DDA 6201 Online Decision-Making Lecture 12

Application 2: Valued-Based RL

Tongxin Li School of Data Science The Chinese University of Hong Kong (Shenzhen)

Revisit: Learning-Augmented Algorithms

First Limitation

- (We can ask the same question for any learning-augmented online algorithms)

First Limitation

Competitive ratio $CR(\varepsilon)$

Goal: Find an online algorithm with good Competitive Ratio CR regardless of prediction error ε

$$\lambda = 1$$
$$\lambda = 0.7$$
$$\lambda = 0.5$$
$$\lambda = 0.2$$
$$\lambda = 0$$

Can we automatically adjust λ ?

Issue: Prediction error ε is not known a priori

One Solution: **Online Learning**

$$\lambda = 1$$
$$\lambda = 0.7$$
$$\lambda = 0.5$$
$$\lambda = 0.2$$
$$\lambda = 0$$

• online learning [Li et. al. SIGMETRICS 2022] [Khodak et. al. NeurIPS 2022] [Lin et. al. Preprint 2023] ... [Li et. al. NeurIPS 2024]

A Real-World Problem

Image: Paired Power

The UC San Diego/EVgo project

EV Charging with Uncertainties

Use RL for scheduling?

• Tons of existing policies

Question: Do they work well in practice?

Question: If so, why is it hard to see them being used?

Ideally, they work well, but …

The UC San Diego/EVgo project

Large-Scale Adaptive Charging Network

Adaptive Charging Network (ACN@Caltech)

- A Parking lot with 54 chargers
- How to schedule EV charging is challenging

Large-Scale Workplace EV Charging *PF*

Fina a Location

Choose Model

Commercialized Version 2.7.39 / 2022

Large-Scale Workplace EV Charging

Classic Scheduling Algorithms

- Least laxity first (LLF)
- Earliest deadline first (EDF)
- Model predictive control (MPC)

(Currently used in Caltech ACNs)

. . .

update them at any time.

miles

0.01 /kWh

0.02

Large-Scale Workplace EV Charging

Classic Scheduling Algorithms

- Least laxity first (LLF)
- Earliest deadline first (EDF)
- Model predictive control (MPC)

(Currently used in Caltech ACNs)

. . .

update them at any time.

miles

0.02

COVID-19 Caused Dataset Shift

RL policies trained on out-of-distribution data can perform poorly

$$(e_{t+1} \| b_{t+1}) = s_{t+1} = g_{\mathcal{S}} \Big[A_t s_t + B_t g_{\mathcal{A}}(a_t) + \mathcal{E}'_t - \Delta h'_t \Big], \ t \ge 0$$

Battery Dynamics

1 \ $(\alpha_j, \delta_j, \kappa_j, i)$ is a **charging session**: At time α_j , EV j arrives at charger i, with an EV battery capacity κ_j , and departs at time δ_j

The adaptive charging network at Caltech. source: https://ev.caltech.edu

(Uncertain) Behavior/Solar Perturbations

 $(\alpha_j, \delta_j, \kappa_j, i)$ is a **charging session**: At time α_j , EV j arrives at charger i, with an EV battery capacity κ_j , and departs at time δ_j

$$(e_{t+1} \| b_{t+1}) = s_{t+1} = g_{\mathcal{S}} \Big[A_t s_t + B_t g_{\mathcal{A}}(a_t) + \mathcal{E}'_t - \Delta h'_t \Big], \ t \ge 0$$

Battery Dynamics

$$\left|\sum_{i=1}^{N} D_{ij} b_{t}(i) e^{j\phi_{i}}\right| \leq \gamma, \quad \forall t \in \mathcal{T}\$$$

Formed by circuit analysis Phase angle of Current magnitude limit current phasor

The adaptive charging network at Caltech. source: https://ev.caltech.edu

(Uncertain) Behavior/Solar Perturbations

Projections g_{S} and g_{A} capture network constraints, such as line constraints by the Kirchhoff's Current Law:

$$(e_{t+1} \| b_{t+1}) = s_{t+1} = g_{\mathcal{S}} \Big[A_t s_t + B_t g_{\mathcal{A}}(a_t) + \ell'_t - \Delta h'_t \Big], \ t \ge 0$$

