
Lecture of
Other ERM algs :

Skip MwA is ERM] e .g. Sampled ficticious play .
Li . Tewari , 2017

(is Hannan consistent

FTPL , exc.

Last time :

CERM)msup ma)Ui))
- randomization by all

ERi players

· If all players use ERM strategies ,
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-U(a)) (limitingas
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=> Course Correlated Equilibruim :

< CE : = 597A(A) : [9(a)U : (a) · a) 9(a) Mila) ,
:au

at A

· Recall

CE := [9A(A) :[ g(a-19i)Milaia)Z Maai) Mi (a) . Viai ia
die Ari

=> CE = [9tA):(a) Kildagaa)Uivial t
·
CECCE

? ERM

Consider the following Internal Regret Minimization :

limsupmat (a) (Uiaa-Vilaa)as
T-0

(replace every ut = ai by a)



· If all players
use IRM strategies , then

limsup[g(a) (U : (a: ai) - Mildia-i) So

T- 0 die Ari

=> Theorem 9 . 1

If all players
use IRM strategies ,

then the joint empirical
distribution approaches

the set of correlated equilibria (a
. S. ).

·
What strategies

are IRM ?

·
Consider

this generalized/unified regret definition :

RF :

=maxUM
Y

Modification rule

Given a mixed strategy pt from i
.

and a modification rule Ft :

f
+

= F
+
(p

+
)

where fi=
j : F+(j)= i

Pit A-> A

· F : = [F+: +]

· UT is the profit induced by (ft :+ =1) .

· Recall external regret :

T

ER:=max- U

max UI
GEO-

> comparison
class of algs

equivalent to F*= [Fi : i@A] where Fi(j)= i Vi .jeA

· Internal regret
=

T

#R :

=max
& & fixing other players' strategies

mixed strategies by it

&. equivalent to Fir := [Fij:(zin) = 1A))A1 -1)



· In general ,
how many distinct F : A - A are there ?

↓Af

IAI

· Each F swaps the current online action i w/ F(i)

Swap regret : SR : = maxFEXw[r - Un]

=>
· We see examples of ERM policies,

such as MWA . sampled FP
,

leading to CCE.

What are IRM policies for CE ?

· A general reduction from ER to IR) in fact.
SR).

[Blum & Mansour
.

COLT 2005]

Create N = /A) copies of the external - regret procedures

..
. ...
↑N

,
each of them satisfying

notexactly sequence of T payoffs (losses) (u : =) ,
Eo

generalize
Iu= R = U

We combine the N procedures to one master procedure as

follows .
At each time +, each procedureMi outputs a distribution

9 = (95 : i = 1 ..... n) .

↳ fraction it assigns to action;
29 :. i

. i = As
Compute P = [p9 = p

+
= Q

+

p
+

↓

a stationary distribution of the

Markov Process defined by Q.



[exercise : show this pt always exists]

choosing pt can be regarded in two equivalent ways :

(1) . Using pt to select action ; us probability prJactual payoff)
p+ - u +

(2) .
Select procedure Thi us probability PT and then use ii to

select the action ) Q
+ Pt)

After receiving a payoff) full information model) Ut
,

we return

to each it the vector put. So
, procedure ti experiences

inner product

(put) .g = p(a . u
+ )

Since Mi is an R external regret procedure, actionj,

(ut)
Summing the payoffs of the N procedures ,

at a given time+

& P(9 ! - ut) = (Q+ p+) . u + = pt -
ut

11 t

p
+ actual payoff

Hence . (*) gives (summing over i = 1. ... /) = P.+

=
for any function F :[1 . ...n 3 -> [1 . . . . N3 .

A A



In summary,

Theorem 9. 2

-

Given an R external regret procedure ,
the constructed master online

procedure it has the following guarantee.
W F : A -> A,

Un = Un F + NR

i

. e., the Swap regret of is at most NR.

Hence.

combining MWA . for example
Corollary 9. %
- -

There exists an online algorithm it st for every function

F : A-A ,
we have that

Un UnF + 0 (NFgN)

i . e., the Snap regret of t is at most O(NFgN) .

