
Online Algorithms

Allan Borodin Denis Pankratov

DRAFT: March 14, 2019

ii

Contents

Preface . 1

I Basics 3

1 Introduction 5

1.1 What is this Book About? . 5

1.2 Motivation . 6

1.3 Brief History of Online Algorithms . 7

1.4 Motivating Example: Ski Rental . 8

1.5 Motivating Example: Line Search Problem . 10

1.6 Motivating Example: Paging . 11

1.7 Exercises . 12

2 Deterministic Online Algorithms 15

2.1 Request-Answer Games . 15

2.2 Competitive Ratio for Minimization Problems . 16

2.3 Minimization Problem Example: Makespan . 17

2.4 Minimization Problem Example: Bin Packing . 19

2.5 Competitive Ratio for Maximization Problems . 24

2.6 Maximization Problem Example: Time-Series Search 25

2.7 Maximization Problem Example: One-Way Trading 26

2.8 Exercises . 28

2.9 Historical Notes and References . 29

3 Randomized Online Algorithms 31

3.1 Randomized Online Algorithm Template . 31

3.2 Types of Adversaries . 32

3.3 Relationships between Adversaries . 33

3.4 How Much Can Randomness Help? . 35

3.5 Derandomization . 38

3.6 Lower Bound for Paging . 39

3.7 Yao’s Minimax Principle . 40

3.8 Upper Bound for Paging . 41

3.9 Exercises . 43

3.10 Historical Notes and References . 43

iii

iv CONTENTS

4 Some Classical Problems 45
4.1 Potential Function Method Primer . 45
4.2 List Accessing Problem . 47

4.2.1 Deterministic Algorithms . 47
4.2.2 Upper Bound on MTF via the Potential Method 48
4.2.3 Lower Bound on MTF via the Averaging Technique 50
4.2.4 A Simple Randomized Algorithm BIT . 51

4.3 k-Server Problem . 53
4.3.1 Preliminaries . 54
4.3.2 Formulation of the Problem . 55
4.3.3 Deterministic Lower Bound . 56
4.3.4 k-Server on a Line . 57
4.3.5 Work Function . 58
4.3.6 Work Function Algorithm . 60

4.4 Exercises . 60
4.5 Historical Notes and References . 62

5 Game Theory Analysis for Online Algorithms 63
5.1 Two-Person Zero-Sum Games . 63
5.2 Application to Competitive Analysis . 63
5.3 Paging . 63
5.4 Online Algorithms and Pricing . 63
5.5 Exercises . 63
5.6 Historical Notes and References . 63
5.7 Additional Related Results . 63

6 Primal-Dual Method for Online Problems 65
6.1 Linear Programming and Duality . 65
6.2 Primal-Dual Approach in the Online Setting-Pricing Revisited 65
6.3 Online Set Cover . 65
6.4 Exercises . 65
6.5 Historical Notes and References . 65
6.6 Additional Related Results . 65

7 Graph Problems 67
7.1 Input Models for General Graphs . 68
7.2 Special Input Model for Bipartite Graphs . 70
7.3 Hard Online Graph Problems . 70

7.3.1 Maximum Independent Set . 71
7.3.2 Maximum Clique . 72
7.3.3 Longest Path . 74
7.3.4 Minimum Spanning Tree . 75
7.3.5 Travelling Salesperson Problem . 76

7.4 Bipartite Maximum Matching . 77
7.4.1 Deterministic Algorithms . 78
7.4.2 A Simple Randomized Algorithm . 79
7.4.3 The Ranking Algorithm . 79

7.5 Coloring . 82

CONTENTS v

7.6 Exercises . 84
7.7 Historical Notes and References . 85

8 Online MaxSat and Submodular Maximization 87
8.1 Max-sat . 87

8.1.1 Derandomization by the method of conditional expectations; Johnson’s algo-
rthm rediscovered. 88

8.2 A randomized max-sat algorithm with competitive ratio 3
4 90

8.3 The unconstrained submodular maximization problem and the “two-sided” online
algorithm . 93

8.4 The natural randomization of the double sided-greedy algorithm 96
8.5 Exercises . 97
8.6 Historical Notes and References . 97
8.7 Additional Related Results . 97

9 Recent Progress 99
9.1 Makespan and Other Load Balancing Results . 99
9.2 k-server . 99
9.3 Hierarchical Separated Trees . 99
9.4 Exercises . 99
9.5 Historical Notes and References . 99
9.6 Additional Related Results . 99

II Other Online and Online-Like Models 101

10 Advice Model 103
10.1 Di↵erent Advice Models . 103
10.2 Upper Bound Techniques and Examples . 105

10.2.1 Now-or-Later . 105
10.2.2 Follow OPT . 105
10.2.3 Adapting Randomized Algorithms . 107
10.2.4 Adapting O✏ine Algorithms . 107
10.2.5 Combinatorial Designs . 109

10.3 Lower Bound Techniques and Examples . 111
10.3.1 Pigeonhole Argument . 111
10.3.2 String Guessing and Reductions . 113
10.3.3 ⌃- and _-Repeatable Problems . 115

10.4 Advice vs. Randomness . 117
10.5 Advice Complexity Classes . 119
10.6 Exercises . 120
10.7 Historical Notes and References . 121

11 Streaming 123
11.1 Definition of the Model and Classical Problems . 123
11.2 Upper Bounds . 124
11.3 Communication Complexity . 125
11.4 Lower Bounds . 129

vi CONTENTS

12 Dynamic Graph Algorithms 131
12.1 Definition and Motivation of the Model . 131
12.2 Maintaining Connected Components . 131
12.3 Maintaining Minimum Spanning Tree . 131
12.4 Maintaining Maximum Bipartite Matching . 131

13 Real Time Models 133
13.1 Background and Motivation . 133
13.2 Scheduling and Preemption . 133
13.3 Coflows . 133
13.4 Online with Delays . 133

14 Revocable Decisions, Parallel Threads, and Multiple Pass Online Models 135
14.1 Online with Revocable Deecisions . 135
14.2 k-Pass Deterministic Algorithm for Bipartite Matching 135
14.3 Proposed Multi-pass Model . 135
14.4 2-Pass Algorithm for Max-Sat . 135
14.5 Parallel Online Streams for Non-monotone Submodular Maximaztion 135
14.6 Parallel Online Streams for Max-Sat . 135
14.7 Exercises . 135
14.8 Historical Notes and References . 135
14.9 Additional Related Results . 135

15 Alternatives to Competitive Analysis 137
15.1 Lookahead . 137
15.2 Resource Augmentation . 137
15.3 Parameterized Inputs . 137
15.4 Alternative Measures of Performance . 137

16 Stochastic Inputs 139
16.1 Random Order Model . 139
16.2 Known I.I.D. 139
16.3 Unknown I.I.D. 139
16.4 Poisson Arrivals . 139

17 Priority Model 141
17.1 The Priority Model as a Model for Greedy and Myopic Algorithms 141
17.2 Matroids, Greedoids . 141
17.3 Local Ratio Method . 141
17.4 Revocable Decisions . 141
17.5 Rounds Viewed as Priority Algorithms with Advice 141

III Applications 143

18 Online Learning 145
18.1 Multiplicative weights update . 145
18.2 One Armed Bandit Problems . 145
18.3 Multiple Armed Bandit Problems . 145

CONTENTS vii

19 Online Game Theory 147
19.1 Markets and Walraisian Equilibira . 147
19.2 Posted Price Mechanisms . 147
19.3 The Ranking algorithm for BMM as an auction . 147

20 Online Bipartite Matching and Online Advertising 149
20.1 Landscape of Problems and Input Models . 150
20.2 BM, Known I.I.D. 153
20.3 BM, Random Order Model . 153
20.4 BM, Unknown I.I.D. 153
20.5 Adwords . 153
20.6 Display Ads . 153
20.7 Submodular Welfare Maximization . 153
20.8 Weighted Versions . 153

21 Finance 155
21.1 One-way Trading . 155
21.2 Portfolio Selection . 155

22 Networking 157
22.1 Routing . 157
22.2 TCP-Acknowledgement . 157
22.3 Network Design . 157

23 Online Navigation 159
23.1 Robot Navigation . 159
23.2 Robot Exploration . 159

IV Appendix 161

A Notational Index 163

B Probability Theory 165

C Information Theory 173

viii CONTENTS

CONTENTS 1

Preface

In 1998, Allan Borodin and Ran El-Yaniv co-authored the text “Online computation and competi-
tive analysis”. As in most texts, some important topics were not covered. To some extent, this text
aims to rectify some of those omissions. Furthermore, because the field of Online Algorithms has
remained active, many results have been improved. But perhaps most notable, is that the basic
adversarial model of competitive analysis for online algorithms has evolved to include new models
of algorithm design that are important theoretically as well as having a significant impact on many
current applications.