Battery Dynamics

- **Robustness** Classic algorithm (MPC) depends on battery dynamics and user inputs
- This is a general paradigm in many real-world applications

The adaptive charging network at Caltech. source: https://ev.caltech.edu

(Uncertain) Behavior/Solar Perturbations

• **Consistency** RL policy can better learn uncertain residuals when they are not out-of-distribution

ML in Real-World Decision-Making …

Digital Applications

Successful

Machine-learned policies have the Existing well-established classic methods

advantage of utilizing data

On average near-optimal performance

Challenging

that are hard to be replaced entirely

Worst-case guarantee

On average good performance vs Worst-case guarantee

vs Robustness Trade-off

Intermediate Regimes

Robust Classic Policy (Good when ε is large)

f(0) -consistent

 $\sup f(\varepsilon)$ -robust $\varepsilon > 0$

Today's Topic: Value-Based RL

Nonlinear Model is Harder if the ML Agent is a Black-Box

 System Model	Classic Agent	ML Agent	Remarks	Tradeoffs
Linear Dynamics	LQR	MPC+Perturbation Predictions	Convex Combination	Consistency vs Robustness
 NonLinear Dynamics	LQR	Black-Box RL	Switching	Consistency vs Stability
MDP	Robust Policy	?	?	?

Moving to general MDP …

- Linear combination of two stabilizing controllers can be unstable
- Many learning-augmented online algorithms consider black-box predictions or advice
- What if we move beyond black-box advice?

In General MDP ···

- Linear combination of two stabilizing controllers can be unstable
- Many learning-augmented online algorithms consider black-box predictions or advice
- What if we move beyond black-box advice?
- Need to consider more structural information, i.e., grey-box agents

Value-Based RL
$$\widetilde{\pi} : X \to U$$

 $\widetilde{u}_t = \operatorname{arginf}_{u \in U} \widetilde{Q}$

Q-value functions contain useful information

In General MDP ···

- Linear combination of two stabilizing controllers can be unstable
- Many learning-augmented online algorithms consider black-box predictions or advice
- What if we move beyond black-box advice?
- Need to consider more structural information, i.e., grey-box agents

How to select R_t ?

In the General MDP setting, can **Q-value advice** provide a better consistency vs robustness tradeoff?

Idea: Use Temporal Difference (TD) Error

Temporal Difference (TD)-Error: $TD_t = c_{t-1} + \mathbb{P}_{t-1} \widetilde{V}_t - \widetilde{Q}_{t-1}$

 $\widetilde{\tau}_t(x_t)$

Idea: Use Temporal Difference (TD) Error

Temporal Difference (TD)-Error: $TD_t = c_{t-1} + \mathbb{P}_{t-1} \widetilde{V}_t - \widetilde{Q}_{t-1}$

Hard to compute since we don't know \mathbb{P}

Idea: Use Temporal Difference (TD) Error

Temporal Difference (TD)-Error: $TD_t = c_{t-1} + Approximate TD-Error: \delta_t (x_t, x_{t-1}, u_t)$ $R_t := \begin{bmatrix} \|\widetilde{\pi}_t (x_t) - \overline{\pi}_t (x_t) \|_U \\ \underbrace{\bigcup_{\text{Decision Discrepancy}}^{t}} & -\frac{\beta}{L_Q} \sum_{s=1}^t \delta_s (x_s) \\ \downarrow & Approx \end{bmatrix}$

Lipschitz constant of costs/rewards

$$\pi_{t}(x_{t})$$

$$c_{t-1} + \mathbb{P}_{t-1}\widetilde{V}_{t} - \widetilde{Q}_{t-1}$$

$$x_{t-1}, u_{t-1}) := c_{t-1}(x_{t-1}, u_{t-1}) + \inf_{v \in \mathcal{U}}\widetilde{Q}_{t}(x_{t}, v) - \widetilde{Q}_{t-1}(x_{t-1}, u_{t-1})$$

$$\int_{\mathcal{V}} \delta_{s}(x_{s}, x_{s-1}, u_{s-1}) \int_{\mathcal{V}} \beta \text{ is a hyper-parameter}$$

$$\beta \text{ is a hyper-parameter}$$

Not all classic policies can be used …

We need to regulate the behaviors of the **classic policies** so they become baselines (to guarantee worst-case performance)

