MS& E 336 Lecture 11: The multiplicative weights algorithm
Ramesh Johari May 9, 2007

This lecture is based on the corresponding paper of Freuwh&emapire [2], though with some
differences in notation and analysis. We introduce andysthd multiplicative weightyMW)
algorithm, which is an external regret minimizing (i.e.,rtan consistent) algorithm for playing
a game. The same algorithm has been analyzed in various ,f@antcularly in the study of
online learning; see the references in [2]. Indeed, as weohdlerve in the subsequent lecture, the
multiplicative weights algorithm is in fact a special ca$etochastic fictitious play. Our focus in
this lecture is on establishing Hannan consistency of therahm.

Throughout the lecture we use the same notation as in Let@raut restrict attention to two-
player games. (Note that by grouping all players other tHagep 1 into “player 27, any game
can be viewed as a two player game for the purposes of estialglislannan consistency of the
multiplicative weights algorithm.)

1 TheMultiplicative Weights Algorithm

We first define the algorithm assuming that player 1 obsehesrixed action player 2 chose at
each timet, denoteds,. The MW algorithm for player 1 chooses a mixed stratefy at time

t + 1 according to:
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Here( is a constant parametér< 5 < 1.
The main result proved in [2] is the following characteriaatof the total payoff to player 1.
Note that for two distribution$’, P’ on a finite setX, the relative entropy oP’ with respect taP

IS:
RE(P||P) =Y P'(z)log (i((j))) .

rzeX

Sﬁ“(al) =

Proposition 1 Supposé < II;(ay,as) < 1forall (a1, as), and player 1 uses the MW algorithm
with arbitrary initial distribution s{. Then for any sequence$ ..., sl € A(A4,), there holds:

T

T
S Mi(shsh) = sup [aﬁZHmsl,s;) — csRE(s1l5})
t=0

=0 s1€A(A1)

Y

whereag = log(1/3)/(1/8 — 1), andcg = 1/(1/8 — 1).

Proof. The proof involves using the relative entropy as a form aftgmtial” function for the
dynamics. In particular, we will need the following lemma.



Lemma2 Under the assumptions of the theorem, for any fixedc A(A;) andt¢ > 0, there
holds:

RE(s1]}st) — RE(s]}st™) > log (%) I, (51, 54) (% - 1) Ty (st 51).

Proof of LemmaWe have:

st (@) T D

RE(s1]|s}) — RE(su||s{™) = > s1(a1)log (Z

a1€A1

st (an) g~ () )

a/1€A1

= log (%) I (s1, 53) — log ( > Sﬁ(a’l)ﬁﬂl(ai,%)>

aiEAl

> log (%) I1;(s1, 85) — log <1 + (% - 1) I, (s, sé))

> log (g) Ty (51, 51) — (g - 1) 1y (s!, 5b).

The first equality follows from the definition of RE. The secauality follows from the definition
of expected payoff. The subsequent inequality uses thétfatfor3 € (0,1) andx € [0, 1], there
holdss~* < 1+ (1/8 — 1)x. The final inequality uses the fact that for [0, 1], log(1 + z) < z,
and that) < Il(a) < 1foralla € A. O

We now sum the inequality in the preceding lemma fioto 7:

¢g (RE(s1]|s7) — RE(s1]|s{ ")) > ag > Ti(s1,85) — > Thi(s], sb).
t=0 t=0
The proposition follows by observing th& (s, ||s7 ') > 0. O

Note that whens! is the uniform distribution om;, then RE(s;||s?) < log |A;|. This obser-
vation yields the following corollary.

Corollary 3 Supposé < II;(ai,az) < 1 for all (a1, as), and player 1 uses the MW algorithm
with uniform initial distributions?. Then for any sequence$, . . ., sl € A(A,), there holds:

s1€A(A7) =0

T T
Z (s}, s5) > sup [ag Z I (s1, sg)] — cglog | Ayl. (1)
=0

2 Bounding External Regret

The corollary is not quite enough to bound external regretdd this, we use a lower bound on
ag. Observe that since — z?/2 < log(1 + z) < x, there holds:

_YB-1
;— <

1 a5<1.
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Applying this to the bound in (1), and noting thak 11, (s, s%) for all ¢, yields:

=5 (T 1/ -1 log | A1
ERi(h)§< 5 >T+1/6_1.