In Part I, we first review the basic definitions and some of the “classical” online topics and
algorithms; that is, those already well studied as of 1998. We then present some newer online
results for graph problems, scheduling problems, max-sat and submodular function maximization.
We also present the seminal primal dual analysis for online algorithms introduced by Buchbinder
and Naor that provides an elegant unifying model for many online results. Part I concludes with
an update on some recent progress for some of the problems introduced earlier.

The focus of Part II is the study of extensions of the basic online competitive analysis model.
In some chapters, we discuss alternative “online-like” algorithmic models. In other chapters, the
analysis of online algorithms goes beyond the worst case perspective of the basic competitive analysis
in terms of both stochastic analysis as well as alternative performance measures.

In Part III, we discuss some additional application areas, many of these applications providing
the motivation for the continuing active interest (and indeed for what we consider is a renaissance)
in the study of online and online-like algorithms. We view our text primarily as an introduction
to the study of online and online-like algorithms for use in advanced undergraduate and graduate
courses. In addition, we believe that the text o↵ers a number of interesting potential research
topics.

At the end of each chapter, we present some exercises. Some exercises are denoted by a (*)
indicating that the exercise is technically more challenging. Some other exercises are denoted by
as (**) indicating that to the best of our knowledge this is not a known result. With the exception
of Chapter 1, we will no t mention specific references in the main sections of the chapters. Rather,
ee have provided some history and the most relevant citations for results presented in the chapter
and often also some relevant related work that is not mentioned in the chapter. Our convention
will be to refer to all authors for papers having at most three authors; for paper having more than
three authors we will use “author, et al”.

We thank

2 CONTENTS

Part I

Basics

3

Chapter 1

Introduction

In this chapter we introduce online problems and online algorithms, give a brief history of the area,
and present several motivating examples. The first two examples are the ski rental problem and
the line search problem. We analyze several online algorithms for these problems using the classical
notion of competitive analysis. The last problem we consider is paging. While competitive analysis
can be applied to algorithms for this problem as well, the results significantly deviate from the
“practical” performance of these paging algorithms. This highlights the necessity of new tools and
ideas that will be explored throughout this text.

1.1 What is this Book About?

This book is about the analysis of online problems. In the basic formulation of an online problem,
an input instance is given as a sequence of input items. After each input item is presented, an
algorithm needs to output a decision and that decision is final, i.e., cannot be changed upon seeing
any future items. The goal is to maximize or minimize an objective function, which is a function
of all decisions for a given instance. (We postpone a formal definition of an online problem but
hopefully the examples that follow will provide a clear intuitive meaning.) The term “online”
in “online algorithms” refers to the notion of irrevocable decisions and has nothing to do with
Internet, although a lot of the applications of the theory of online algorithms are in networking
and online applications on the internet. The main limitation of an online algorithm is that it has
to make a decision in the absence of the entire input. The value of the objective achieved by an
online algorithm is compared against an optimal value of the objective that is achieved by an ideal
“o✏ine algorithm,” i.e., an algorithm having access to the entire input. The ratio of the two values
is called the competitive ratio.

We shall study online problems at di↵erent levels of granularity. At each level of granularity,
we are interested in both positive and negative results. For instance, at the level of individual
algorithms, we fix a problem, present an algorithm, and prove that it achieves a certain performance
(positive result) and that the performance analysis is tight (negative result). At the higher level of
models, we fix a problem, and ask what is the best performance achievable by an algorithm of a
certain type (positive result) and what is an absolute bound on the performance achievable by all
algorithms of a certain type (negative result). The basic model of deterministic online algorithms
can be extended to allow randomness, side information (a.k.a. advice), limited mechanisms of
revoking decisions, multiple rounds, and so on. Negative results can often be proved by interpreting
an execution of an algorithm as a game between the algorithm and an adversary. The adversary
constructs an input sequence so as to fool an algorithm into making bad online decisions. What

5

6 CHAPTER 1. INTRODUCTION

determines the nature and order of input arrivals? In the standard version of competitive analysis,
the input items and their arrival order is arbitrary and can be viewed as being determined by an all
powerful adversary. While helpful in many situations, traditional worst-case analysis is often too
pessimistic to be of practical value. Thus, it is sometimes necessary to consider limited adversaries.
In the random order model the adversary chooses the set of input items but then the order is
determined randomly; in stochastic models, an adversary chooses an input distribution which then
determines the sequence of input item arrivals. Hence, in all these models there is some concept
of an adversary attempting to force the “worst-case” behavior for a given online algorithm or the
worst-case performance against all online algorithms.

A notable feature of the vanilla online model is that it is information-theoretic. This means
that there are no computational restrictions on an online algorithm. It is completely legal for an
algorithm to perform an exponential amount of computation to make the nth decision. At first, it
might seem like a terrible idea, since such algorithms wouldn’t be of any practical value whatsoever.
This is a valid concern, but it simply doesn’t happen. Most of the positive results are achieved by
very e�cient algorithms, and the absence of computational restrictions on the model makes negative
results really strong. Perhaps, most importantly information-theoretic nature of the online model
leads to unconditional results, i.e., results that do not depend on unproven assumptions, such as
P 6= NP .

We shall take a tour of various problems, models, analysis techniques with the goal to cover a
selection of classical and more modern results, which will reflect our personal preferences to some
degree. The area of online algorithms has become too large to provide a full treatment of it within
a single book. We hope that you can accompany us on our journey and that you will find our
selection of results both interesting and useful!

1.2 Motivation

Systematic theoretical study of online algorithms is important for several reasons. Sometimes, the
online nature of input items and decisions is forced upon us. This happens in a lot of scheduling
or resource allocation applications. Consider, for example, a data center that schedules computing
jobs: clearly it is not feasible to wait for all processes to arrive in order to come up with an optimal
schedule that minimizes makespan. The jobs have to be schedules as they come in. Some delay
might be tolerated, but not much. As another example, consider patients arriving at a walk-
in clinic and need to be seen by a relevant doctor. Then the receptionist plays the role of an
online algorithm, and his or her decisions can be analyzed using the online framework. In online
(=Internet) advertising, when a user clicks on a webpage, some advertiser needs to be matched
to a banner immediately. We will see many more applications of this sort in this book. In such
applications, an algorithm makes a decision no matter what: if an algorithm takes too long to make
a decision it becomes equivalent to the decision of completely ignoring an item.

One should also note that the term “online algorithm” is used in a related but di↵erent way by
many people with respect to scheduling algorithms. Namely, in many scheduling results, “online”
could arguably be more appropriately be called “real time computation” where inputs arrive with
respect to continuous time t and algorithmic decisions can be delayed at the performance cost
of “wasted time”. In machine learning, the concept of regret is the analogue of the competitive
ratio (see Chapter 18). Economists have long studied market analysis within the lens of online
decision making. Navigation in geometric spaces and mazes and other aspects of “search” have
also been viewed as online computation. Our main perspective and focus falls within the area of
algorithmic analysis for discrete computational problems. In online computation, we view input

1.3. BRIEF HISTORY OF ONLINE ALGORITHMS 7

items as arriving in discrete steps and in the initial basic model used in competitive analysis, an
irrevocable decision must be made for each input item before the next item arrives. Rather than
the concept of a real time clock determining time, we view time in terms of these discrete time
steps.

Setting aside applications where input order and irrevocable decisions are forced upon us, in
some o✏ine applications it might be worthwhile fixing the order of input items and considering
online algorithms. Quite often such online algorithms give rise to conceptually simple and e�cient
o✏ine approximation algorithms. This can be helpful not only for achieving non-trivial approxi-
mation ratios for NP-hard problems, but also for problems in P (such as bipartite matching), since
optimal algorithms can be too slow for large practical instances. Simple greedy algorithms tend to
fall within this framework consisting of two steps: sorting input items, followed by a single online
pass over the sorted items. In fact, there is a formal model for this style of algorithms called the
priority model, and we will study it in detail in Chapter 17.

Online algorithms also share a lot of features with streaming algorithms. The setting of stream-
ing algorithms can be viewed figuratively as trying to drink out of a firehose. There is a massive
stream of data passing through a processing unit, and there is no way to store the entire stream for
postprocessing. Thus, streaming algorithms are concerned with minimizing memory requirements
in order to compute a certain function of a sequence of input items. While online algorithms do
not have limits on memory or per-item processing time, some positive results from the world of
online algorithms are both memory and time e�cient. Such algorithms can be useful in streaming
settings, which are frequent in networking and scientific computing.

1.3 Brief History of Online Algorithms

It is di�cult to establish the first published analysis of an online algorithm but, for example, one can
believe that there has been substantial interest in main memory paging since paging was introduced
into operating systems. A seminal paper in this regard is Peter Denning’s [16] introduction of
the working set model for paging. It is interesting to note that almost 50 years after Denning’s
insightful approach to capturing locality of reference, Albers et al [2] established a precise result
that characterizes the page fault rate in terms of a parameter f(n) that measures the number of
distinct page references in the next n consecutive page requests.