Definition (*r*-locally *p*-Wasserstein robustness) A policy $\overline{\pi} = (\pi_t : t \in [T])$ is r-locally p-Wasserstein-robust if for any $0 \le t_1 \le t_2 < T$ and state-action distributions ρ, ρ' such that $W_p(\rho, \rho') \leq r$, for some radius r > 0, $W_p\left(\rho_{t_1:t_2}(\rho), \rho_{t_1:t_2}(\rho)\right)$ for some function $s : [T] \to \mathbb{R}_+$ such that $\sum s(t) \le C_s$ for some constants $C_s > 0$. $t \in [T]$

$$(p')$$
 $\leq s(t_2 - t_1)W_p(\rho, \rho')$

Robust Policy

Many practical instances:

Lin, Y., Hu, Y., Qu, G., Li, T. and Wierman, A., 2022. Bounded-regret mpc via perturbation analysis: Prediction error, constraints, and nonlinearity. NeurIPS 2022.

$$W_{p}\left(\rho_{h_{1}:h_{2}}^{t}(\rho),\rho_{h_{1}:h_{2}}^{t}(\rho')\right) \longrightarrow Wasserstein Distance$$
of state-action distributions ρ and
after applying a robust policy $\overline{\pi}$
from h_{1} to h_{2}

• Discrete MDP: Any Policy that Induced a Regular Markov Chain

• Time-varying LQR: MPC with Robust Predictions

• Extends a contraction property in [Lin 2022]

PROjection Pursuit Policy (PROP)

Algorithm PRO jection **Pursuit (PROP)** Initialize: $\widetilde{\pi} = (\widetilde{\pi}_t : t \in [T])$ and $\overline{\pi} = (\overline{\pi}_t : t \in [T])$ for t = 0, ..., T - 1Get R_t using approximate TD-error Take $u_t = \operatorname{Proj}_{\overline{U_t}}(\widetilde{u}_t)$ whe Sample next state $x_{t+1} \sim$

ere
$$\overline{U}_t := \left\{ u \in \mathcal{U} : \|u - \overline{\pi}_t (x_t)\|_U \le R_t \right\}$$

~ $\mathbb{P}_t(x_t, u_t)$

OOD-Aware EV Charging

Algorithm OOD-Aware EV **Charging (OOD-Charging)**

Initialize: $\widetilde{\pi} = (\widetilde{\pi}_t : t \in [T])$ and for t = 0, ..., |T - 1|NN that update Receive user inputs Get R_t using approximate TD-error Take $u_t = \operatorname{Proj}_{\overline{U}_t}(\widetilde{u}_t)$ wher Sample next state $x_{t+1} \sim$ Estimate previous state \widetilde{x}_t Update replay buffer and retrain $\widetilde{\pi}$

$$\exists \ \overline{\pi} = \left(\overline{\pi}_t : t \in [T] \right)$$

$$\longrightarrow MPC \text{ Procedure with user inputs and estimated state}$$
es every t

$$Approximately \text{ Wasserstein robust}$$

re
$$\overline{U}_t := \left\{ u \in \mathcal{U} : \|u - \overline{\pi}_t(x_t)\|_U \le R_t \right\}$$

 $\mathbb{P}_t(x_t, u_t)$

Out-of_Distribution EV Charging

Out-of_Distribution EV Charging

Trust Coefficient

$$\lambda(R_t) = \min\left\{1, R_t / \|\widetilde{\pi}_t(x_t) - \overline{\pi}_t(x_t)\|_2\right\}$$

Theoretical Guarantees

Consistency and Robustness

where
$$\varepsilon := \sum_{t \in [T]} \left(\|\widetilde{Q}_t - Q_t^{\star}\|_{\infty} + \|\inf_{v \in \mathcal{U}} \widetilde{Q}_t - \inf_{v \in \mathcal{U}} Q_t^{\star}\|_{\infty} \right)$$

