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I Revisit: Learning-Augmented Algorithms

Performance Benchmark  Meta-algorithms  Consistency vs Robustness Trade-off

e.g. Competitive ratio CR(¢e)
Consistent ML Algorithm (Good when ¢ is small)

Intermediate Regimes

Robust  Classic Algorithm (Good when ¢ is large)

1 (by varying a trust parameter A)

Prediction error €



I First Limitation

General Goal of Learning-Augmented Algorithms

Consistency vs Robustness Trade-off
Competitive ratio CR(¢)

Not sure what 4 is optimal ...

Which A should | choose? (¢ is unknown)

(We can ask the same question for any learning-augmented online algorithms)

Prediction error €



I First Limitation

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error &

Competitive ratio CR(¢)
A=1

Can we automatically adjust 4 ?

Issue: Prediction error € is not known a priori

Prediction error €



I One Solution: Online Learning

General Goal of Learning-Augmented Algorithms

Consistency vs Robustness Trade-off
Competitive ratio CR(¢)

Idea: e use history to automatically select /4

* the system can self-tune

* online learning [Li et al. SIGMETRICS 2022] [Khodak et.al. NeurlPS 2022]

Lin et.al. Preprint 2023] ... [Li et.al. NeurlPS 2024]

Prediction error €



A Real-World Problem

Image: Paired Power The UC San Diego/EVgo project



EV Charging with Uncertainties

Main Sources of Uncertainties » Data

Use RL for scheduling? Electricity price varies Solar generation Charging behavior

A A

* Tons of existing policies

Question: Do they work well in practice?

Question: If so, why is it hard to see them being used?

ldeally, they work well, but -

The UC San Diego/EVgo project



I Large-Scale Adaptive Charging Network

Adaptive Charging Network (ACN@Caltech)

e A Parking lot with 54 chargers Il ! 2 ; I

» How to schedule EV charging is challenging Caltech



Large-Scale Workplace EV Charging ‘HDFi
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I Large-Scale Workplace EV Charging

Classic Scheduling Algorithms

Set charging preferences

These preferences will be saved and used as

@ I_eaSt |aX|ty fIrSt (I_I_F) your default charging settings. You can

update them at any time.

Desired Energy ©

Charge Duration ©
Departure Time: 8:24 AM.

e Farliest deadline first (EDF)

 Model predictive control (MPC)

(Currently used in Caltech ACNSs)

8 hrs 2 min

Keep Charging? ©

Keep charging until the battery is full
only if the price is $0.01/kWh or less.

- @ 0.01 /kWh




Large-Scale Workplace EV Charging

Classic Scheduling Algorithms

e Least laxity first (LLF)
e Farliest deadline first (EDF)

 Model predictive control (MPC)

(Currently used in Caltech ACNSs)

Set charging preferences

These preferences will be saved and used as
your default charging settings. You can
update them at any time.

Desired Energy ©

Charge Duration ©
Departure Time: 8:24 AM.

8 hrs 2 min

Keep Charging? @

Keep charging until the battery is full
only if the price is $0.01/kWh or less.

O 0.01 /kWh
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Number of Sessions

COVID-19 Caused Dataset Shift

Statistical distributions shifted

Pre-COVID-19 COVID-19

(Data from the real Caltech system) [e-Energy ’19]
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RL policies trained on out-of-distribution data can perform poorly



Combing MPC and RL Scheduling

EV arrives at aj

. EVdepartsat g, /\OO%

>
5 Original
(e ﬂ\/
Distribution shifts of
The adaptive charging network at Caltech. source: https://ev.caltech.edu Solar and User Behaviors

(€ 111Di41) = S = 85 |As + Bi8yla,) + & — Ahj|, 1 2 0

-

—~ a

Battery Dynamics (Uncertain) Behavior/Solar Perturbations

(aj, 5]-, K;, i) is a charging session: At time . EV j arrives at charger 7, with an EV battery capacity K, and departs at time 5].