Online algorithms has been an active area of research within theoretical computer science since
1985 when Sleator and Tarjan [46] suggested that worst-case competitive analysis provided a better
(than existing “average-case” analysis) explaination for the success of algorithms such as move to
front for the list accessing problem (see chapter 4). In fact, as in almost any research area, there
are previous worst case results that can be seen as at least foreshadowing the interest in compet-
itive analysis, where one compares the performance of an online algorithm relative to what can
be achieved optimally with respect to all possible inputs. Namely, Graham’s [29] online greedy
algorithm for the identical machines makespan problem and even more explicitly Yao’s [51] anal-
ysis of online bin packing algorithms. None of these works used the term competitve ratio; this
terminology was introduced by Karlin et al. [36] in their study of “snoopy caching” following the
Sleator and Tarjan paper.

Perhaps remarkably, the theoretical study of online algorithms has remained an active field and
one might even argue that there is now a renaissance of interest in online algorithms. This growing
interest in online algorithms and analysis is due to several factors, including new applications,
online model extensions, new performance measures and constraints, and an increasing interest in
experimental studies that validate or challenge the theoretical analysis. And somewhat ironically,

8 CHAPTER 1. INTRODUCTION

average-case analysis (i.e. stochastic analysis) has become more prominent in the theory, design
and analysis of algorithms. We believe the field of online algorithms has been (and will continue
to be) a very successful field. It has led to new algorithms, new methods of analysis and a deeper
understanding of well known existing algorithms.

1.4 Motivating Example: Ski Rental

Has it ever happened to you that you bought an item on an impulse, used it once or twice, and
then stored it in a closet never to be used again? Even if you absolutely needed to use the item,
there may have been an option to rent a similar item and get the job done at a much lower cost. If
this seems familiar, you probably thought that there has to be a better way for deciding whether
to buy or rent. It turns out that many such rent versus buy scenarios are represented by a single
problem. This problem is called “ski rental” and it can be analyzed using the theory of online
algorithms. Let’s see how.

The setting is as follows. You have arrived at a ski resort and you will be staying there for
an unspecified number of days. As soon as the weather turns bad and the resort closes down the
slopes, you will leave never to return again. Each morning you have to make a choice either to
rent skis for r$ or to buy skis for b$. By scaling we can assume that r = 1$. For simplicity, we
will assume that b is an integer � 1. If you rent for the first k days and buy skis on day k + 1,
you will incur the cost of k + b for the entire stay at the resort, that is, after buying skis you can
use them an unlimited number of times free of charge. The problem is that due to unpredictable
weather conditions, the weather might deteriorate rapidly. It could happen that the day after you
buy the skis, the weather will force the resort to close down. Note that the weather forecast is
accurate for a single day only, thus each morning you know with perfect certainty whether you
can ski on that day or not before deciding to buy or rent, but you have no information about the
following day. In addition, unfortunately for you, the resort does not accept returns on purchases.
In such unpredictable conditions, what is the best strategy to minimize the cost of skiing during
all good-weather days of your stay?

An optimal o✏ine algorithm simply computes the number g of good-weather days. If g  b
then an optimal strategy is to rent skis on all good-weather days. If g > b then the optimal strategy
is to buy skis on the first day. Thus, the o✏ine optimum is min(g, b). Even without knowing g
it is possible to keep expenses roughly within a factor of 2 of the optimum. The idea is to rent
skis for b � 1 days and buy skis on the following day after that. If g < b then this strategy costs
g  (2� 1/b)g, since the weather would spoil on day g + 1  b and you would leave before buying
skis on day b. Otherwise, g � b and our strategy incurs cost b� 1+ b = (2� 1/b)b, which is slightly
better than twice the o✏ine optimum, since for this case we have b = min(g, b). This strategy
achieves competitive ratio 2� 1/b, which approaches 2 as b increases.

Can we do better? If our strategy is deterministic, then no. On each day, an adversary sees
whether you decided to rent or buy skis, and based on that decision and past history declares
whether the weather is going to be good or bad starting from the next day onward. If you buy
skis on day i  b � 1 then the adversary declares the weather to be bad from day i + 1 onward.
This way an optimal strategy is to rent skis for a total cost of i, but you incurred the cost of
(i � 1) + b � (i � 1) + (i + 1) = 2i; that is, twice the optimal. If you buy skis on day i � b, then
the adversary declares bad weather after the first 2b days. An optimal strategy is to buy skis on
the very first day with a cost of b, whereas you spent i� 1 + b � b� 1 + b = (2� 1/b)b. Thus, no
matter what you do an adversary can force you to spend (2� 1/b) times the optimal.

Can we do better if we use randomness? We assume a weak adversary — such an adversary

1.4. MOTIVATING EXAMPLE: SKI RENTAL 9

knows your algorithm, but has to commit to spoiling weather on some day g+1 without seeing your
random coins or seeing any of your decisions. Observe that for deterministic algorithms, a weak
adversary can simulate the stronger one that adapts to your decisions. The assumption of a weak
adversary for the ski rental problem is reasonable because the weather doesn’t seem to conspire
against you based on the outcomes of your coin flips. It is reasonable to conjecture that even with
randomized strategy you should buy skis before or on day b. You might improve the competitive
ratio if you buy skis before day b with some probability. One of the simplest randomized algorithms
satisfying these conditions is to pick a random integer i 2 [0, b � 1] from some distribution p and
rent for i days and buy skis on day i+ 1 (if the weather is still good). Intuitively, the distribution
should allocate more probability mass to larger values of i, since buying skis very early (think of the
first day) makes it easier for the adversary to punish such decision. We measure the competitive
ratio achieved by a randomized algorithm by the ratio of the expected cost of the solution found
by the algorithm to the cost of an optimal o✏ine solution. To analyze our strategy, we consider
two cases.

In the first case, the adversary spoils the weather on day g+1 where g < b. Then the expected
cost of our solution is

Pg�1
i=0 (i+ b)pi +

Pb�1
i=g gpi. Since an optimal solution has cost g in this case,

we are interested in finding the minimum value of c such that

g�1X

i=0

(i+ b)pi +
b�1X

i=g

gpi  cg.

In the second case, the adversary spoils the weather on day g + 1 where g � b. Then the
expected cost of our solution is

Pb�1
i=0 ipi + b. Since an optimal solution has cost b in this case, we

need to ensure
Pb�1

i=0 ipi + b  cb.

We can write down a linear program to minimize c subject to the above inequalities together
with the constraint p0 + p1 + · · ·+ pb�1 = 1.

minimize c

subject to
g�1X

i=0

(i+ b)pi +
b�1X

i=g

gpi  cg for g 2 [b� 1]

b�1X

i=0

ipi + b  cb

p0 + p1 + · · ·+ pb�1 = 1

We claim that pi =
c
b(1 � 1/b)b�1�i and c = 1

1�(1�1/b)b
is a solution to the above LP. Thus,

we need to check that all constraints are satisfied. First, let’s check that pi form a probability
distribution:

b�1X

i=0

pi =
b�1X

i=0

c

b
(1� 1/b)b�1�i =

c

b

b�1X

i=0

(1� 1/b)i =
c

b

1� (1� 1/b)b

1� (1� 1/b)
= 1.

Next, we check all constraints involving g.

10 CHAPTER 1. INTRODUCTION

g�1X

i=0

(i+ b)pi +
b�1X

i=g

gpi =
g�1X

i=0

(i+ b)
c

b
(1� 1/b)b�1�i +

b�1X

i=g

g
c

b
(1� 1/b)b�1�i

= (1� 1/b)b�gcg +
⇣
(1� 1/b)g � (1� 1/b)b

⌘
(1� 1/b)�gcg

= cg

In the above, we skipped some tedious algebraic computations (we invite the reader to verify
each of the above equalities). Similarly, we can check that the pi satisfy the second constraint of the
LP. Notably, the solution pi and c given above satisfies each constraint with equality. We conclude
that our randomized algorithm achieves the competitive ratio 1

1�(1�1/b)b
. Since (1� 1/n)n ! e�1,

the competitive ratio of our randomized algorithm approaches e
e�1 ⇡ 1.5819 . . . as b goes to infinity.

1.5 Motivating Example: Line Search Problem

A robot starts at the origin of the x-axis. It can travel one unit of distance per one unit of time
along the x-axis in either direction. An object has been placed somewhere on the x-axis. The robot
can switch direction of travel instantaneously, but in order for the robot to determine that there is
an object at location x0, the robot has to be physically present at x0. How should the robot explore
the x-axis in order to find the object as soon as possible? This problem is known as the line search
problem or the cow path problem.

Suppose that the object has been placed at distance d from the origin. If the robot knew
whether the object was placed to the right of the origin or to the left of the origin, the robot
could start moving in the right direction, finding the object in time d. This is an optimal “o✏ine”
solution.