(can be generalize to:)

$$\varepsilon(p,\rho) := \sum_{t \in [T]} \left(\|\widetilde{Q}_t - Q_t^{\star}\|_{p,\rho_t} + \left\| \inf_{v \in \mathcal{U}} \widetilde{Q}_t - \inf_{v \in \mathcal{U}} Q_t^{\star}\|_{p,\phi_t} \right)$$

k-Consistency: Ratio of Expectations (RoE) satisfies $RoE(\varepsilon) \le k$ for $\varepsilon = 0$

l-Robustness: Ratio of Expectations (RoE) satisfies $RoE(\varepsilon) \le k$ for any ε

Black-Box Impossibility

Theorem (Informal)

There exists an algorithm with a black-box agent that is $(1 + O((1 - \lambda)\gamma))$ -consistent and (ROB + $\mathcal{O}(\lambda\gamma)$)-robust where $0 \le \lambda \le 1$ is a hyper-parameter.

(ROB is a ratio of expectation upper bound for the robust baseline)

Theorem (Informal) Impossibility

(ROB + $o(\lambda\gamma)$)-robust for any $0 \le \lambda \le 1$.

Any algorithm with a black-box agent cannot be both $(1 + o((1 - \lambda)\gamma))$ -consistent and

Theorem (Informal) Impossibility

-robust for any $0 \le \lambda \le 1$.

Proof Idea:

Construct a special case (satisfying all model assumptions) with decoupled and identical cost at each t

Then argue with fixed λ , can separate Q^* and \widetilde{Q} so that a lower bound can be derived

Dynamic regret: DR(PROP(Black-Box)) =

 $DR(PROP(Black-Box)) \geq$

$$\widetilde{Q}_{t}(u) \text{ Lipschitz constant } L_{Q}$$

$$= \lambda \widetilde{u}_{t} + (1 - \lambda) \overline{u}_{t} \quad \Delta Q_{t}^{*} := \mathbb{E}_{P,\pi} \left[Q_{t}^{*}(x_{t}, u_{t}) - \inf_{v \in \mathcal{U}} Q_{t}^{*}(x_{t}, v) \right]$$

$$\text{lack-box procedure} \quad \Delta \widetilde{Q}_{t} := \mathbb{E}_{P,\pi} \left[\widetilde{Q}_{t}(x_{t}, u_{t}) - \inf_{v \in \mathcal{U}} \widetilde{Q}_{t}(x_{t}, v) \right]$$

- Action space \mathscr{U} (diameter γ)

$$\sum_{t \in [T]} \mathbb{E}_{P,\pi} \left[Q_t^{\star} \left(x_t, u_t \right) - \inf_{v \in \mathcal{U}} Q_t^{\star} \left(x_t, v \right) \right]$$
$$\sum_{t \in [T]} \left(\Delta Q_t^{\star}(P, \pi) - \Delta \widetilde{Q}_t(P, \pi) + (1 - \lambda) L_Q^{\gamma} \right)$$

$$\widetilde{\mathcal{Q}}_{t}(u)$$

$$= \lambda \widetilde{u}_{t} + (1 - \lambda) \overline{u}_{t}$$

$$\varepsilon(p, \rho) := \sum_{t \in [T]} \left(\left\| \widetilde{\mathcal{Q}}_{t} - \mathcal{Q}_{t}^{\star} \right\|_{p, \rho_{t}} + \left\| \inf_{v \in \mathcal{U}} \widetilde{\mathcal{Q}}_{t} - \inf_{v \in \mathcal{U}} \mathcal{Q}_{t}^{\star} \right\|_{p, \phi_{t}} \right)$$

$$Action space \mathcal{U}$$

$$\Rightarrow \mathsf{RoE}(\mathsf{PROP}(\mathsf{Black-Box})) = 1 + \Omega \left((1 - \lambda) L_{Q} \gamma + \min\{\varepsilon, \lambda \gamma L_{c} + \mathsf{F}_{q}^{\star} \right)$$

(cannot be both $(1 + o((1 - \lambda)\gamma))$ -consistent and (ROB + $o(\lambda\gamma))$ -robust for any $0 \le \lambda \le 1$)

Grey-Box Setting

Theorem (Informal)

PROP with a grey-box agent that is 1-consistent and (ROB + o(1))-robust for some $\beta > 0$.