Combing MPC and RL Scheduling

EV arrives at aj

| — EV departs at 5]- /\OO%\
g ghle? __‘x' , > | ']\
> \\/ ¢

>
5 Original
(e ﬂ\/
Distribution shifts of
The adaptive charging network at Caltech. source: https://ev.caltech.edu Solar and User Behaviors

(€41llDry1) = 801 = 85 |ASi + Bigyla) + & — Ahj|, 120

Battery Dynamics (Un¢ertain)|Behavior/Solar Perturbations
Battery SoC  Charging Rates Change of Human behaviors Solar generation

Charging Rates  arrival/departure

(aj, 5]-, K;, i) is a charging session: At time a, EV j arrives at charger 7, with an EV battery capacity K and departs at time 5]-



Combing MPC and RL Scheduling

EV arrives at aj

| — EV departs at 5]- /\OO%\
g ghle? __‘x' , > | ']\
> \\/ ¢

>
5 Original
(e ﬂ\/
Distribution shifts of
The adaptive charging network at Caltech. source: https://ev.caltech.edu Solar and User Behaviors

(€41llDry1) = 801 = 85 |ASi + Bigyla) + & — Ahj|, 120

- N -4
N N

Battery Dynamics (Uncertain) Behavior/Solar Perturbations

Projections g ¢ and g, capture network constraints, such as line constraints by the Kirchhoff's Current Law:

N
| > Dljbt(i)ef¢i| <y, VieT$
i=1 ‘
Formed by circuit analysis  Phase angle of  Current magnitude limit
current phasor




I Combing MPC and RL Scheduling

EV arrives at aj

| — EV departs at o, /\OO%\
—/

>
5 Original
(e ﬂ\/
Distribution shifts of
The adaptive charging network at Caltech. source: https://ev.caltech.edu Solar and User Behaviors

(€41llDry1) = 801 = 85 |ASi + Bigyla) + & — Ahj|, 120

- N -4
N N

Battery Dynamics (Uncertain) Behavior/Solar Perturbations

 Robustness Classic algorithm (MPC) depends on battery dynamics and user inputs

e Consistency RL policy can better learn uncertain residuals when they are not out-of-distribution

e This is a general paradigm in many real-world applications



I ML in Real-World Decision-Making -

Digital Applications

Text Generation

Computer Vision

Play Go -

Successful

Machine-learned policies have the Existing well-established classic methods

advantage of utilizing data

On average near-optimal performance

Physical World

Control Power Systems

Autonomous Driving

Embodied Al -

]
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Challenging

that are hard to be replaced entirely

Worst-case guarantee



Consistency vs Robustness Trade-off

On average good performance vs Worst-case guarantee

Performance f(€)

Consistent ML Policy (Good when ¢ is small)

Intermediate Regimes

Robust  Classic Policy (Good when g is large)

f(0) -consistent

1 ‘ sup f(&)-robust
0 e>0

Prediction error &



Today’s Topic: Value-Based RL



Nonlinear Model is Harder if the ML Agent is a Black-Box

System Model Classic Agent ML Agent Remarks Tradeoffs
Linear Dynamics LQR MPC+ Convex Combination Consistency vs Robustness
........ NoanearDynamICSLQRRLSWItChmgConSIStenCyVSStabmty
......................... M DPRObUStPOhCy???

Moving to general MDP ---

e Linear combination of two stabilizing controllers can be unstable

 Many learning-augmented online algorithms consider black-box predictions or
advice

 What if we move beyond black-box advice?



In General MDP ---

e Linear combination of two stabilizing controllers can be unstable

 Many learning-augmented online algorithms consider black-box predictions or advice
 What if we move beyond black-box advice?

* Need to consider more structural information, i.e., grey-box agents

Value-BasedRL 7 : X — U

M —

u, = arginf _ O (u,x) 77,(X,)

Q-value functions contain useful information



In General MDP ---

e Linear combination of two stabilizing controllers can be unstable

 Many learning-augmented online algorithms consider black-box predictions or advice
 What if we move beyond black-box advice?