· Read Section 4. 5 ,
4.

6 in the book , which can be found in our

reading materials for more detailed discussions on the partial information

setting.



·More on online learning algs.

· Recall : MWA assumptions :

(1) The set of allowed actions for the player is the probability simplex

kn = [p-R = 13
12) Loss/Payoff functions are linear

. f
*

(P) = Mt . P where mtEIR
-

is normalized St. Im! 1 VIES,, . . . .
N3. This ensures f

+
(P)-C-1. 17, He

Given this,

MWA is a special instance of

Follow the Regularized leader (FTRL)
- H(P)

p
+

= agmin [m . p + RE
PE KN

· Now , let's turn to online convex optimization (040)
:

Goah : Solve minft(x) onlines

· K is bounded ,
convex, closed

· fo : K + IR is convex

Similar to our previous discussion for MWA. the FTL/ fixticious play

scheme below fails in the worst-case :

X+ + 1 = argmin f+(

Xtk

·Consider K = - 17
,
fi(x) = EX , fel) for e= 2..... T alternate

between -X and X. Thus,

+ is odd

C+ is even

=> FTL strategy keeps shifting beween X+=+1 and X += 1 , making
the wrong choices.



·Consider regularization functions R : K- IR that areonly convex,

Smooth ,
and twice differentiable .

-

Hence, by strong convexity. the Hessian PER(x) > O is positive definite.

Define the diameter of K as

Dr : = (max&R-R])
111
*:= sup[Xy3 .

· Duch norm of 11011 :

11x[/

Pual norm of the matrix norm 11 XII* =****: UxI= 11 A +

Generalized Cauchy Swartz

For notational simplicity · we write

inequality : X*Y &IXIA . 11
*

A
↓

u x Ily = = 11 x1x-

R(Y) any norm

11 x 11
*

y
: = 11 x1xR(Y)

· Difference beween the value of the regularization function at X

and the value of theist order Taylor approximation :

Bregman divergence : BR(x11)) : = R(X) - R(X) - DRID)(x- x).

For twice differentiable functions. Taylor expansion and the

mean-value theorem implies

BR(x1y) = E 11X-yI for some E
,

and &ECo . 1 s .+.

z = 2x + (1-2)).

Thus ,
the Bregman divergence defines a local norm

,
which has a

dual norm 11 ·y : = 11 : 1
*

z

Finally, we write 11 : 11 += 11 : 11x
+ -x++1

So that BR(x+ 11X++ )= 11X+ -X+++



To wrap up ,
let's summarize and revisit this FTRt meta-algorithm :

Algorithm FTRt
-

Input : 170 , regularization function R .
and K

let X =
= argmin [R(x)3

for tel, .... I do

play X + and receive cost f+ (x + ) ( can relax from the full information

(
setting to the bandit gradient

upda+2 setting , X+: = Xf+ (x+ )

relax to NSTXI
end for

X k

(F)5 f+ (x+) - f+(x
*)Xm(x+ - x

*)

X+ =

argmin (R)a
since H +

· Theoretical Guarantee : by convexity

Theorem 9. 3
-

The FTRL algorithm
attains & UEK the following regret bound :

ER(FTRH27+R

· Note that if IID+** GRA +, then optimizing over o gives

a bound of ePRGRET

proof : Lemma : FTRL guarantees ER(FTR)I(X+ X+)+ PR
↓

proof : Define 90(x) := DIX).

9+ (x) : = m+.x

By (E) ,
it suffices to bound (9+x) - 911] .

We

first show that Hut K.

+(u)+
To see it , we use induction on T :



· Induction base : by definition , X1 = argmin R(X) ,
thus g . (n) > 9. (X. ) WU .