Take-Aways: Grey-box information can grant nontrivial improvements on the consistency and robustness tradeoff

Out-of-Distribution EV Charging

Theorem (Informal)

some $\beta > 0$.

$$\begin{split} \mathsf{MPC} &\leq \frac{2\xi C^2 (1+C^2)(1+\overline{A}^2+\overline{B}^2)}{\mu(1-\overline{\lambda})^2} \qquad \overline{\lambda} := \left((\overline{\sigma}-\underline{\sigma})/(\overline{\sigma}+\underline{\sigma})\right)^{\frac{1}{2}} \qquad C := \frac{4(\xi+1+\overline{A}+\overline{B})}{\underline{\sigma}^2 \cdot \lambda} \\ \underline{\sigma} := \min\{\mu,1\}(\overline{A}+\overline{B}+1)\left(\xi/(2\mu\xi+\mu\sigma^2)\right)^{\frac{1}{2}} \\ \overline{\sigma} := \sqrt{2}(\xi+\overline{A}+\overline{B}+1) \end{split}$$

State estimation error: $\left\| \mathcal{E}'_t - \Delta h'_t \right\| \leq \overline{W}$ Standard assumptions: $||A_t|| \le \overline{A}$ $||B_t|| \le \overline{B}$ $\mu I_n \le Q_t \le \xi I_n$, $\mu I_m \le R_t \le \xi I_m$, $\mu I_n \le P \le \xi I_n$

Theorem (Informal)

PROP with a grey-box agent that is 1-consistent and (ROB + o(1))-robust for some $\beta > 0$.

Proof Idea: A general bound on DR, therefore RoE:

$$DR(PROP) \leq \sum_{t \in [T]} \min \left\{ \underbrace{\mathbb{E}_{P,\pi} \left[\mu_t \right] + L_Q \mathbb{E}_{P,\pi} \left(\eta_t \left(x_t \right) - R_t \right)}_{\text{Consistency Bound}}, \underbrace{\varphi_t + L_C C_s \mathbb{E}_{P,\pi} \left[\left(R_t \right)^p \right]^{1/p}}_{\text{Robustness Bound}} \right\}$$

Assume $c_t > 0$ for all t, we can bound RoE

Here,
$$\mu_{t} := \zeta_{t}^{V} - \zeta_{t}^{Q} \qquad \zeta_{t}^{Q} \left(x_{t}, u_{t}\right) := \widetilde{Q}_{t} \left(x_{t}, u_{t}\right) - Q_{t}^{\star} \left(x_{t}, u_{t}\right) \qquad \text{Q-value error}$$
$$\zeta_{t}^{V} \left(x_{t}\right) := \inf_{v \in \mathcal{U}} \widetilde{Q}_{t} \left(x_{t}, v\right) - \inf_{v \in \mathcal{U}} Q_{t}^{\star} \left(x_{t}, v\right) \qquad \text{V-value error}$$

Applying the Kantorovich-Rubinstein duality theory

Applying the Wasserstein robustness definition

$$\underbrace{P_{,\pi}\left(\eta_{t}\left(x_{t}\right)-R_{t}\right)}_{\text{ncy Bound}}, \underbrace{\varphi_{t}+L_{C}C_{s}\mathbb{E}_{P,\pi}\left[\left(R_{t}\right)^{p}\right]^{1/p}}_{\text{Robustness Bound}}$$
ection
$$J(\pi)-J(\overline{\pi}) = \sum_{t\in[T]}\mathbb{E}_{(x,u)\sim\rho_{t}}\left[c_{t}\left(x,u\right)\right] - \mathbb{E}_{(x,x)\sim\overline{\rho}_{t}}\left[c_{t}\left(x,u\right)\right]$$
erem
$$\leq L_{C}\sum_{t\in[T]}\sum_{\tau=0}^{t-1}s(\tau)\mathbb{E}_{P,\pi}\left[\left(R_{t-\tau}\right)^{p}\right]^{1/p}$$