* Need to consider more structural information, i.e., grey-box agents

How to select Rt? -
7 (x,)



In General MDP ---

Classic Agent ML Agent
5 State Space: X .

7T: X—->U Action Space: U 7:X->U

Value-Based RL u, = arginfueuat(u,xt)

A
Q-Value Advice Qt Performance Metric
Grey- Box : : : Grey-Box
................................................................... - Black-Box
7 —
xt/ _ Classic Policy 2
‘ u, ¥ v |‘ i, “ ‘ ML Policy
Environment |« Algorithm Classic Polic
| § y
{ /LV 1 8>

Xy

In the General MDP setting, can Q-value advice provide a better consistency vs tradeoff?



I ldea: Use Temporal Difference (TD) Error

~/

7 (x,)

Temporal Difference (TD)-Error: TD; =c¢,_; + Pt_ﬁ; — Et_l



I ldea: Use Temporal Difference (TD) Error

7T (x,)

Temporal Difference (TD)-Error: TD; = c¢,_; + Pt_lT/} — Et_l

Hard to compute since we don’t know P



I ldea: Use Temporal Difference (TD) Error

7T (x,)

Temporal Difference (TD)-Error: TD; = c¢,_; + Pt_lT/} — Et_l

—~—

Approximate TD-Error: 0, (xt, X,_1 ut_l) = C,_ (xt_l, ut_l) + inf at (xt, v) — 0, (xt_l, ut_l)

VEU
t +
R = | ||=, (xt) — T, (xt) Ins f Z O, (xS, S_l,us_l) [ is a hyper-parameter
becision Divscrepancy;;t lQ = Aﬁproximafe TD—ErFor

Lipschitz constant of costs/rewards



Robust Baseline 1

Not all classic policies can be used --

We need to regulate the behaviors of the classic policies so they become
baselines (to guarantee worst-case performance)



I Robust Baseline 1

Definition (r-locally p-Wasserstein robustness)

A policy T = (JZ't . t € [T]) is r-locally p-Wasserstein-robust if for any 0 < ¢, < ¢, < T and state-action

distributions p, p”such that W (p, p") < r, for some radius r > 0,

W, (P, 21P)) < 5t = 1DW, (p. )

for some function s : [T'] — R such that Z s(t) < C, for some constants C, > 0.
re[T]



I Robust Policy

A general class of robust classic policies

W, (p;;lzhz(p), Piil:hz(P')) — Wasserstein Distance
of state-action distributions p and p’

“a
...'-'.
a

after applying a robust policy 7

S|

L h from h, to
Wasserstein Distance m . hy o by

of state-action distributions p and p’

Many practical instances: » Discrete MDP: Any Policy that Induced a Regular Markov Chain

 Time-varying LQR: MPC with Robust Predictions

e Extends a contraction property in [Lin 2022]

Lin, Y., Hu, Y., Qu, G, Li, T. and Wierman, A., 2022. Bounded-regret mpc via perturbation analysis: Prediction error, constraints, and nonlinearity. NeurlPS 2022.



PROjection Pursuit Policy (PROP)

Algorithm PROjection Pursuit (PROP)
Initialize: 7 = (77; 1 E [T]) and 7 = (ﬁt 1 E [T])
fort =0,...,.T—1
Get R, using approximate TD-error
Take u, = ProjUt(iTt) where U, := {u eEU: lu-7,(x) Iy < Rt}

Sample next state x,,; ~ P (x,, u,)



I OOD-Aware EV Charging

Algorithm OOD-Aware EV Charging (OOD-Charging)

Initialize: 7 = (77} L1 E [T]) and 7 = (ﬁt 1 E [T])

fort =0,...,[T—1 _» MPC Procedure with user inputs and estimated state

— NN that updates every ¢ Approximately Wasserstein robust
Recelve user inputs

Get Rt using approximate TD-error
Take u, = ProjU(ﬁt) where U, := {u eU: lu—7(x) lly < Rr}
!

