
MS&E 336 Lecture 11: The multiplicative weights algorithm
Ramesh Johari May 9, 2007

This lecture is based on the corresponding paper of Freund and Schapire [2], though with some
differences in notation and analysis. We introduce and study the multiplicative weights(MW)
algorithm, which is an external regret minimizing (i.e., Hannan consistent) algorithm for playing
a game. The same algorithm has been analyzed in various forms, particularly in the study of
online learning; see the references in [2]. Indeed, as we will observe in the subsequent lecture, the
multiplicative weights algorithm is in fact a special case of stochastic fictitious play. Our focus in
this lecture is on establishing Hannan consistency of the algorithm.

Throughout the lecture we use the same notation as in Lecture10, but restrict attention to two-
player games. (Note that by grouping all players other than player 1 into “player 2”, any game
can be viewed as a two player game for the purposes of establishing Hannan consistency of the
multiplicative weights algorithm.)

1 The Multiplicative Weights Algorithm

We first define the algorithm assuming that player 1 observes the mixed action player 2 chose at
each timet, denotedst

2. The MW algorithm for player 1 chooses a mixed strategyst+1
1 at time

t + 1 according to:

st+1
1 (a1) =

st
1(a1)β

−Π1(a1,st

2
)

∑

a′

1
∈A1

st
1(a

′

1)β
−Π1(a′

1
,st

2
)
.

Hereβ is a constant parameter,0 < β < 1.
The main result proved in [2] is the following characterization of the total payoff to player 1.

Note that for two distributionsP, P ′ on a finite setX, the relative entropy ofP ′ with respect toP
is:

RE(P ′‖P ) =
∑

x∈X

P ′(x) log

(

P ′(x)

P (x)

)

.

Proposition 1 Suppose0 ≤ Π1(a1, a2) ≤ 1 for all (a1, a2), and player 1 uses the MW algorithm
with arbitrary initial distribution s0

1. Then for any sequencess0
2, . . . , s

T
2 ∈ ∆(A2), there holds:

T
∑

t=0

Π1(s
t
1, s

t
2) ≥ sup

s1∈∆(A1)

[

aβ

T
∑

t=0

Π1(s1, s
t
2) − cβRE(s1‖s0

1)

]

,

whereaβ = log(1/β)/(1/β − 1), andcβ = 1/(1/β − 1).

Proof. The proof involves using the relative entropy as a form of “potential” function for the
dynamics. In particular, we will need the following lemma.
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Lemma 2 Under the assumptions of the theorem, for any fixeds1 ∈ ∆(A1) and t ≥ 0, there
holds:

RE(s1‖st
1) − RE(s1‖st+1

1 ) ≥ log

(

1

β

)

Π1(s1, s
t
2) −

(

1

β
− 1

)

Π1(s
t
1, s

t
2).

Proof of Lemma.We have:

RE(s1‖st
1) − RE(s1‖st+1

1 ) =
∑

a1∈A1

s1(a1) log

(

st
1(a1)β

−Π1(a1,st

2
)

∑

a′

1
∈A1

st
1(a

′

1)β
−Π1(a′

1
,st

2
)

)

= log

(

1

β

)

Π1(s1, s
t
2) − log





∑

a′

1
∈A1

st
1(a

′

1)β
−Π1(a′

1
,st

2
)





≥ log

(

1

β

)

Π1(s1, s
t
2) − log

(

1 +

(

1

β
− 1

)

Π1(s
t
1, s

t
2)

)

≥ log

(

1

β

)

Π1(s1, s
t
2) −

(

1

β
− 1

)

Π1(s
t
1, s

t
2).

The first equality follows from the definition of RE. The secondequality follows from the definition
of expected payoff. The subsequent inequality uses the factthat forβ ∈ (0, 1) andx ∈ [0, 1], there
holdsβ−x ≤ 1 + (1/β − 1)x. The final inequality uses the fact that forx ∈ [0, 1], log(1 + x) ≤ x,
and that0 ≤ Π(a) ≤ 1 for all a ∈ A. 2

We now sum the inequality in the preceding lemma from0 to T :

cβ

(

RE(s1‖s0
1) − RE(s1‖sT+1

1 )
)

≥ aβ

T
∑

t=0

Π1(s1, s
t
2) −

T
∑

t=0

Π1(s
t
1, s

t
2).