$$\leq L_{C}C_{s}\sum_{t\in[T]}\mathbb{E}_{P,\pi}\left[\left(R_{t}\right)^{p}\right]^{1/p}$$

$$\mathsf{DR}(\mathsf{PROP}) \leq \sum_{t \in [T]} \min \left\{ \underbrace{\mathbb{E}_{P,\pi} \left[\mu_t \right] + L_Q \mathbb{E}_{P,\pi} \left(\eta_t \left(x_t \right) - R_t \right)}_{\mathsf{Consistency Bound}}, \underbrace{\varphi_t + L_C C_s \mathbb{E}_{P,\pi} \left[\left(R_t \right)^p \right]^{1/p}}_{\mathsf{Robustness Bound}} \right\}$$

Consistency: Let $\varepsilon = 0$, $\mathbb{E}_{P,\pi} \left[\mu_t \right] = 0$ and the consistency bound becomes

$$\mathbb{E}_{P,\pi}\left[\eta_t - R_t\right] \leq \mathbb{E}_{P,\pi}\left[\frac{\beta}{L_Q}\sum_{s=1}^t \delta_s\right] = 0 \quad \text{Applying the radius update rule:}$$

$$R_t := \left[\frac{\left\|\widetilde{\pi}_t\left(x_t\right) - \overline{\pi}_t\left(x_t\right)\right\|_{U}}{\text{Decision Discrepancy }\eta_t} - \frac{\beta}{L_Q}\sum_{s=1}^t \underbrace{\delta_s\left(x_s, x_{s-1}, u_{s-1}\right)}_{\text{Approximate TD-Error}}\right]^+$$

$$DR(PROP) \leq \sum_{t \in [T]} \min \left\{ \underbrace{\mathbb{E}_{P,\pi} \left[\mu_t \right] + L_Q \mathbb{E}_{P,\pi} \left(\eta_t \left(x_t \right) - R_t \right)}_{Consistency Bound}, \underbrace{\varphi_t + L_C C_s \mathbb{E}_{P,\pi} \left[\left(R_t \right)^p \right]^{1/p}}_{Robustness Bound} \right\} \right\}$$

extress:
$$R_t := \left[\underbrace{\left\| \tilde{\pi}_t \left(x_t \right) - \bar{\pi}_t \left(x_t \right) \right\|}_{Decision Discrepancy \eta_t} - \frac{\beta}{L_Q} \sum_{s=1}^t \underbrace{\delta_s \left(x_s, x_{s-1}, u_{s-1} \right)}_{Approximate TD-Error} \right]^+$$

$$TD-Error: TD_t = c_{t-1} + \mathbb{P}_{t-1} \widetilde{V}_t - \widetilde{Q}_{t-1}$$
Approximate TD-Error:
$$\delta_t \left(x_t, x_{t-1}, u_{t-1} \right) := c_{t-1} \left(x_{t-1}, u_{t-1} \right) + \inf_{v \in \mathcal{U}} \widetilde{Q}_t \left(x_t, v \right) - \widetilde{Q}_{t-1} \left(x_{t-1}, u_{t-1} \right)$$
Key observation:
$$\mu_t - \delta_t = \zeta_{t-1}^Q - \zeta_t^Q \quad (\zeta_{t-1}^Q = 0)$$

$$\implies \sum_{s=0}^t \left(\mu_s - \delta_s \right) = \sum_{s=0}^t \left(\zeta_{s-1}^Q - \zeta_s^Q \right) = \zeta_t^Q$$