Sample next state x,, ; ~ P, (x,, u,)

Estimate previous state X

Update replay buffer and retrain 77



Out-of _Distribution EV Charging
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I Out-of _Distribution EV Charging

(Average) TD-Error
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I Out-of _Distribution EV Charging

(Average) Trust Coefficient
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1. b

B =0 (Pure RL)
B=0.1

B=1
=10
B = o (Pure MPC)

600 800
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Trust Coefficient

AR, = min { LR /||7(x) — T(x)l»}



Theoretical Guarantees



I Consistency and Robustness

k-Consistency: Ratio of Expectations (RoE) satisfies RoE(g) < kfore =0

[-Robustness: Ratio of Expectations (RoE) satisfies RoE(g) < k for any ¢

where &:= Y. (u’é}—Qm\oo+ | inf Q, — inf quoo)

p— veEYU vEYU

(can be generalize to:)

8(]7910) .= Z (Haz_ Qt*Hp,p[ ‘}12625 Ez_ vlgczg Qz*Hp,qbt)

re|T]




I Black-Box Impossibility

Theorem (Informal)

There exists an algorithm with a black-box agent that is (1 + O((1 — /l)y))—consistent and

(ROB + O(Ay))-robust where O < A < 1 is a hyper-parameter.

(ROB is a ratio of expectation upper bound for the robust baseline)

Theorem (Informal) Impossibility

Any algorithm with a black-box agent cannot be both (1 + o((1 — /l)y))—consistent and

(ROB + o(Ay))-robust forany 0 < A < 1.



I Proof Highlights

Theorem (Informal) Impossibility

Any algorithm with a black-box agent cannot be both (1 + o((1 — /I)y))—consistent and (ROB + o(4y))

-robust forany ) < A < 1.

Proof Idea:

Construct a special case (satisfying all model assumptions) with decoupled and identical cost at each ¢

O*(u) Q*(u) Q*(u) Q*w)  Stateless — O%(u) O*(u)

€ : : : : : :
—_— S Timestept

Ow) Qw) Q) Ou) O(u) Q)

Then argue with fixed A, can separate O* and aso that a lower bound can be derived



Proof Highlights

Per-Step Cost

O (u)
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.
%

PR
.
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Py
Py

DR (PROP(Black-Box)) = ' Ep,

o*
.
.
*
*

= /lut + (1 = Az,

““““““ black ti_ox procedure

Qt* (xt’ ut)

O (u) Lipschitz constant L,

AQ;“ — [Ep,ﬂ

Qt* (—xp ur) T lnf Qt* (Xt, V)
I vEYU ]

AQ,:=Ep, |0 x,u)- inf 0 (x,,v)

Action space 7/ (diameter y)

" Inf OF (xov)

DR (PROP(Black-Box)) > Y (AQf(P, 7 — AQ (P, 7) + (1 — /1)LQ;/>

re[T]




I Proof Highlights

Per-Step Cost

O (u) —

Q (u)
o) S T U,
—~ TISTRRNY RN R SRR _
A0x—A0, 4 [N z) (ROB> ““““““““““ u, = A+ (1 — )i,
T ) ST
........................................ o
““““ 37 | — L~
........................... il e(p.p) = ) |||Q,—QF| +|inf Q,— inf O}
.................. =,k : : . VEU VEU
......................... E I/tt_ E E E IE[T] PsP: p,¢[

Action space %
S e (807, ) - AQ P, m))
OPT

>0 (ROB : AyL. T) ——> ROE(PROP(Black-Box)) =1 + Q((l — MLyy + min{e, AyL, + ROB})
B OPT

(cannot be both (1 + o((1 — /I)y))—consistent and (ROB + o(Ay))-robust forany 0 < 4 < 1)



I Grey-Box Setting

Theorem (Informal)

PROP with a grey-box agent that is 1-consistent and (ROB + o(1))-robust for some > 0.