We now minimize the right hand side ovére (0, 1), which yields:

g =

1
1+ /2log|A,|/T

With this choice of3, we can bound expected external regret as follows:

ERy (") < /2T log |A4],

where

ER,(h") = max ZHl ay,sh) — (st sb)

al €A1
Remarks:

1. Note the importance of the uniform initial distributidiore generally, wher?(a,) > 1/K
for someK > 0, external regret up to timé& is bounded above by'27 log K. This reveals
the importance of initializing with a mixed action; othessj given the update rule of the
MW algorithm, any action with zero weight it will have zero weight in all future time
periods.

2. This bound on external regret is not the best possible déamthe MW algorithm. By a
slightly more refined analysis, it is possible to show that,; (h”) < /T log|A,|/2, with a
corresponding choice ¢f such thatl /3 — 1 = /8log|A,|/T. Further, one can establish
that in a general setting this is the best bound on regreéaahle by any Hannan consistent
strategy. (For details on this analysis, see [1], Chapted2Sattion 3.7.)

3. Our optimal choice of} requires thatl’ is known in advance. WheR' is not known in
advance, it is possible to achieve a regret bound of the saaee through theloubling trick HW
The key idea is to divide time into periods of exponentiatigreasing length; in particular,
epochm has lengthl;,, = 2™. We restart the algorithm at the beginning of each epoch, and
chooses,, so thatl/f3,, — 1 = /2log |A;|/T,,. Itis straightforward to show that such an
algorithm leads to the bound:

— V2
ERy(h") < (ﬁ) V2T log | Ay].

In fact, the upper bound can be reduced {;252 log | A1|T, by using &3 that changes at each
time step:3;, = \/8log|A;|/t. (See [1], Chapter 2, for details.)


Tongxin Li

Tongxin Li
HW


3 Bounding Regret in Actual Play

Recall the definition of Hannan consistency:

1
lim sup TERl(hT) <0, almost surely

T—o0
“Almost surely” here refers to the randomization employgdbth players. However, so far we
have only proven a bound @axpectedegret, since it is evaluated using the mixed strategielseof t

players. Since our results hold regardless of the actioosashby player 2, the regret bound of the
preceding section already implies that:

T-1

max ZHl(al,aé)—Hl(sﬁ,aé) < /2T log | Ay].

a1€A1) —0

However, the preceding expression still involves the miaetions of player 1, and not the actual
path of play; thus our bound on expected regret does not (diatedy) establish Hannan consis-
tency.

To proceed, we need to relate the expected path of play todiualgpath of play. We use
the following lemma, which shows that the probability theéuat path of play deviates from the
expected path decays exponentiallyZin

Lemma4 Suppose that players 1 and 2 use any (possibly history-diemenstrategy, and that
0 <IIi(ay,ay) < 1forall (aj,az). Then forallT:

T-1

> Ti(af, ah) — Ty (s}, sb)

> 6) < 9e7 T2,
t=0

Proof of LemmaObserve that if we defin&, = I (a!, ab) — I1; (s}, s%), thenE[ X, ;|h!] = 0.
Thus X, X1, Xy, ... is amartingale difference sequendée., the random variablés = Zizo X,
are a martingale with respect to the historiés By the (AZuma=Hoeffding inequality (see ap-
pendix), the result follows. O

The lemma suggests an approach to establish Hannan coecgistethe MW algorithm: as
long as actual play remains close to the expected path ofthlay we can use the expected regret
bound to bound our actual regret. The following theoremixistaes the desired result.

Theorem 5 Assume that{ is the uniform distribution. Then the MW algorithm is Hanreamsis-
tent.

Proof. Since we consider only finite games, we can assume (vialiegdanecessary) without
loss of generality thal < I1;(a;, as) < 1 forall (a;, as).

To prove the result we use an approach similar to the doulicky described above. Divide
time into epochs numbered = 0,1,2,..., where epochn has lengthl;,, = m?; i.e., them'th
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epoch consists of all timepoinis,,, b,,,, 1), whereb, = 0, andb,,, = b,,_, + m?. Let(3,, be chosen

sothatl/f3,, — 1 = +/2log|A1|/T,,, and lets,,, = 2y/logm/m.
< sm}.