Robust

$$\leq \sum_{t \in [T]} \min \left\{ \underbrace{\mathbb{E}_{P,\pi} \left[\mu_t \right] + L_Q \mathbb{E}_{P,\pi} \left(\eta_t \left(x_t \right) - R_t \right)}_{\text{Consistency Bound}}, \underbrace{\varphi_t + L_C C_s \mathbb{E}_{P,\pi} \left[\left(R_t \right)^p \right]^{1/p}}_{\text{Robustness Bound}} \right\} \right\}$$

$$R_t := \left[\underbrace{\left\| \tilde{\pi}_t \left(x_t \right) - \bar{\pi}_t \left(x_t \right) \right\|}_{\text{Decision Discrepancy } \eta_t} - \frac{\beta}{L_Q} \sum_{s=1}^t \underbrace{\delta_s \left(x_s, x_{s-1}, u_{s-1} \right)}_{\text{Approximate TD-Error}} \right]^+ \right]^+$$

$$TD-Error: \quad TD_t = c_{t-1} + \mathbb{P}_{t-1} \widetilde{V}_t - \widetilde{Q}_{t-1}$$

$$\text{ximate TD-Error:} \quad \delta_t \left(x_t, x_{t-1}, u_{t-1} \right) := c_{t-1} \left(x_{t-1}, u_{t-1} \right) + \inf_{v \in \mathcal{U}} \widetilde{Q}_t \left(x_t, v \right) - \widetilde{Q}_{t-1} \left(x_{t-1}, u_{t-1} \right)$$

$$expression: \qquad \mu_t - \delta_t = \zeta_{t-1}^Q - \zeta_t^Q \quad (\zeta_{-1}^Q = 0)$$

$$\implies \sum_{s=1}^t \left(\mu_s - \delta_s \right) = \sum_{s=1}^t \left(\zeta_{s-1}^Q - \zeta_s^Q \right) = \zeta_t^Q$$

$$\mathsf{DR}(\mathsf{PROP}) \leq \sum_{t \in [T]} \min \left\{ \underbrace{\mathbb{E}_{P,\pi} \left[\mu_t \right] + L_Q \mathbb{E}_{P,\pi} \left(\eta_t \left(x_t \right) - R_t \right)}_{\mathsf{Consistency Bound}}, \underbrace{\varphi_t + L_C C_s \mathbb{E}_{P,\pi} \left[\left(R_t \right)^p \right]^{1/p}}_{\mathsf{Robustness Bound}} \right\} \\ \mathsf{Robustness:} \qquad R_t := \left[\underbrace{\left\| \left\| \widetilde{\pi}_t \left(x_t \right) - \overline{\pi}_t \left(x_t \right) \right\|_{\mathsf{U}}}_{\mathsf{Decision Discrepancy} \eta_t} - \frac{\beta}{L_Q} \sum_{s=1}^t \underbrace{\delta_s \left(x_s, x_{s-1}, u_{s-1} \right)}_{\mathsf{Approximate TD-Error}} \right]^+ \end{aligned}$$

$$\exists \Delta = o(T)$$
 such that $|\zeta_t^Q|$

Consider two cases:

Case I $\sum_{t \in [T]} \mu_t \le \Delta$ Automatically obtain $\operatorname{RoE}(\varepsilon) \le \operatorname{ROB} + o(1)$ by the consistency boundCase II $\sum_{t \in [T]} \mu_t > \Delta$ (Cont.)

 $| \leq \Delta$ for all $t \in [T]$ (model assumption)

$$\sum_{t \in P, \pi} \left(\eta_t \left(x_t \right) - R_t \right), \varphi_t + L_C C_s \mathbb{E}_{P, \pi} \left[\left(R_t \right)^p \right]^{1/p}$$

$$\text{Robustness Bound}$$

$$- \overline{\pi}_t \left(x_t \right) \parallel_{U} - \frac{\beta}{L_Q} \sum_{s=1}^t \underbrace{\delta_s \left(x_s, x_{s-1}, u_{s-1} \right)}_{\text{Approximate TD-Error}} \right]^+$$

$$s - \delta_s) = \sum_{s=0}^t \left(\zeta_{s-1}^Q - \zeta_s^Q \right) = \zeta_t^Q$$

$$\frac{\partial \mathbb{E}_{P,\pi} \left(\eta_t \left(x_t \right) - R_t \right), \varphi_t + L_C C_s \mathbb{E}_{P,\pi} \left[\left(R_t \right)^p \right]^{1/p} }{\text{Robustness Bound}}$$