Take-Aways: Grey-box information can grant nontrivial improvements on the consistency

and robustness tradeoff



I Out-of-Distribution EV Charging

Constant

A

Theorem (Informal)

OOD-Charging with a grey-box agent that is 1 4+ @(W)-consistent and (MPC + O(W) + o(1))-robust for

some 3 > 0.

A+ +A+B° | ME+1+A+B
MPCSZQ&C (1+C)(1_+A + B89 A= (G-0/G+0)’ C = S 2+ i
o:=min{u,1}(A+ B+ 1)(5/(2/45 _|_/mz)>%

c:=vV2(E+A+B+1)

State estimation error: || £/ — A/ || < W

Standard assumptions: ||A| <A |IBll<B ul,=Q,=<¢l, ul, <R =<¢&l,, ul, <P =<l



I Proof Highlights

Theorem (Informal)

PROP with a grey-box agent that is 1-consistent and (ROB + o(1))-robust for some > 0.

Proof Idea: A general bound on DR, therefore RoE: p-Wasserstein robustness
1/p
. p
DR(PROP) < Z min { o 1] + LoEp <m (x,) — Rt>, ¢;+ LcClEp , [(Rt) ] }
te[T] . ~ R . )
Consistency B}und Robustness Bound
Hﬁt o ﬁz”

Assume ¢, > O for all ¢, we can bound RoE

Here, §, = tV _ CtQ CzQ (xt, ”r) .= 'Q; (xt, ”t) —QF (xt, ”z) Q-value error

inft Et (xt,v) — inf Q (xt,v) V-value error
vEU veEU

<

N

Re
|



I Proof Highlights

Fix a choice of projection radii (R, : t € [T]).

. o]
DR(PROP) < " min { Epq [u] +LgEp, (1 (%) = R ), 9, + LcCEpt | (R)”

te[T] g BN g
Consistency Bound Robustness Bound
Applying a projection [
lemma

J@) = J@) = Y, B 00 10)] = gy e o)

t—1 - 11/p
p
Applying the Kantorovich-Rubinstein duality theorem < L- Z 2 s(7) “P (Rt_f)
te[T] =0 ' )
- D 1/p
Applying the Wasserstein robustness definition < LcC 2 —P.x (Rt)




I Proof Highlights

| - D 1/p
DR(PROP) < Y min { Ep, [i] + LoEp, (m (x,) — Rt), 0+ LcCEp, | (R)

relT]

-’ N\

Consistenvcy Bound Robustness Bound

Consistency: Lete =0, Ep [,ut] = () and the consistency bound becomes

[
b . [m _ Rr] <Ep, [Lﬁ Z 5S] — (0 Applying the radius update rule:
0 s=1

R = [|| 7 (x) -7, (3) | fQj 5 (x5 o)

U

Decision Discrepancy 7, Approximate TD-Error



I Proof Highlights

- 11/p
. p
DR(PROP) < ) min < Ep, [] + LyEp, (r]t (%) = Rt), @, +LCEp . |(R)
te[T] 3 . o '
Consistency Bound Robustness Bound
Robustness: 5 d +
R, := || 7T (xt) — 7, (xt) || Z O, (xs,xs_l,us_l)
| S e
Decision Discrepancy i, Approximate TD-Error
TD-Error: TD,=c¢_,+P,_,V,- O,
Approximate TD-Error: O, (xt, X,_1, ut_l) = C,_q (xt_l, ut_l) + in?fl at (xt,v) — Et_l (xt_l, ut_l)
ve
Key observation: U, — 0, = Cf_zl — CIQ (¢4 =0)

! !

