
601.436/636 Algorithmic Game Theory Lecturer: Michael Dinitz
Topic: No-Regret and Coarse Correlated Equilibria Date: 2/13/20
Scribe: Michael Dinitz

6.1 Introduction

Today we’ll talk about computing coarse correlated equilibria, and in particular a “natural” set of
dynamics based on certain online learning algorithms known as no-regret algorithms. So we’re first
going to take a detour into online learning theory to define the guarantees of these algorithms, then
show how they naturally lead to coarse correlated equilibria when used in games, and then show
how to design these algorithms.

6.2 No-Regret in Online Learning

For the rest of this section, forget the game theory setting – we’re just going to be doing online
learning. In the online learning setting, there is one player (us/the computer) who has an action
set A (these are sometimes called “arms”, due to the analogy to a “multi-armed bandit” machine
(i.e., a slot machine with multiple arms). Often we’ll let n = ∣A∣. At time t = 1,2, . . . , T :

• The algorithm picks a mixed strategy pt (a probability distribution over A)

• The adversary picks a cost vector ct ∶ A→ [0,1] (it’s crucial that these costs are bounded)

• An action at is drawn from pt, and the algorithm has cost ct(at). The algorithm learns either
the entire vector ct (in the “experts” setting) or just learns ct(at) (in the “bandit”) setting.

Informally, think of this process as follows. We’re trying to “learn” which action is best, but
we can’t just observe – we have to actually play. This is “online” because we can’t just learn
from historical data at some point in the future, but instead need to actually learn as we go,
i.e., “online”. There are standard stories behind this: combining expert advice of stock market
predictors / meteorologists, etc. But since this isn’t a class about online learning, I’m not going to
motivate the setting too much. Historically, ML people first thought about the case when there was
no adversary, and instead each action (arm) had a fixed distribution that it drew from each time,
and our goal was to find the arm with lowest expected cost. These are called “stochastic bandits”.
But it was later generalized to the setting I described, which is sometimes called “nonstochastic
bandits”.

Recall from 601.433 that the competitive ratio of an online algorithm is the worst case of the cost of
the algorithm (which does not know the future) divided by the cost of the optimum (in retrospect,
or knowing the future). This measure the “cost” of being online rather than having everything
given to you up front.

Let’s start with the bad news: there’s no way we can actually be competitive with the best thing
in retrospect.

1



Theorem 6.2.1 No algorithm can be competitive with the best action sequence in hindsight.

Proof: Let ∣A∣ = 2. The adversary will work as follows: if pt(0) ≥ 1/2 then the adversary sets
ct(0) = 1 and ct(1) = 0, and otherwise pt(1) ≥ 1/2 and the adversary sets ct(1) = 1 and ct(0) = 0.
Then there is some sequence that has total cost 0, but at every time the algorithm has probability
at least 1/2 of getting cost 1. Thus the expected cost of the algorithm is at least T /2 while OPT = 0,
for an unbounded competitive ratio.

So we can’t compete with the best sequence in hindsight. But let’s change our benchmark back to
what we were intuitively trying to do: learn the best action. If we’re trying to learn the best single
action, then we don’t need to compete with ∑t=1T mina∈A c

t(a) (the best sequence of actions). We
just need to compete with mina∈A∑Tt=1 ct(a) (the best action).

Definition 6.2.2 The regret of an action sequence a1, a2, . . . aT with respect to a ∈ A is

RT (a) =
1

T
(
T

∑
t=1

ct(at) −
T

∑
t=1

ct(a))

Note that unlike competitive ratio, this is an additive notion of approximation. There are both
historical and technical reasons for this, but I’m not really going to get into it.

I want to formally define an adversary now, because we’re actually going to use two different
definitions.

Definition 6.2.3 An (adaptive) adversary is a function which take as input 1) the algorithm A,
2) the time t, 3) mixed strategies p1, . . . , pt produced by A, and 4) realized actions a1, . . . , at−1 from
the past, and outputs a cost vector ct ∶ A→ [0,1]
There is a more restricted notion of adversary that will be easier for us to analyze.

Definition 6.2.4 An oblivious adversary (or non-adaptive) is an adversary that depends only on
A and t. Equivalently, an oblivious adversary has to choose the sequence of cost vectors at the
beginning of time, knowing only the algorithm A.

Often the oblivious setting is easier than the adaptive setting, i.e., there are achievable bounds
against oblivious adversaries that are not achievable against adaptive adversaries. But in this
setting (online learning with nonstochastic bandits) it turns out that they’re basically the same.
To simplify things, and since this is an AGT class and not a learning class, I’m only going to talk
about oblivious adversaries, but we’re really going to care more about adaptive adversaries. You
can read up on your own (in the book) about how to go from oblivious to adaptive.