Since the robot does not know in which direction it should be moving to find the object, it needs
to explore both directions. This leads to a natural zig-zag strategy. Initially the robot picks the
positive direction and walks for 1 unit of distance in that direction. If no object is found, the robot
returns to the origin, flips the direction and doubles the distance. We call each such trip in one
direction and then back to the origin a phase, and we start counting phases from 0. These phases are
repeated until the object is found. If you have seen the implementation and amortized analysis of an
automatically resizeable array implementation, then this doubling strategy will be familiar. In phase
i robot visits location (�2)i and travels the distance 2 · 2i. Worst case is when an object is located
just outside of the radius covered in some phase. Then the robot returns to the origin, doubles the
distance and travels in the “wrong direction”, returns to the origin, and discovers the object by
travelling in the “right direction.” In other words when an object is at distance d = 2i + ✏ > 2i in
direction (�1)i, the total distance travelled is 2(1+2+· · ·+2i+2i+1)+d  2·2i+2+d < 8d+d = 9d.
Thus, this doubling strategy gives a 9-competitive algorithm for the line search problem.

Typically online problems have well-defined input that makes sense regardless of which algo-
rithm you choose to run, and the input is revealed in an online fashion. For example, in the
ski rental problem, the input consists of a sequence of elements, where element i indicates if the
weather on day i is good or bad. The line search problem does not have input of this form. Instead,
the input is revealed in response to the actions of the algorithm. Yet, we can still interpret this
situation as a game between an adversary and the algorithm (the robot). At each newly discovered
location, an adversary has to inform the robot whether an object is present at that location or not.
The adversary eventually has to disclose the location, but the adversary can delay it as long as
needed in order to maximize the distance travelled by the robot in relation to the “o✏ine” solution.

1.6. MOTIVATING EXAMPLE: PAGING 11

1.6 Motivating Example: Paging

Computer storage comes in di↵erent varieties: CPU registers, random access memory (RAM), solid
state drives (SSD), hard drives, tapes, etc. Typically, the price per byte is positively correlated with
the speed of the storage type. Thus, the fastest type of memory – CPU registers – is also the most
expensive, and the slowest type of memory – tapes – is also the cheapest. In addition, certain types
of memory are volatile (RAM and CPU registers), while other types (SSDs, hard drives, tapes)
are persistent. Thus, a typical architecture has to mix and match di↵erent storage types. When
information travels from a large-capacity slow storage type to a low-capacity fast storage type, e.g.,
RAM to CPU registers, some bottlenecking will occur. This bottlenecking can be mitigated by
using a cache. For example, rather than accessing RAM directly, the CPU checks a local cache,
which stores a local copy of a small number of pages from RAM. If the requested data is in the cache
(this event is called “cache hit”), the CPU retrieves it directly from the cache. If the requested
data is not in the cache (called “cache miss”), the CPU first brings the requested data from RAM
into the cache, and then reads it from the cache. If the cache is full during a “cache miss,” some
existing page in the cache needs to be evicted. The paging problem is to design an algorithm that
decides which page needs to be evicted when the cache is full and cache miss occurs. The objective
is to minimize the total number of cache misses. Notice that this is an inherently online problem
that can be modelled as follows. The input is a sequence of natural numbers X = x1, x2, . . ., where
xi is the number of the page requested by the CPU at time i. Given a cache of size k, initially the
cache is empty. The cache is simply an array of size k, such that a single page can be stored at
each position in the array. For each arriving xi, if xi is in the cache, the algorithm moves on to the
next element. If xi is not in the cache, the algorithm specifies an index yi 2 [k], which points to a
location in the cache where page xi is to be stored evicting any existing page. We will measure the
performance by the classical notion of the competitive ratio — the ratio of the number of cache
misses of an online algorithm to the minimum number of cache misses achieved by an optimal
o✏ine algorithm that sees the entire sequence in advance. Let’s consider two natural algorithms
for this problem.

FIFO - First In First Out. If the cache is full and a cache miss occurs, this algorithm evicts the
page from the cache that was inserted the earliest. We will first argue that this algorithm incurs at
most (roughly) k times more cache misses than an optimal algorithm. To see this, subdivide the
entire input into consecutive blocks B1, B2, Block B1 consists of a maximal prefix of X that
contains exactly k distinct pages (if the input has fewer than k distinct pages, then any “reasonable”
algorithm is optimal). Block B2 consists of a maximal prefix of X \ B1 that contains exactly k
distinct pages, and so on. Let n be the number of blocks. Observe that FIFO incurs at most k
cache misses while processing each block. Thus, the overall number of cache misses of FIFO is at
most nk. Also, observe that the first page of block Bi+1 is di↵erent from all pages of Bi due to
the maximality of Bi. Therefore while processing Bi and the first page from Bi+1 any algorithm,
including an optimal o✏ine one, incurs a cache miss. Thus, an optimal o✏ine algorithm incurs at
least n � 1 cache misses while processing X. Therefore, the competitive ratio of FIFO is at most
nk/(n� 1) = k + k

n�1 ! k as n!1.
LRU - Least Recently Used. If the cache is full and a cache miss occurs, this algorithm evicts

the page from the cache that was accessed least recently. Note that LRU and FIFO both keep
timestamps together with pages in the cache. When xi is requested and it results in a cache miss,
both algorithms initialize the timestamp corresponding to xi to i. The di↵erence is that FIFO
never updates the timestamp until xi itself is evicted, whereas LRU updates the timestamp to j
whenever cache hit occurs, where xj = xi with j > i and xi still in the cache. Nonetheless, the two
algorithms are su�ciently similar to each other, that essentially the same analysis as for FIFO can

12 CHAPTER 1. INTRODUCTION

be used to argue that the competitive ratio of LRU is at most k (when n!1).
We note that both FIFO and LRU do not achieve a competitive ratio better than k. Further-

more, no deterministic algorithm for paging can achieve a competitive ratio better than k. To
prove this, it is su�cient to consider sequences that use page numbers from [k + 1]. Let A be a
deterministic algorithm, and suppose that it has a full cache. Since the cache is of size k, in each
consecutive time step an adversary can always find a page that is not in the cache and request it.
Thus, an adversary can make the algorithm A incur a cache miss on every single time step. An
optimal o✏ine algorithm evicts the page from the cache that is going to be requested furthest in
the future. Since there are k pages in the cache, there is at least k � 1 pages in the future inputs
that are going to be requested before one of the pages in the cache. Thus, the next cache miss can
only occur after k�1 steps. The overall number of cache misses by an optimal algorithm is at most
|X|/k, whereas A incurs essentially |X| cache misses. Thus, A has competitive ratio at least k.

We finish this section by noting that while competitive ratio gives useful and practical insight
into the ski rental and line search problems, it falls short of providing practical insight into the
paging problem. First of all, notice that the closer competitive ratio is to 1 the better. The above
paging results show that increasing cache size k makes LRU and FIFO perform worse! This goes
directly against the empirical observation that larger cache sizes lead to improved performance.
Another problem is that the competitive ratio of LRU and FIFO is the same suggesting that these
two algorithms perform equally well. It turns out that in practice LRU is far superior to FIFO,
because of “locality of reference” – the phenomenon that if some memory was accessed recently, the
same or nearby memory will be accessed in the near future. There are many reasons for why this
phenomenon is pervasive in practice, not the least of which is a common use of arrays and loops,
which naturally exhibit “locality of reference.” None of this is captured by competitive analysis as
it is traditionally defined.

The competitive ratio is an important tool for analyzing online algorithms having motivated
and initiating the area of online algorithm analysis. However, being a worst-case measure, it may
not not model reality well in many applications. This has led researchers to consider other models,
such as stochastic inputs, advice, look-ahead, and parameterized complexity, among others. We
shall cover these topics in the later chapters of this book.

1.7 Exercises

1. Fill in details of the analysis of the randomized algorithm for the ski rental problem.

2. Consider the setting of the ski rental problem with rental cost 1$ and buying cost b$, b 2 N.
Instead of an adversary choosing a day 2 N when the weather is spoiled, this day is generated
at random from distribution p. Design an optimal deterministic online algorithm for the
following distributions p:

(a) uniform distribution on [n].

(b) geometric distribution on N with parameter 1/2.

3. What is the competitive ratio achieved by the following randomized algorithm for the line
search problem? Rather than always picking initial direction to be +1, the robot selects the
initial direction to be +1 with probability 1/2 and �1 with probability 1/2. The rest of the
strategy remains the same.

4. Instead of searching for treasure on a line, consider the problem of searching for treasure
on a 2-dimensional grid. The robot begins at the origin of Z2 and the treasure is located

1.7. EXERCISES 13

at some coordinate (x, y) 2 Z2 unknown to the robot. The measure of distance is given by
the Manhattan metric ||(x, y)|| = |x| + |y|. The robot has a compass and at each step can
move north, south, east, or west one block. Design an algorithm for the robot to find the
treasure on the grid. What is the competitive ratio of your algorithm? Can you improve the
competitive ratio with another algorithm?

5. Consider Flush When Full algorithm for paging: when a cache miss occurs and the entire
cache is full, evict all pages from the cache. What is the competitive ratio of Flush When
Full?