$$- \overline{\pi}_t \left(x_t \right) \left\|_{U} - \frac{\beta}{L_Q} \sum_{s=1}^t \underbrace{\delta_s \left(x_s, x_{s-1}, u_{s-1} \right)}_{\text{Approximate TD-Error}} \right]^+$$

$$\mu_{s} > \Delta \text{ and } \sum_{s=1}^{m-1} \mu_{s} \le \Delta$$

$$\sum_{s=1}^{m} \mu_{s} > \Delta \qquad \sum_{s=1}^{k} \mu_{s} > \Delta, \forall k \ge m$$

$$T - 1 \quad m \qquad T - 1$$

(Applying the Wasserstein robustness definition)

 \implies RoE(ε) \leq ROB + o(1)

$$\sum_{t \in P, \pi} \left(\eta_t \left(x_t \right) - R_t \right), \varphi_t + L_C C_s \mathbb{E}_{P, \pi} \left[\left(R_t \right)^p \right]^{1/p}$$

$$\text{Robustness Bound}$$

$$- \overline{\pi}_t \left(x_t \right) \parallel_{U} - \frac{\beta}{L_Q} \sum_{s=1}^t \underbrace{\delta_s \left(x_s, x_{s-1}, u_{s-1} \right)}_{\text{Approximate TD-Error}} \right]^+$$

Comparison

	Noah & Moitra	This Work
MDP Model	Finite Action/State Spaces Episodic setting	Finite or Continuous Single-trajectory setting
Assumption on \widetilde{Q}	Approximate distillation for stronger results	Lipschitz continuous $\widetilde{Q} - Q^* = o(T)$
Robust Policies	N/A	Wasserstein Robustness
Main Results	Regret bound	Consistency-robustness Tradeoff

Golowich, Noah, and Ankur Moitra. "Can Q-learning be Improved with Advice?." Conference on Learning Theory. PMLR, 2022.

Summary: Learning-Augmented Decision-Making

Systems	Untrusted AI
Nonlinear Dynamics	Black-box Policy
Anytime-Constrained MDP	Black-box Policy
MDP	Grey-Box Policy
Two-Controller System	Black-box Advice
Linear Quadratic System	Perturbation Predictions
Linear Quadratic System	Disentangled Perturbations
General Sum Games	Black-box Bayesian probability

Performance Guarantees

		Scenario
[Li et. al. OJCSYS 2023]	Stability + CR	Scenario
[Yang et. al. NeurIPS 2023]	Regret	II : Battery Scheduling
[Li et. al. NeurIPS 2023]	Ratio of Expectations	
[Li et. al. e-Energy 2020] [Li et. al. TSG 2021] [Li et. al. SIGMETRICS 2021]	Feasibility + CR	Scenario III : Remand Response
[Li et. al. SIGMETRICS 2022]	CR	Scenario I : Linear Control
Ongoing		
ongoing		

(1) **Tongxin Li**, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, and Steven Low. **"Robustness and Consistency in Linear Quadratic Control with Untrusted Predictions"** SIGMETRICS Performance Evaluation Review 50.1 (2022): 107–108.

(2) Jianyi Yang, Pengfei Li, Tongxin Li, Adam Wierman, and Shaolei Ren.
 "Anytime-competitive reinforcement learning with policy prior"
 Advances in Neural Information Processing Systems 36 (2024).

(3) Yejia Liu, Jianyi Yang, Pengfei Li, Tongxin Li, and Shaolei Ren.
 "Building Socially-Equitable Public Models"
 Advances in Neural Information Processing Systems 36 (2024).

 (4) Tongxin Li, Yiheng Lin, Shaolei Ren, Adam Wierman.
 "Beyond Black-Box Advice: Learning-Augmented Algorithms for MDP with Value-Based Policies" Advances in Neural Information Processing Systems 36 (2024).

(5) Tongxin Li, Chenxi Sun.

"Out-of-Distribution-Aware Electric Vehicle Charging" IEEE Transactions on Transportation Electrification, 2024

(6) **Tongxin Li**, Hao Liu, Yisong Yue.

"Disentangling Linear Quadratic Control with Untrusted ML Predictions" Preprint, 2024