Definition 6.2.5 If A is an online learning algorithm, then its expected regret at time t with
respect to a is

E[RAT (a)] =
1

T
(
T

∑
i=1

E
at∼pt

[ct(at)] −
T

∑
t=1

ct(a))

Definition 6.2.6 An algorithm A is a no-regret algorithm (or has no-regret) is for every adver-
sary, for every a ∈ A, the expected regret with respect to a is o(1) as T →∞. Slightly more formally,
if limT→∞E[RAT (a)] = 0 or E[RAT (a)] = o(1), where the action sequence is the sequence of actions
chosen by A.

2



An amazing fact is that no-regret algorithms exist! We can design algorithms that do basically as
well as the best action in hindsight, even though an adversary gets to see what we’re doing and
gets to choose cost vectors specifically to screw us up! I think that this is pretty amazing. And
even more amazing is the fact that these algorithms are pretty simple, as we’ll see later.

6.3 Connection to AGT

Before we talk about creating no-regret algorithms, let’s connect this back to game theory. Why
do we care about this crazy online learning setting from an AGT point of view?

6.3.1 Rationality and how to play a game

Suppose that you’re a player in a game, and you expect to play this same game many times. One
thing that you could do, which might be particularly appealing if you don’t think you have a great
understanding of the game or of the other players, is to give up on modeling the other players and
instead think of the mixed strategies that the other players choose as an “adversary” and your
pure strategies as your “actions” in the online learning setting! And then you can use a no-regret
algorithm to “learn” which action of yours is best!

Slightly more formally, suppose that we are player i in a game that we play for times t ∈ {1,2, . . . , T}.
At time t:

• Each player j ≠ i chooses some mixed strategy ptj over their pure strategies Sj (possibly using
their own no-regret algorithm, but possibly not). For now, let’s assume that these mixed
strategies are private (unlike when we were talking about equilibria).

• Let σ−i be the product distribution over S−i defined by these mixed strategies.

• Let cti(a) = Es−i∼σ−i[ci(s−i, a)] be the expected cost to player i of using action a (this cost
vector is not be known to the algorithm since mixed strategies are private).

• Player i then uses a no-regret algorithm to choose a mixed strategy pti and draws a pure
strategy from it to play.

Why would player i act this way? By using a no-regret algorithm, player i guarantees that they
do at least as well as the best action in hindsight. Since no-regret algorithms exist, why wouldn’t
players want to have this kind of guarantee? Maybe the players actually know more about the
game and about the other players and so can do even better, but then they’ll still have no-regret!1

In other words: it’s easy to get no-regret, so any rational agent should have no-regret. It’s a
“minimum bar” for rationality. So if we can analyze what happens when players have no-regret,
we’ll have analyzed what happens with rational players! (Note: this is one interpretation. It is not
universally accepted).

1This is not exactly true – why not?

3



6.3.2 Connection to Equilibria

Suppose that we have a cost-minimization game with k players and cost functions Ci ∶ S → R for
each player i ∈ [k]. Let’s start with a few definitions.

• Let pti be the mixed strategy used by player i at time t.

• Let σt = ∏ki=1 pti be the product distribution over S defined by the individual player distribu-
tions.

• Let σ = 1
T ∑

T
t=1 σ

t be the “average” distribution. Note: σ is not a product distribution. Think
of it as choosing a uniformly random value of t, and then using the product distribution σt.
This is not a product distribution since the players are correlated through t.

• For each player i and time t, we define the cost vector cti(a) = Es∼σt[Ci(s−i, a)]. Note that
Ea∼pti

[cti(a)] = Es∼σt Ci(s).

We can now finally give the main connection to AGT. Suppose that player i uses some algorithm
Ai to generate its mixed strategy at each time.

Theorem 6.3.1 Suppose that E[RAi
T (a)] ≤ ε for every i ∈ [k] and a ∈ Si. Then σ is an ε-

approximate coarse correlated equilibrium:

E
s∼σ

[Ci(s)] ≤ E
s∼σ

[Ci(s−i, s′i)] + ε (for all i ∈ [k] and s′i ∈ S)

Proof: We can show this just through some simple algebra using all of our definitions.

E
s∼σ

[Ci(s)] − E
s∼σ

[Ci(s−i, s′i)] =
1

T

T

∑
t=1

E
s∼σt

[Ci(s)] −
1

T

T

∑
t=1

E
s∼σt

[Ci(s−i, s′i)]

= 1

T
(
T

∑
t=1

E
at∼pti

[cti(at)] −
T

∑
t=1

cti(s′i))

= E[RAi
T (s′i)] ≤ ε.

So if all players use no-regret algorithms, the average distribution converges to a coarse correlated
equilibrium! Note that it is important here that the algorithm work against adaptive adversaries,
since of course the other players will adapt to what we do.

4


	Introduction
	No-Regret in Online Learning
	Connection to AGT
	Rationality and how to play a game
	Connection to Equilibria