6. Consider adding the power of limited lookahead to an algorithm for paging. Namely, fix a con-
stant f 2 N. Upon receiving the current page pi, the algorithm also learns pi+1, pi+2, . . . , pi+f .
Recall that the best achievable competitive ratio for deterministic algorithms without looka-
head is k. Can you improve on this bound with lookahead?

14 CHAPTER 1. INTRODUCTION

Chapter 2

Deterministic Online Algorithms

In this chapter we formally define a general class of online problems, called request-answer games and
then define the competitive ratio of deterministic online algorithms with respect to request-answer
games. The definitions depend on whether we are dealing with a minimization or a maximization
problem. As such, we present examples of each. For minimization problems we consider the
makespan problem and the bin packing problem.For maximization problems we consider time-series
search and the one-way trading problems.

2.1 Request-Answer Games

In the Chapter 1, we gave an informal description of an online problem, one that is applicable to
most online problems in the competitive analysis literature including the ski rental, paging, and
makespan problems. Keeping these problems in mind, we can define the general request-answer
framework that formalizes the class of online problems that abstracts almost all the problems in
this text with the notable exception of the line search problem and more generally the navigation
and exploration problems in Chapter 23.

Definition 2.1.1. A request-answer game for a minimization problem consists of a request set R,
an answer set1 A, and cost functions fn : Rn ⇥An ! R [{1} for n = 0, 1,

Here 1 indicates that certain solutions are not allowed. For a maximization problem the fn
refer to profit functions and we have fn : Rn ⇥ An ! R [{�1}. Now �1 indicates that certain
solutions are not allowed. We can now provide a template for deterministic online algorithms for
any problem within the request-answer game framework.

Online Algorithm Template
1: On an instance I, including an ordering of the data items (x1, . . . , xn):
2: i := 1
3: While there are unprocessed data items
4: The algorithm receives xi 2 R and makes an irrevocable decision di 2 A for xi

(based on xi and all previously seen data items and decisions).
5: i := i+ 1
6: EndWhile

1For certain results concerning requst-answer games, it is required that the answer set be a finite set. However,
for the purposes of defining a general framework and for results in this text, this is not necessary.

15

16 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

It is important to note that the same computational problem can have several representations
as a request answer game depending on the information in the request set and answer set. Often
there wlll be a natural request and answer set for a given problem.

2.2 Competitive Ratio for Minimization Problems

In this section we formally define the notion of competitive ratio. In a later section we will analyze
the performance of Graham’s greedy makespan algorithm in terms of its competitive ratio. Let
ALG be an online algorithm and I = hx1, x2, . . . xni be an input sequence. We shall abuse notation
and let ALG(I) denote both the output of the algorithm as well as the objective value of the
algorithm when the context is clear. If we want to distinguish the objective value we will write
|ALG(I)|.

Definition 2.2.1. Let ALG be an online algorithm for a minimization problem and let OPT
denote an optimal solution to the problem. The competitive ratio of ALG, denoted by ⇢(ALG), is
defined as follows:

⇢(ALG) = lim sup
|OPT (I)|!1

ALG(I)
OPT (I) .

Equivalently, we can say that the competitive ratio of ALG is ⇢ if for all su�ciently large inputs
I, we have ALG(I)  ⇢ · OPT (I) + o(OPT (I)). This then is just a renaming of the asymptotic
approximation ratio as is widely used in the study of o✏ine optimization algorithms. We reserve
the competitive ratio terminology for online algorithms and use approximation ratio otherwise. In
o✏ine algorithms, when ALG(I)  ⇢ · OPT (I) for all I, we simply say approximation ratio; for
online algorithms we will say that ALG is strictly ⇢ competitive when there is no additive term.

In the literature you will often see a slightly di↵erent definition of the competitive ratio. Namely,
an online algorithm is said to achieve competitive ratio ⇢ if there is a constant ↵ � 0 such that for
all inputs I we have ALG(I)  ⇢·OPT (I)+↵. We shall refer to this as the classical definition. The
di↵erence between the two definitions is that our definition allows us to ignore additive terms that
are small compared to OPT , whereas the classical definition allows us to ignore constant additive
terms. The two definitions are “almost” identical in the following sense. If an algorithm achieves
the competitive ratio ⇢ with respect to the classical definition then it achieves the competitive
ratio ⇢ with respect to our definition as well (assuming OPT (I)!1). Conversely, if an algorithm
achieves the competitive ratio ⇢ with respect to our definition then it achieves the competitive ratio
⇢+ ✏ for any constant ✏ > 0 with respect to the classical definition. The latter part is because we
have ALG  ⇢OPT + o(OPT) = (⇢+ ✏)OPT + o(OPT)� ✏OPT  (⇢+ ✏)OPT + ↵ for a suitably
chosen constant ↵ such that ↵ dominates the term o(OPT)� ✏OPT . We prefer our definition over
the classical one because it makes stating the results simpler sometimes. In any case, as outlined
above the di↵erence between the two definitions is minor.

Implicit in this definition is the worst-case aspect of this performance measure. To establish a
lower bound (i.e. an inapproximation for an online algorithm, there is a game between the algorithm
and an adversary. Once the algorithm is stated the adversary creates a nemesis instance (or set of
instances if we are trying to establish asymptotic inapproximation results). Sometimes it will be
convenient to view this game in extensive form where the game alternates between the adversary
announcing the next input item and the algorithm making a decision for this item. However, since
the adversary knows the algorithm, the nemesis input sequence can be determined in advance and
this becomes a game in normal (i.e., matrix) form. In addition to establishing inapproxination
bounds (i.e. lower bounds on the competitive ratio) for specific algorithms, we sometimes wish to

2.3. MINIMIZATION PROBLEM EXAMPLE: MAKESPAN 17

establish an inapproximation bound for all online algorithms. In this case, we need to show how
to derive an appropriate nemesis sequence for any possible online algorithm.

2.3 Minimization Problem Example: Makespan

For definiteness, we consider the makespan problem for identical machines and Graham’s online
greedy algorithm. As stated earlier, this algorithm is perhaps the earliest example of a competitive
analysis argument.

Makespan for identical machines
Input: (p1, p2, . . . , pn) where pj is the load or processing time for a job j; m — the number of
identical machines.
Output: � : {1, 2, . . . , n} ! {1, 2, . . .m} where �(j) = i denotes that the jth job has been
assigned to machine i.
Objective: To find � so as to minimize maxi

P
i:�(j)=i pj .

Algorithm 1 The online greedy makespan algorithm.
procedure greedy makespan

initialize s(i) 0 for 1  i  m . s(i) is the current load on machine i
j 1
while j  n do

i0 argmini s(i) . The algorithm can break ties arbitrarily
�(j) i0

s(i0) s(i0) + pj
j j + 1

return �

The makespan of a machine is its current load and the greedy algorithm schedules each job on
some least loaded machine. The algorithm is online in the sense that the scheduling of the ith job
takes place before seeing the remaining jobs. The algorithm is greedy in the sense that at any step
the algorithm schedules so as optimize as best as it can given the current state of the computation
without regard to possible future jobs. We note that as stated, the algorithm is not fully defined.
That is, there may be more than one machine whose current makespan is minimal. When we do
not specify a “tie-breaking” rule, we mean that how the algorithm breaks ties is not needed for
the correctness and performance analysis. That is the analysis holds even if we assume that an
adversary is breaking the ties.

As an additional convention, when we use a WHILE loop we are assuming that the number n
of online inputs is not known to the algorithm; otherwise, we will use a FOR loop to indicate that
n is known a priori.

We now provide an example of competitive analysis by analyzing the online greedy algorithm
for the makespan problem.

Theorem 2.3.1. Let G(I) denote the makespan of Graham’s online greedy algorithm on m ma-
chines when executed on the input sequence I.

Then for all inputs I we have G(I)  (2�1/m) ·OPT (I). That is, this online greedy algorithm
has a strict competitive ratio which is at most (2� 1/m).

Proof. Let p1, p2, . . . pn be the sequence of job sizes and let pmax = maxj pj . Lets first establish two
necessary bounds for any solution and thus for OPT . The following are simple claims:

18 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT�max
j

T[j] and OPT� 1
m

n�

j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] � OPT. To finish the proof, we must show that Total[i] � T[j] � OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]� T[j] � Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]� T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]� T[j] � 1
m

m�

i=1

Total[i] =
1
m

n�

j=1

T[j] � OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

Figure 2.1: Figure from Je↵ Erickson’s lecture notes

• OPT � (
Pn

k=1 pk)/m; that is the maximum load must be at least the average load.

• OPT � pmax

Now we want to bound the makespan of greedy in terms of these necessary OPT bounds. Let
machine i be one of the machines defining the makespan for the greedy algorithm G and lets say
that job j is the last item to be scheduled on machine i. If we let qi be the load on machine i just
before job j is scheduled, then G0s makespan is qi+pj . By the greedy nature of G and the fact that
the minimum load must be less than the average load (see Figure 2.1), we have qi 

P
k 6=j pk/m

so that

G(p1, . . . pn) 
X

k 6=j

pk/m+ pj =
X

k 6=j

pk/m+ pj/m� pj/m+ pj =
nX

k=1

pk/m+ (1� 1/m)pj

Since
Pn

k=1 pk/m  OPT and pj  pmax  OPT we have our desired competitive ratio.