The proposition follows by observing thatRE(s1‖sT+1
1 ) ≥ 0. 2

Note that whens0
1 is the uniform distribution onA1, thenRE(s1‖s0

1) ≤ log |A1|. This obser-
vation yields the following corollary.

Corollary 3 Suppose0 ≤ Π1(a1, a2) ≤ 1 for all (a1, a2), and player 1 uses the MW algorithm
with uniform initial distributions0

1. Then for any sequencess0
2, . . . , s

T
2 ∈ ∆(A2), there holds:

T
∑

t=0

Π1(s
t
1, s

t
2) ≥ sup

s1∈∆(A1)

[

aβ

T
∑

t=0

Π1(s1, s
t
2)

]

− cβ log |A1|. (1)

2 Bounding External Regret

The corollary is not quite enough to bound external regret. To do this, we use a lower bound on
aβ. Observe that sincex − x2/2 ≤ log(1 + x) ≤ x, there holds:

1 − 1/β − 1

2
≤ aβ ≤ 1.
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Applying this to the bound in (1), and noting that0 ≤ Π1(s1, s
t
2) for all t, yields:

ERi(h
T ) ≤

(

1/β − 1

2

)

T +
log |A1|
1/β − 1

.

We now minimize the right hand side overβ ∈ (0, 1), which yields:

β∗ =
1

1 +
√

2 log |A1|/T
.

With this choice ofβ, we can bound expected external regret as follows:

ER1(h
T ) ≤

√

2T log |A1|,

where

ER1(h
T ) = max

a1∈A1

[

T−1
∑

t=0

Π1(a1, s
t
2) − Π1(s

t
1, s

t
2)

]

.

Remarks:

1. Note the importance of the uniform initial distribution.More generally, whens0
1(a1) ≥ 1/K

for someK > 0, external regret up to timeT is bounded above by
√

2T log K. This reveals
the importance of initializing with a mixed action; otherwise, given the update rule of the
MW algorithm, any action with zero weight ins0

1 will have zero weight in all future time
periods.

2. This bound on external regret is not the best possible bound for the MW algorithm. By a
slightly more refined analysis, it is possible to show thatER1(h

T ) ≤
√

T log |A1|/2, with a
corresponding choice ofβ such that1/β − 1 =

√

8 log |A1|/T . Further, one can establish
that in a general setting this is the best bound on regret achievable by any Hannan consistent
strategy. (For details on this analysis, see [1], Chapter 2 and Section 3.7.)

3. Our optimal choice ofβ requires thatT is known in advance. WhenT is not known in
advance, it is possible to achieve a regret bound of the same order through thedoubling trick.
The key idea is to divide time into periods of exponentially increasing length; in particular,
epochm has lengthTm = 2m. We restart the algorithm at the beginning of each epoch, and
chooseβm so that1/βm − 1 =

√

2 log |A1|/Tm. It is straightforward to show that such an
algorithm leads to the bound:

ER1(h
T ) ≤

( √
2√

2 − 1

)

√

2T log |A1|.

In fact, the upper bound can be reduced to2
√

2 log |A1|T , by using aβ that changes at each
time step:βt =

√

8 log |A1|/t. (See [1], Chapter 2, for details.)
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3 Bounding Regret in Actual Play

Recall the definition of Hannan consistency:

lim sup
T→∞

1

T
ER1(h

T ) ≤ 0, almost surely.

“Almost surely” here refers to the randomization employed by both players. However, so far we
have only proven a bound onexpectedregret, since it is evaluated using the mixed strategies of the
players. Since our results hold regardless of the actions chosen by player 2, the regret bound of the
preceding section already implies that:

max
a1∈A1)

[

T−1
∑

t=0

Π1(a1, a
t
2) − Π1(s

t
1, a

t
2)

]

≤
√

2T log |A1|.