Let B,, be the following event:
1
By =< —
This is the event that the actual average payoff is withjrof the expected average payoff in the
m’th epoch. By Lemma 4, it follows that:

bm41—1
ITy (af, ab) — IT; (s, af)

t=bm

c — e2 2
P(BS)) < 2 Tmem/2 — —
We conclude tha} | P(B¢,) < oo. By the Borel-Cantelli lemma, it follows that with probability
1, only finitely many of the eventB8¢, occur; in other words, with probability, for all sufficiently
largem there holds:

bm+1_1 bm+1_1
> I(sh,ah) < Y Thi(a}, ab) +2my/logm. 2
t=bm t=bm

We now use our bound on expected regret. In particular, fpraationa,, from our choice of
G, we know that in then’th epoch (for all sufficiently largen) there holds:

bm4+1—1 bm+1—1
Z Iy (4, ab) > Z Iy (ay,ab) — /2T, log | Ay .
t=bm t=bm

The preceding relation, together with (2), implies:

bm41—1 bmt1—1 m
Z I, (at, ab) > Z (a1, al) — v/2log |A] Z(k + 2k+/log k)
=0 t=0 k=0
bm+1—1
> I, (ay, ab) — v/2log | Ai|(m?* + 2m?y/log m).
=0

The last term on the right hand side@§m?+/log m), but the number of rounds {5, , k* =
O(m?). Further, notice that,,, 1 — b,,)/b,, — 0 @asm — oo, so that the error in measuring regret
only at time points,,, decays to zero as — oo. (Note that the last step would not have held if
bm11 — by, inCcreased exponentially, as is the case in a standard apphaof the “doubling trick.”)
We conclude that: .

lim sup TERl(hT) <0,

T—o00

almost surely, as required. O
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A TheAzuma-Hoeffding Bound

We first prove the following result that holds for any boundaxddom variable.

Lemma6 LetX be arandom variable withX — E[X]| < ¢. Then for any € R,

s2c?

log E[e*X] < sE[X] + -

Proof. First observe that:
E[eSX] _ GSE[X]E[SS(X_E[X])}.

By taking logarithms on both sides, therefore, it suffices stalalish the result for zero mean
random variables with | X| < c.

The key step is to use convexity of the exponential functidiis yields that for any: € [—¢, ¢],
we have:

T +c c—x
ST < —S8C SC.
c© = 2c ¢ 2c ¢
Taking expectations and usifitjX| = 0 gives:
E[es¥] < eote cosh(sc),

- 2
wherecosh is the hyperbolic cosine function.
To complete the proof, we show that for alke R:

log cosh(z) < 2?/2.
Let f(z) = log cosh(z). By Taylor's theorem, for a fixed, there exist® such that:

log cosh(z) = f(0) + f/(0)x + %M

The result follows by noting that(0) = f'(0) = 0, and thatf”(6) = 1 — sinh(f)/ cosh?() < 1.
O

We can use the lemma to easily prove the Azuma-Hoeffdingualty for martingale differ-
ences. LetZ,, 71, Z,, ... be a sequence of random vectors, andhlet {Z;,...,Z; 1}. (The
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history 1° is empty.) We say that the sequentg X, X5, ... is amartingale difference sequence
with respect to{ Z, } if every X, is a function ofZ,, . . ., Z;, and:

E[X,.1|h*!] = X,, almostsurelyt > 0.

In our application in the lecture, we havg = (a!, a}), and X, = I1,(Z;) — II;(s}, %), wheres!
is the mixed action prescribed by the (possibly historyesefent) strategy of player

The key result we use in the text is the following inequaktyich shows that the actual be-
havior of a martingale is “close” to its expected behavior.

Lemma 7 (Azuma-Hoeffding) Supposd X,} is a martingale difference sequence with respect to
{Z;}, and that| X;| < ¢, for all ¢. Then for anys > 0:

B [es Yo Xt} < X0 )2

Further, for anye > 0:

P (i X > 5) < e~2%/ Tio c%; P (i X < —5) < e~ 2%/ Tiso et
t=0 t=0
Proof. We use nested conditional expectations. We have:
E [eszfzoxt} _E [eszf;ol X [esXT|hT]:|
<E [es i Xt} /2,

where the inequality follows by the preceding lemma. Inghucyields the first result.
To establish the probabilistic bound, we use Markov’s iradityy Fors > 0 we have:

T
i (Z X, > 5) —_P <es Sie X S e%)
t=0

<E [652?:0 Xt] /esa

T
< 632 > im0 63/2788.

The inequality claimed in the lemma follows by minimizingethight hand side over > 0; the
bound on[E”(ZtT:0 X, < —e¢) follows by a symmetric argument. O