We shall see that this strict competitive ratio is “tight” in the sense that there exists an input I
such that G(I) = (2�1/m)·OPT (I). We construct such an input sequence I with n = m(m�1)+1
jobs, comprised of m(m� 1) initial jobs having unit load pj = 1 followed by a final job having load
pn = m. The optimal solution would balance the unit load jobs on say the first m � 1 machines
leaving the last machine to accommodate the final big job having load m. Thus each machine has
load m and OPT = m. On the other hand, the greedy algorithm G would balance the unit job
of all m machines and then be forced to place the last job on some machine which already has
load m� 1 so that the G’s makespan is m+ (m� 1). It follows that for this sequence the ratio is
2m�1
m = 2� 1/m matching the bound in Theorem 2.3.1.
We note that for m = 2 and m = 3, it is not di�cult to show that the bound is tight for

any (not necessarily greedy) online algorithm. For example, for m = 2, an adversary can either
provide the input sequence (1,1) or (1,1,2). If the algorithm spreads the two initial unit jobs, the
adversary ends the input having only presented (1,1); otherwise the adversarial input is (1,1,2).
Even though it may seem that this problem is pretty well understood, there is still much to reflect
upon concerning the makespan problem and the greedy algorithm analysis. We note that the
lower bound as given relies on the number n of inputs not being known initially by the algorithm.
Moreover, the given inapproximation holds for input sequences restricted to n  3 and does not
establish an asymptotic inapproximation. For m � 4, there are online (non-greedy) algorithms that
improve upon the greedy bound. The general idea for an improved competitive ratio is to leave

2.4. MINIMIZATION PROBLEM EXAMPLE: BIN PACKING 19

some space for potentially large jobs. Currently, the best known “upper bound” that holds for all
m is 1.901 and the “lower bound” for su�ciently large m is 1.88.

Although the greedy inapproximation is not an asymptotic result, the example suggests a simple
greedy (but not online) algorithm. The nemesis sequence for all m relies on the last job being a
large job. This suggests sorting the input items so that p1 � p2 . . . � pn. This is Graham’s LPT
(“longest processing time”) algorithm which has a tight approximation ratio of 4

3 �
1
3m .

2.4 Minimization Problem Example: Bin Packing

Bin packing is extensively studied within the context of o✏ine and online approximation algorithms.
Like the makespan problem (even for identical machines), it is an NP -hard optimization problem.
In fact, the hardness of both makespan and bin packing is derived by a reduction from the subset
sum problem. In the basic bin packing problem, we are given a sequence of items described by
their weights (x1, x2, . . . , xn) such that xi 2 [0, 1]. We have an unlimited supply of bins each of
unit weight capacity. The goal is to pack all items in the smallest number of bins. Formally, it is
stated as

Bin Packing
Input: (x1, x2, . . . , xn); xi is the weight of an item i.
Output: � : {1, 2, . . . , n}! {1, 2, . . .m} for some integer m.
Objective: To find � so as to minimize m subject to the constraints

P
j:�(j)=i xj  1 for each

i 2 [m].
In this section, we shall analyze the competitive ratios of the following three online algorithms:

NextF it, F irstF it, and BestF it.

• NextF it: if the newly arriving item does not fit in the most recently opened bin, then open
a new bin and place the new item in that bin. See Algorithm 2 for pseudocode.

• FirstF it: find the first bin among all opened bins that has enough remaining space to accom-
modate the newly arriving item. If such a bin exists, place the new item there. Otherwise,
open a new bin and place the new item in the new bin. See Algorithm 3 for pseudocode.

• BestF it: find a bin among all opened bins that has minimum remaining space among all
bins that have enough space to accommodate the newly arriving item. If there are no bins
that can accommodate the newly arriving item, open a new bin and place the new item in
the new bin. See Algorithm 4 for pseudocode.

The algorithms FirstF it and BestF it are greedy in the sense that they will never open a new
bin unless it is absolutely necessary to do so. The di↵erence between these two algorithms is in
how they break ties when there are several existing bins that could accommodate the new item:
FirstF it simply picks the first such bin, while BestF it picks the bin that would result in tightest
possible packing. The algorithm NextF it is not greedy — it always considers only the most recently
opened bin, and does not check any of the older bins.

The simplest algorithm to analyze is NextF it so we start with it. Later we introduce the
weighting technique that is used to analyze both FirstF it and BestF it (in fact, simultaneously).

Theorem 2.4.1.

⇢(NextF it)  2.

20 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

Algorithm 2 The NextF it algorithm
procedure NextFit

m 0 . total number of opened bins so far
R 0 . remaining space in the most recently opened bin
while j  n do

if xj < R then
m m+ 1
R 1� xj

else
R R� xj

�(j) m
j j + 1

Algorithm 3 The FirstF it algorithm
procedure FirstFit

m 0 . total number of opened bins so far
R — a map keeping track of remaining space in all opened bins
while j  n do

flag False
for i = 1 to m do

if xj < R[i] then
R[i] R[i]� xj
�(j) i
f lag True
break

if flag = False then
m m+ 1
R[m] 1� xj
�(j) m

j j + 1

Proof. Define B[i] = 1�R[i], which keeps track of how much weight is occupied by bin i. Assume for
simplicity that NextF it created an even number of bins, i.e., m is even. Then we have B[1]+B[2] >
1, since the first item of bin 2 could not fit into the remaining space of bin 1. Similarly we get
B[2i� 1] +B[2i] > 1 for all i 2 {1, . . . ,m/2}. Adding all these inequalities, we have

m/2X

i=1

B[2i� 1] +B[2i] > m/2.

Now, observe that the left hand side is simply
Pn

j=1wj and that OPT �
Pn

j=1wj . Combining
these observations with the above inequality we get OPT > m/2 = NextF it/2. Therefore, we have
NextF it < 2OPT .

Next, we show that ⇢(NextF it) � 2. Fix arbitrary small ✏ > 0 such that n := 1/✏ 2 N. The
input will consist of 3n items. The first 2n items consist of repeating pairs 1� ✏, 2✏. The remaining
n items are all ✏. Thus, the input looks like this: 1� ✏, 2✏, 1� ✏, 2✏, . . . , 1� ✏, 2✏, ✏, . . . , ✏, where the
dot dot dots indicate that the corresponding pattern repeats n times. Observe that NextF it on

2.4. MINIMIZATION PROBLEM EXAMPLE: BIN PACKING 21

Algorithm 4 The BestF it algorithm
procedure BestFit

m 0 . total number of opened bins so far
R — a map keeping track of remaining space in all opened bins
while j  n do

ind �1
for i = 1 to m do

if xj < R[i] then
if ind = �1 or R[i] < R[ind] then

ind i
if ind = �1 then

m ind m+ 1
R[m] 1

�(j) ind
R[ind] R[ind]� xj
j j + 1

this instance uses at least 2n bins, since the repeating pattern of pairs 1� ✏, 2✏ forces the algorithm
to use a new bin on each input item (1 � ✏ + 2✏ = 1 + ✏ > 1). An optimal algorithm can match
items of weight 1� ✏ with items of weight ✏ for n bins total, and the remaining n items of weight 2✏
can be placed into (2✏)n = (2✏)/✏ = 2 bins. Thus, we have OPT  n + 2 whereas NextF it � 2n.
This means that ⇢(NextF it) � 2n/(n+ 2)! 2 as n!1.

The weighting technique is a general technique for analyzing asymptotic competitive ratios of
algorithms for the bin packing problem. The idea behind the weighting technique is to define a
weight function w : [0, 1] ! R with the three properties described below. But first we need a
few more definitions. Let ALG be an algorithm that we want to analyze. Fix an input sequence
x1, . . . , xn and suppose ALG usesm bins. Define Si to be the set of indices of items that were placed
in bin i by ALG, and extend the weight function to index sets S ✓ [n] as w(S) :=

P
i2S w(xi).

Now, we are ready to state the properties:

1. w(x) � x;

2. there exist an absolute constant k0 2 N (independent of input) and numbers �j � 0 (depen-
dent on input) such that for all j 2 [m] we have w(Sj) � 1� �j and

Pm
j=1 �j  k0;

3. for all k 2 N, y1, . . . , yk 2 [0, 1] we have
Pk

i=1 yi  1 implies that
Pk

i=1w(yi)  �.

In the above � � 1 is a parameter. If such a weight function w exists for a given ALG and with a
given � then we have ⇢(ALG)  �. This is easy to see, since by property 2 we have

w([n]) =
nX

i=1

w(xi) =
mX

i=1

w(Si) �
mX

i=1

(1� �i) = m�
mX

i=1

�i � m� k0.