— ) (4,-8,) =) (CSQ_I — CSQ> = (¢

s=( s=0



I Proof Highlights

. e P
DR(PROP) < ¥ min { Ep, [] + LoFp, (1 () = R,) 9, + LcCEps | (R)”

re|T]

Consisteﬁcy Bound Robustness Bound

+
Robustness: Rt — [ || 7}; (xt) — 7_1- | Z 5 R ) ]

Decision Discrepancy 7, ' Approximate TD-Error

34 A = o(T) such that \(:tQ\ < A forallt € [T] (model assumption)

Consider two cases:

Case | Z u, < A Automatically obtain RoE(e) < ROB + o(1) by the consistency bound
re[T]
Case Il 2 u, > A (Cont.)

re[T]



I Proof Highlights

. e P
DR(PROP) < ¥ min { Ep, [] + LoFp, (1 () = R,) 9, + LcCEps | (R)”

te[T] _ .. g
Robustness: Consistency Bound Robustness Bound

R [|| 5 0) =505 | -2 E o ]

Decision Discrepancy 7, ' Approximate TD-Error
Case Z u, > A
[T}
J t
— Z o, >0 (Applying Z (ﬂs — 55) — Z (CSQ—I _ CSQ) _ CtQ)
[T} = =~

—> There exists # > O such that R, = ()

(The action space is compact, discrepancy 7, is bounded)



I Proof Highlights

DR(PROP) < 2 min
te|T]
Robustness:

R, =

Case Z u, > A
te[T]

—P.x [//tt] + LQ

P (771‘ (xt> — Rt)? ¢, + LcC

P.r

- (R )p_ 1/p
[

Consisteﬁcy Bound

| (x) -

(%)

. 25

S

Robustness Bound

1a

Decision Discrepancy g,

m m-—
Let m be the latest time index such that Z p, > A and Z He < A

m—1
2 Hs <
s=1

s=1

m
D > A
s=1

s=1

s=1
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T—1

Approxmate T1D- Error



I Proof Highlights

. e P
DR(PROP) < ¥ min { Ep, [] + LoFp, (1 () = R,) 9, + LcCEps | (R)”

te[T] . _ .. g
Robustness: Consistency Bound Robustness Bound

R [|| 5 0) =505 | -2 E o ]

Decision Discrepancy 7, ' Approximate TD-Error

Case | Z u, > A (Cont.)

(€[ T] Per-step robustness bound

/

—> DR(PROP(Grey-Box)) < 2 U, + 2 p,+0®@,) < 2 M T Z @, + O(y)

S=m S=

(Applying the Wasserstein robustness definition)

—> RoE(e) < ROB + 0(1)



Comparison

Noah & Moitra This Work
MDP Model Finite Action/State Spaces | Finite or Continuous
Episodic setting Single-trajectory setting
. ~ Approximate distillation Lipschitz continuous
Assumption on -~ 5
for stronger results QO — O* =o(T)
Robust Policies N/A Wasserstein Robustness
Main Results Regret bound Consistency-robustness Tradeoff

Golowich, Noah, and Ankur Moitra. "Can Q-learning be Improved with Advice?.” Conference on Learning Theory. PMLR, 2022.



Summary: Learning-Augmented Decision-Making

Systems Untrusted Al Performance Guarantees
. . . . " Scenario
Nonlinear Dynamics Black-box Policy [Li et. al. OJCSYS 2023] Stability + CR
........................................................................................................................................................................................................................................... II :
Anytime-Constrained MDP Black-box Policy [Yang et. al. NeurIPS 2023] Regret Battery Scheduling
.......................................................................................................................................... R o) ccararia i
_ : | Feasibility + CR
Two-Controller System Black-box Advice Liet al. TSG 2021]
Li et. al. SIGMETRICS 2021] Remand Response

Scenario | :

Linear Quadratic System Perturbation Predictions  [Li et. al. SIGMETRICS 2022] CR _
Linear Control

Linear Quadratic System Disentangled Perturbations Ongoing

General Sum Games Black-box Bayesian probability Ongoing
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