However, the preceding expression still involves the mixedactions of player 1, and not the actual
path of play; thus our bound on expected regret does not (immediately) establish Hannan consis-
tency.

To proceed, we need to relate the expected path of play to the actual path of play. We use
the following lemma, which shows that the probability the actual path of play deviates from the
expected path decays exponentially inT .

Lemma 4 Suppose that players 1 and 2 use any (possibly history-dependent) strategy, and that
0 ≤ Π1(a1, a2) ≤ 1 for all (a1, a2). Then for allT :

P

(

1

T

∣

∣

∣

∣

∣

T−1
∑

t=0

Π1(a
t
1, a

t
2) − Π1(s

t
1, s

t
2)

∣

∣

∣

∣

∣

> ε

)

≤ 2e−Tε2/2.

Proof of Lemma.Observe that if we defineXt = Π1(a
t
1, a

t
2)−Π1(s

t
1, s

t
2), thenE[Xt+1|ht] = 0.

ThusX0, X1, X2, . . . is amartingale difference sequence; i.e., the random variablesYt =
∑t

t=0 Xt

are a martingale with respect to the historiesht. By the Azuma-Hoeffding inequality (see ap-
pendix), the result follows. 2

The lemma suggests an approach to establish Hannan consistency of the MW algorithm: as
long as actual play remains close to the expected path of play, then we can use the expected regret
bound to bound our actual regret. The following theorem establishes the desired result.

Theorem 5 Assume thats0
1 is the uniform distribution. Then the MW algorithm is Hannanconsis-

tent.

Proof. Since we consider only finite games, we can assume (via rescaling if necessary) without
loss of generality that0 ≤ Π1(a1, a2) ≤ 1 for all (a1, a2).

To prove the result we use an approach similar to the doublingtrick described above. Divide
time into epochs numberedm = 0, 1, 2, . . ., where epochm has lengthTm = m2; i.e., them’th
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epoch consists of all timepoints[bm, bm+1), whereb0 = 0, andbm = bm−1 +m2. Letβm be chosen
so that1/βm − 1 =

√

2 log |A1|/Tm, and letεm = 2
√

log m/m.
Let Bm be the following event:

Bm =

{

1

Tm

∣

∣

∣

∣

∣

bm+1−1
∑

t=bm

Π1(a
t
1, a

t
2) − Π1(s

t
1, a

t
2)

∣

∣

∣

∣

∣

≤ εm

}

.

This is the event that the actual average payoff is withinεm of the expected average payoff in the
m’th epoch. By Lemma 4, it follows that:

P(Bc
m) ≤ 2e−Tmε2

m/2 =
2

m2
.

We conclude that
∑

m P(Bc
m) < ∞. By the Borel-Cantelli lemma, it follows that with probability

1, only finitely many of the eventsBc
m occur; in other words, with probability1, for all sufficiently

largem there holds:

bm+1−1
∑

t=bm

Π1(s
t
1, a

t
2) ≤

bm+1−1
∑

t=bm

Π1(a
t
1, a

t
2) + 2m

√

log m. (2)

We now use our bound on expected regret. In particular, for any actiona1, from our choice of
βm we know that in them’th epoch (for all sufficiently largem) there holds:

bm+1−1
∑

t=bm

Π1(s
t
1, a

t
2) ≥

bm+1−1
∑

t=bm

Π1(a1, a
t
2) −

√

2Tm log |A1|.

The preceding relation, together with (2), implies:

bm+1−1
∑

t=0

Π1(a
t
1, a

t
2) ≥

bm+1−1
∑

t=0

Π1(a1, a
t
2) −

√

2 log |A1|
m
∑

k=0

(k + 2k
√

log k)

≥
bm+1−1
∑

t=0

Π1(a1, a
t
2) −

√

2 log |A1|(m2 + 2m2
√

log m).