Let Qi denote the indices of items that are placed in bin i by OPT and suppose that OPT uses
m0 bins. Then by property 3, we have

w([n]) =
m0X

i=1

w(Qi)  �m0.

22 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

w(x)

Figure 2.2: The graph of the weight function w used to analyze the competitive ratio of the FirstF it
and BestF it algorithms.

Combining the above two inequalities we get that �m0 � m� k0. That is ALG  �OPT+k0, i.e.,
⇢(ALG)  �.

We use the weighting technique to prove the following.

Theorem 2.4.2.

⇢(FirstF it)  17/10; ⇢(BestF it)  17/10.

The proof follows by verifying the above properties for the following weight function w for
FirstF it and BestF it:

w(x) =

8
>>>><

>>>>:

6
5x for 0  x  1

6 ,
9
5x�

1
10 for 1

6 < x  1
3 ,

6
5x+ 1

10 for 1
3 < x  1

2 ,

1 for 1
2 < x  1.

The first property is easy to check and becomes obvious by looking at the graph of the function
w shown in Figure 2.2.

The following lemma establishes the third property. The proof of this lemma is left as an
instructive exercise that can be done by a case analysis.

Lemma 2.4.3. For the w function defined above we have for all k 2 N and all y1, . . . , yk 2 [0, 1]

if
kX

i=1

yi  1 then
kX

i=1

w(yi)  1.7.

Thus, it is left to verify the second property for FirstF it and BestF it. Recall that our goal is
to show that for every bin i we have w(Si) � 1 � �i, such that the sum of �i converges. Observe
that the solutions constructed by FirstF it and BestF it cannot contain two bins that are at most
half full (i.e., R[i] � 1/2) — if two such bins are present, then why weren’t the items from the

2.4. MINIMIZATION PROBLEM EXAMPLE: BIN PACKING 23

later bin inserted into an earlier bin? Suppose that bin i is the unique bin with R[i] � 1/2, then
we can set �i = 1 to guarantee that this bin satisfies the second property. This adds at most 1 toP

j �j . Thus, we can perform the entire argument with respect to bins that are more than half full.
Therefore, from now on we assume that R[i] < 1/2 for all i 2 [m].

To complete the argument we introduce the idea of coarseness. Coarseness of bin i, denoted by
↵i, is defined as the maximum remaining space in an earlier bin, i.e., there is an earlier bin j < i
with remaining space R[j] = ↵i. Observe that 0 = ↵1  ↵2  · · ·  ↵m < 1/2. The proof of the
second property follows from the following lemma.

Lemma 2.4.4. 1. If R[i]  ↵i then w(Si) � 1, i.e., we can set �i = 0.

2. If R[i] > ↵i then w(Si) � 1� 9
5(R[i]� ↵i), i.e., we can set �i =

9
5(R[i]� ↵i).

Proof. Let y1, . . . , yk be the weights of the items in bin i. Recall that B[i] =
Pk

j=1 yj . By renaming
variables, if necessary, we can assume that y1 � y2 � · · · � yk.

1. If k = 1 then y1 > 1/2 and w(y1) = 1 and therefore w(Si) � 1. Thus, we can assume that
k � 2. In particular, we must have y1 � y2 � ↵i (otherwise, each of the two items could have
been placed into an earlier bin corresponding to the coarseness ↵i). We consider several cases
depending on the range of ↵i.

Case 1: ↵i  1/6. Then we have B[i] = 1 � R[i] � 1 � ↵i � 5/6. Observe that on interval
[0, 1/2) the slope of w is at least 6/5, therefore we have w(Si)/B[i] � 6/5, so w(Si) �
(6/5)B[i] � (6/5)(5/6) = 1.

Case 2: 1/3 < ↵i < 1/2. Since y1 � y2 > ↵i, we have y1, y2 > 1/3, so w(y1) + w(y2) �
2W (1/3) = 2 ((9/5)(1/3)� 1/10) = 1.

Case 3: 1/6 < ↵i  1/3.

Subcase (a): k = 2. If y1, y2 � 1/3 then it is similar to Case 2 above. Similarly, note that
both items cannot be less than 1/3. Then it only remains to consider y1 � 1/3 > y2 > ↵i.
Thus, we have

w(y1) + w(y2) = (6/5)y1 + 1/10 + (9/5)y2 � 1/10 = (6/5)(y1 + y2) + (3/5)y2.

Since y1 + y2 � 1 � ↵i and y2 > ↵i we have w(y1) + w(y2) � (6/5)(1 � ↵i) + 3/5↵i =
1 + 1/5� 3/5↵i � 1, where the last inequality follows since ↵i  1/3.

Subcase (b): k > 2. As in subcase (a) if y1, y2 � 1/3 then we are done. If y1 < 1/3 then we
have

w(y1) + w(y2) +
kX

j=3

w(yj) = (9/5)(y1 + y2)� (1/5) + (6/5)
kX

j=3

yj

� (6/5)B[i] + (3/5)(y1 + y2)� (1/5)

= (6/5)(1� ↵) + (3/5)(2↵)� 1/5 = 1.

If y1 � 1/3 > y2 then we have

w(y1) + w(y2) +
kX

j=3

w(yj) = (6/5)y1 + (1/10) + (9/5)y2 � (1/10) +
kX

j=3

w(yj)

= (6/5)(y1 + y2) + (3/5)y2 + (6/5)
kX

j=3

yj

� (6/5)(1� ↵) + (3/5)↵ = 1 + (1/5)� 3/5↵ � 1.

24 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

2. We have B[i] = 1 � R[i] = 1 � ↵i + (R[i] � ↵i). Consider z1 = y1 + (R[i] � ↵i)/2 and
z2 = y2 + (R[i] � ↵i)/2. Then we have z1 + z2 +

Pk
j=3 yk = 1 � ↵i. Then by the first

part of this theorem, we have w(z1) + w(z2) +
Pk

j=3w(yk) � 1. Note that w(z1) + w(z2) �
w(y1) + w(y2) + (9/5)(R[i] � ↵i) since the slope of w on this range does not exceed 9/5.
Combining the two inequalities we get w(y1) + w(y2) + (9/5)(R[i] � ↵i) +

Pk
j=3w(yk) � 1.

Collecting the w(yj) together we get w(Si) � 1� (9/5)(R[i]� ↵i).

It is just left to verify that
Pm

i=1 �i is bounded by an absolute constant. From Lemma 2.4.4 we
see that those bins with R[i]  ↵i do not contribute anything to this sum. Thus, we assume that
we only deal with bins such that R[i] > ↵i from now on. Observe that for such bins we have

↵i � R[i� 1] = ↵i�1 + (R[i� 1]� ↵i�1) = ↵i�1 +
5

9
�i�1.

Alternatively, we write �i�1  9
5(↵i � ↵i�1). Thus, we have

m�1X

i=1

�i =
9

5

mX

i=2

(↵i � ↵i�1) =
9

5
(↵m � ↵0) <

9

5
· 1
2
< 1.

Since �m  1 and due to the fact that we have ignored a possible bin that is at most half full, we
have established that

mX

j=1

�j  3.

This finishes the analysis of FirstF it and BestF it.

2.5 Competitive Ratio for Maximization Problems

As defined, competitive ratios and approximation ratios for a minimization problem always satisfy
⇢ � 1 and equal to 1 if and only the algorithm is (asymptotically) optimal. Clearly, the closer ⇢ is
to 1, the better the approximation.

For maximization problems, there are two ways to state competitive and asymptotic approxi-
mation ratios for a maximization algorithm ALG.

1. ⇢(ALG) = lim infOPT (I)!1
ALG(I)
OPT (I) .

2. ⇢(ALG) = lim supOPT (I)!1
OPT (I)
ALG(I) .

There is no clear consensus as to which convention to use. In the first definition we always have
⇢  1. This is becoming more of the standard way of expressing competitive and approximation
ratios as the fraction of the optimum value that the algorithm achieves especially if the ratio is a
non-parameterized constant. (For example, see the results in Chapter 7 for bipartite matching and
Chapter 8) With this convention, we have to be careful in stating results as now an “upper bound”
is a negative result and a “lower bound” is a positive result. Using the second definition we would
be following the convention for minimization problems where again ⇢ � 1 and upper and lower
bounds have the standard interpretation for being (respectively) positive and negative results. For
both conventions, it is unambiguous when we say, for example, “achieves approximation ratio ...”
and “has an inapproximation ratio ...”. We will use a mixture of these two conventions, stating
constant ratios as fractions while, as in this section and many of the results in Chapter 7), we will
use ratios ⇢ > 1 when ⇢ is expresseed as a function of some input parameter.