Xt K
· Induction Step :

Assume for To we have+ (x++)

For T+ 1 , Since XT+2 = arguing+(x)]

+(u) g+ (x++

= 9) X ++2) + 9+ (x++2)

= g+)+ g(x
induction hypothes is

=(x) u = XT+2

As a conclusion,

(9+-g+ (us] (9+ (x+) - 9+ (x++) + (9 . (4) - 9- (x)]

= (9 +( - 9+ (x++))+ (R(u) - R(x))

-> +(x) - 9+(x+)]+ Di #

Now ,
since RIX) is a convex function and K is a convex set.

Denote #+ (x) : = 1 DSx + R(X) .

The Taylor expansion implies

# + (x) = E+ (x+ + 1) + (x+ - X++)XE+ (x++ ) + BE (X+ 1x++ )

-) + (X+ + ) + BE + (X+ 11X++ ) Since X++ minimizes It over K

= E+ (X++ ) + BR(X+ 11X++ ) Since the term Xs. X is

linear ,
it won't affect the

Bregman divergence.



Rearrange the terms
.

We get

Br(X + 11X ++ ) - 0 + (x+) - F + (x++ )

=> (E + - (x+ ) - E + + (X ++)) + MX= (x+ - X+ +)

=> n XP(X+ - X+ + 1) (X+ minimizes ++ again)

Using our notation
,

the generalized Cauchy-Swartz inequality,

XF(X+-
X+ +1) = 11P+ 11] - (1x+ - X++ +

3
=11 F+ 1* - (2Br(x+ 1x++))

= 11 D+* - (21x](x+
- x + +))

=> XI(x+- X++) = 24(+ 11* )2

Substituting
this into the lemma complete the proof ofTheorem 9. 3.

#

· connection to online mirror descent (OMD)

OMD is a general class of 1st order methods extending GD.

It has two versions
,
agile and lazy.

Algorithm
OMD

-

Input : 170 ,
regularization function R(X).

Let J . be Sit .

DR (D. ) = 0

Let X. = argmin Br(x 11 %.)
x= k

for tel , ....
T

,
do

play X +

observe the loss fo, let + = Nf+ (x+)

update It according toI XR(y++ ) = XR(y+) - 75+ Lazy

xR(y++) = XR(X+) - ni+ Agile

Project according to BR :

X++ = argmin Br(x(ly+ +1)
end for x K



· Both two version have regret bound guarantees similar to FTRt

· For instance ,

Theorem 9. 4 (equivalence between FTRt and lazy OMD)
-

Let f, ...,
It be linear cost functions. The lazy OMD and FTRt are identisch

X+ = arymin Br(X11ye) = ang

i

. e.,

x +k min (x +R
proof : The optimal solution (0)

** of the unconstrained optimization (0) satisfies

xR(x) =-
By the lazy OMD update rule :

xR(X+) =-
=> DR(x]) = zR(Y+ )

Since R is strictly convex
, XI = X+

Hence. Br (x 11y+) = R(x) - R(X) - (xR(x +))
+

(x - y + )

= R(x) - R(X) + MX(x - y+
um

-

[

=> It's equivalent to & independent of X

minimize R(x) + MDSTX over K #

· Now , we apply the general regret bound in Theorem 9. 3

to concrete examples of R(X).

Case I : R(x) = X logy

=> XR(X) = 1 + 10g X

KEXE :Exi > X+ (i)= is



If costs are in [+. 17.

117+ 1
*

+
= 11P+10 1 =: GR

The diameter satisfies DR log

=> ER(MWA) 2DrGret zigh

Case I R(x) = =11X - Xollz
.

↳
arbitrary XoE K

XR(x) = X - Xo

=> X + =
Proj(X+) ,

Y+
= y+1

- MP+ (lazy)

K

X+ = proj(x +) ,
y + = X+1M+ y (agi(e)

S
K

exactly online GD.

=> ER(OGD) PR +2
=D +2 ( reduces + 11 - 11)

-> 2GD max 11 X-YI) Euclidean diameter

I
->

X . YEK

11Df(x)11 = G .
V + x = k

· What about nonconvex costs ?

Read the book by Elad Hazan for more detailed discussions.