The last term on the right hand side isO(m2
√

log m), but the number of rounds is
∑m

k=0 k2 =
O(m3). Further, notice that(bm+1 − bm)/bm → 0 asm → ∞, so that the error in measuring regret
only at time pointsbm decays to zero asm → ∞. (Note that the last step would not have held if
bm+1 − bm increased exponentially, as is the case in a standard application of the “doubling trick.”)
We conclude that:

lim sup
T→∞

1

T
ER1(h

T ) ≤ 0,

almost surely, as required. 2
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A The Azuma-Hoeffding Bound

We first prove the following result that holds for any boundedrandom variable.

Lemma 6 LetX be a random variable with|X − E[X]| ≤ c. Then for anys ∈ R,

log E[esX ] ≤ sE[X] +
s2c2

2
.

Proof. First observe that:
E[esX ] = esE[X]

E[es(X−E[X])].

By taking logarithms on both sides, therefore, it suffices to establish the result for zero mean
random variablesX with |X| ≤ c.

The key step is to use convexity of the exponential function.This yields that for anyx ∈ [−c, c],
we have:

esx ≤ x + c

2c
e−sc +

c − x

2c
esc.

Taking expectations and usingE[X] = 0 gives:

E[esX ] ≤ e−sc + esc

2
= cosh(sc),

wherecosh is the hyperbolic cosine function.
To complete the proof, we show that for allx ∈ R:

log cosh(x) ≤ x2/2.

Let f(x) = log cosh(x). By Taylor’s theorem, for a fixedx, there existsθ such that:

log cosh(x) = f(0) + f ′(0)x +
f ′′(θ)x2

2
.

The result follows by noting thatf(0) = f ′(0) = 0, and thatf ′′(θ) = 1 − sinh(θ)/ cosh2(θ) ≤ 1.
2

We can use the lemma to easily prove the Azuma-Hoeffding inequality for martingale differ-
ences. LetZ0, Z1, Z2, . . . be a sequence of random vectors, and letht = {Z0, . . . , Zt−1}. (The
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historyh0 is empty.) We say that the sequenceX0, X1, X2, . . . is amartingale difference sequence
with respect to{Zt} if everyXt is a function ofZ0, . . . , Zt, and:

E[Xt+1|ht+1] = Xt, almost surely, t ≥ 0.

In our application in the lecture, we haveZt = (at
1, a

t
2), andXt = Π1(Zt) − Π1(s

t
1, s

t
2), wherest

i

is the mixed action prescribed by the (possibly history-dependent) strategy of playeri.
The key result we use in the text is the following inequality,which shows that the actual be-

havior of a martingale is “close” to its expected behavior.

Lemma 7 (Azuma-Hoeffding) Suppose{Xt} is a martingale difference sequence with respect to
{Zt}, and that|Xt| ≤ ct for all t. Then for anys > 0:

E

[

es
P

T

t=0
Xt

]

≤ es2
P

T

t=0
c2
t
/2.

Further, for anyε > 0:

P

(

T
∑

t=0

Xt > ε

)

≤ e−2ε2/
P

T

t=0
c2
t ; P

(

T
∑

t=0

Xt < −ε

)

≤ e−2ε2/
P

T

t=0
c2
t .

Proof. We use nested conditional expectations. We have:

E

[

es
P

T

t=0
Xt

]

= E

[

es
P

T−1

t=0
XtE

[

esXT |hT
]

]

≤ E

[

es
P

T−1

t=0
Xt

]

es2c2
t
/2,

where the inequality follows by the preceding lemma. Induction yields the first result.
To establish the probabilistic bound, we use Markov’s inequality. Fors > 0 we have:

P

(

T
∑

t=0

Xt > ε

)

= P

(

es
P

T

t=0
Xt > esε

)

≤ E

[

es
P

T

t=0
Xt

]

/esε

≤ es2
P

T

t=0
c2
t
/2−sε.

The inequality claimed in the lemma follows by minimizing the right hand side overs > 0; the
bound onP(

∑T
t=0 Xt < −ε) follows by a symmetric argument. 2
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