − δs) =
t

∑
s=0

(ζQ
s−1 − ζQ

s ) = ζQ
t⟹

(The action space is compact, discrepancy  is bounded)ηt

⟹ There exists  such that β > 0 Rt = 0

Proof Highlights

∑
t∈[T]

μt > Δ

Robustness:

Case II

𝖣𝖱(𝖯𝖱𝖮𝖯) ≤ ∑
t∈[T]

min {𝔼P,π [μt] + LQ𝔼P,π (ηt (xt) − Rt)
Consistency Bound

, φt + LCCs𝔼P,π [(Rt)p]
1/p

Robustness Bound

}
Rt := [ π̃t (xt) − πt (xt)

𝖴

Decision Discrepancy ηt

−
β

LQ

t

∑
s=1

δs (xs, xs−1, us−1)
Approximate TD-Error

]
+



Let  be the latest time index such that  and m
m

∑
s=1

μs > Δ
m−1

∑
s=1

μs ≤ Δ

m T − 10

m

∑
s=1

μs > Δ

m − 1

m−1

∑
s=1

μs ≤ Δ
k

∑
s=1

μs > Δ, ∀k ≥ m

Proof Highlights

∑
t∈[T]

μt > Δ

Robustness:

Case II

𝖣𝖱(𝖯𝖱𝖮𝖯) ≤ ∑
t∈[T]

min {𝔼P,π [μt] + LQ𝔼P,π (ηt (xt) − Rt)
Consistency Bound

, φt + LCCs𝔼P,π [(Rt)p]
1/p

Robustness Bound

}
Rt := [ π̃t (xt) − πt (xt)

𝖴

Decision Discrepancy ηt

−
β

LQ

t

∑
s=1

δs (xs, xs−1, us−1)
Approximate TD-Error

]
+



∑
t∈[T]

μt > Δ (Cont.)

⟹

(Applying the Wasserstein robustness definition)

⟹

Per-step robustness bound 

Proof Highlights

Robustness:

Case II

𝖣𝖱(𝖯𝖱𝖮𝖯) ≤ ∑
t∈[T]

min {𝔼P,π [μt] + LQ𝔼P,π (ηt (xt) − Rt)
Consistency Bound

, φt + LCCs𝔼P,π [(Rt)p]
1/p

Robustness Bound

}
Rt := [ π̃t (xt) − πt (xt)

𝖴

Decision Discrepancy ηt

−
β

LQ

t

∑
s=1

δs (xs, xs−1, us−1)
Approximate TD-Error

]
+

𝖣𝖱(PROP(Grey-Box)) ≤
m−1

∑
s=1

μs +
T−1

∑
s=m

φs + O(ηm) ≤
m−1

∑
s=1

μs +
T−1

∑
s=m

φs + O(γ)

𝖱𝗈𝖤(ε) ≤ ROB + o(1)
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Noah & Moitra This Work

MDP Model Finite Action/State Spaces Finite or Continuous 

Assumption on Q̃ Approximate distillation 
for stronger results

Lipschitz continuous
Q̃ − Q* = o(T)

Robust Policies N/A Wasserstein Robustness

Main Results Regret bound Consistency-robustness Tradeoff

Episodic setting Single-trajectory setting

Comparison



` Summary: Learning-Augmented Decision-Making

Systems

Linear Quadratic System

Nonlinear Dynamics  Black-box Policy

Untrusted AI

Two-Controller System Black-box Advice  [Li et. al. TSG 2021]
[Li et. al. e-Energy 2020] 

 [Li et. al. SIGMETRICS 2021] 

[Li et. al. OJCSYS 2023] 

[Li et. al. SIGMETRICS 2022] 

MDP Grey-Box Policy [Li et. al. NeurIPS 2023] 

Performance Guarantees

Stability + CR 

Ratio of Expectations

Feasibility + CR

CR
Scenario I：

Scenario 

II：
Battery Scheduling

Scenario III：
Remand Response

Linear Control

General Sum Games

Disentangled Perturbations Ongoing

Anytime-Constrained MDP Black-box Policy [Yang et. al. NeurIPS 2023] Regret

Linear Quadratic System

Black-box Bayesian probability Ongoing

Perturbation Predictions
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