2.6. MAXIMIZATION PROBLEM EXAMPLE: TIME-SERIES SEARCH 25

2.6 Maximization Problem Example: Time-Series Search

As an example of a deterministic algorithm for a maximization problem, we first consider the
following time-series search problem. In this problem one needs to exchange the entire savings in
one currency into another, e.g., dollars into euros. Over a period of n days, a new exchange rate pj
is posted on each day j 2 [n]. The goal is to select a day with maximally beneficial exchange rate
and exchange the entire savings on that day. If you have not made the trade before day n, you are
forced to trade on day n. You might not know n in advance, but you will be informed on day n that
it is the last day. Without knowing any side information, an adversary can force any deterministic
algorithm to perform arbitrarily badly. There are di↵erent variations of this problem depending on
what is known about currency rates a-priori. We assume that before seeing any of the inputs, you
also have access to an upper bound U and a lower bound L on the pj , that is L  pj  U for all
j 2 [n]. We also assume no transaction costs. Formally, the problem is defined as follows.

Time-series search
Input: (p1, p2, . . . , pn) where pj is the rate for day j meaning that one dollar is equal to pj euros,
U,L 2 R�0 such that L  pj  U for all j 2 [n]
Output: i 2 [n]
Objective: To compute i so as to maximize pi.

We introduce a parameter � = U/L— the ratio between a maximum possible rate and minimum
possible rate. Observe that any algorithm achieves competitive ratio �. Can we do better?

The following deterministic reservation price online algorithm is particularly simple and im-
proves upon the trivial ratio �. The algorithm trades all of its savings on the first day that the rate
is at least p⇤ =

p
UL. If the rate is always less than p⇤, the algorithm will trade all of its savings

on the last day. This algorithm is also known as the reservation price policy or RPP for short.

Algorithm 5 The Reservation price policy

procedure reservation price

p⇤
p
UL

flag 0
j 1 and
while j  n and flag = 0 do

if j < n and pj � p⇤ then
Trade all savings on day j
flag 1

else if j = n then
Trade all savings on day n

Theorem 2.6.1. Let � = U
L . The reservation price algorithm achieves competitive ratio

p
�

whether n is known or unknown in advance.

Proof. Consider the case where pj < p⇤ for all j 2 [n]. Then the reservation price algorithm
trades all dollars into euros on the last day achieving the objective value pn � L. The optimum is
maxj pj  p⇤ =

p
UL. The ratio between the two is

OPT

ALG

p
UL

L
=
p
�.

Now, consider the case where there exists pj � p⇤ and let j be earliest such index. Then
the reservation price algorithm trades all dollars into euros on day j achieving objective value

26 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

pj �
p
UL. The optimum is maxj pj  U . The ratio between the two is

OPT

ALG
 Up

UL
=
p
�.

We can also show that
p
� is optimal among all deterministic algorithms for time-series search.

Theorem 2.6.2. No deterministic online algorithm for time-series search can achieve competitive
ratio smaller than

p
� even if n is known.

Proof. The adversary specifies pi =
p
UL for i 2 [n� 1]. If the algorithm trades on day i  n� 1,

the adversary then declares pn = U . Thus, OPT trades on day n. In this case, the competitive
ratio is U/

p
UL =

p
U/L =

p
�.

If the algorithm does not trade on day i  n � 1, the adversary declares pn = L. Thus the
algorithm is forced to trade on day n with exchange rate L, while OPT trades on an earlier day
with exchange rate

p
UL. In this case, the competitive ratio is

p
UL/L =

p
U/L =

p
�.

A similar argument presented in the following theorem shows that knowing just � is not su�cient
to improve upon the trivial competitive ratio.

Theorem 2.6.3. Suppose that instead of U and L only � = U
L is known to an algorithm a priori.

Then competitive ratio of any algorithm for time-series search is at least �.

Proof. The adversary declares � and presents the input sequence (p1, . . . , pn), where pi = 1 for
i 2 [n� 1] to a reservation price algorithm ALG.

If ALG trades on a day i  [n�1], then the adversary declares pn = �. In this case, an optimal
solution is to trade on day pn achieving objective value pn, and the algorithm traded when the
exchange rate was 1.

If ALG doesn’t trade on day n � 1 or earlier, then the adversary declares pn = 1/�. In this
case, an optimal solution is to trade on day 1 (for example) achieving objective value 1, and the
algorithm trades on the last day achieving 1/�.

In either case, the adversary can achieve competitive ratio �.

2.7 Maximization Problem Example: One-Way Trading

A natural generalization of the time-series search is the one-way trading problem. In this problem,
instead of requiring the algorithm to trade all of its savings on a single day, we allow an algorithm
to trade a fraction fi 2 [0, 1] of its savings on day i for i 2 [n]. An additional requirement is that
by the end of the last day all of the savings have been traded, that is

Pn
i=1 fi = 1. As before,

the bounds U and L on exchange rates are known in advance. Also as before, we assume that the
algorithm is forced to trade all remaining savings at the specified rate on day n.

One-way currency trading
Input: (p1, p2, . . . , pn) where pj is the rate for day j meaning that one unit of savings is equal to
pj units of new currency; U,L 2 R�0 such that the rates must satisfy L  pi  U for each day i.
Output: f1, . . . fn 2 [0, 1] where fi indicates that the fraction fi of savings are traded on day i
and

Pn
i=1 fi = 1.

Objective: To compute f so as to maximize maxi fipi; that is, to maximize the aggregate
exchange rate.

2.7. MAXIMIZATION PROBLEM EXAMPLE: ONE-WAY TRADING 27

The ability to trade a fraction of your savings on each day is surprisingly powerful — one can
almost achieve competitive ratio log � instead of

p
� achievable without this ability. Algorithm 6

shows how this is done. To simplify the presentation we assume that � = 2k for some positive integer
k. Consider exponentially spaced reservation prices of the form L2i where i 2 {0, 1, . . . , k � 1}.
We refer to L2i as the ith reservation price. Upon receiving p1, the algorithm computes index i
of the largest reservation price that is exceeded by p1 and trades (i + 1)/k fraction of its savings.
This index i is recorded in i⇤. For each newly arriving exchange rate pj we compute index i of
the reservation price that is exceeded by pj . If i  i⇤ the algorithm ignores day j. Otherwise, the
algorithm trades (i� i⇤)/k fraction of its savings on day j and updates i⇤ to i. Thus, we can think
of i⇤ as keeping track of the best reservation price that has been exceeded so far, and whenever we
have a better reservation price being exceeded we trade the fraction of savings proportional to the
di↵erence between indices of the two reservation prices. Thus, the algorithm is computing some
kind of mixture of reservation price policies, and it is called the Mixture of RPPs algorithm.

Algorithm 6 The Mixture of RPPs

procedure reservation price

. U,L, and � = U/L = 2k are known in advance
i⇤ �1
for j 1 to n do

i max{i | L2i  pj}
if i = k then

i k � 1
if i > i⇤ then

Trade fraction (i� i⇤)/k of savings on day j
i⇤ i

Trade all remaining savings on day n

Theorem 2.7.1. The competitive ratio of the Mixture of RPPs algorithm is c(�) log � where c(�)
is a function such that c(�)! 1 as �!1.

Proof. Consider the input sequence (p1, . . . , pn) and let i1, . . . , in be the indices of the corresponding
reservation prices. That is, ij is the largest index such that L2ij  pj for all j 2 [n]. Let ` be the
day number with the highest exchange rate, that is p` = max{pj}. Clearly, OPT = p`  L2i`+1.

Note that the i⇤s form a non-decreasing sequence during the execution of the algorithm. Con-
sider only those values of i⇤ that actually change value, and let i⇤0 < i⇤1 < · · · < i⇤p denote that
sequence of values. We have i⇤0 = �1 and i⇤p = i`. The algorithm achieve at least the following
value of the objective function:

pX

j=1

i⇤j � i⇤j�1

k
L2i

⇤
j +

k � i`
k

L,

where the first term is the lower bound on the contribution of trades until day ` and the second
term is the contribution of trading the remaining savings on the last day.

In order to bound the first term, we note that if we wish to minimize
Pp

j=1(i
⇤
j � i⇤j�1)2

i⇤j (E)
over all increasing sequences i⇤j with i⇤0 = �1 and i⇤p = i` then we have i⇤j = j�1. That is the unique
minimizer of expression (E) is the sequence �1, 0, 1, 2, . . . , i`, i.e., it doesn’t skip any values. In this
case we have

Pp
j=1(i

⇤
j � i⇤j�1)2

i⇤j =
Pi`

j=0 2
j = 2i`+1 � 1. Why is this a minimizer? We will show

that an increasing sequence that skips over a particular value v cannot be a minimizer. Suppose

28 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

that you have a sequence such that i⇤j�1 < v < i⇤j and consider the jth term in (E) corresponding

to this sequence. It is (i⇤j � i⇤j�1)2
i⇤j = (i⇤j � v + v � i⇤j�1)2

i⇤j = (i⇤j � v)2i
⇤
j + (v � i⇤j�1)2

i⇤j >

(i⇤j � v)2i
⇤
j + (v � i⇤j�1)2

v — that is if we change our sequence to include v we strictly decrease the
value of (E). Thus, the unique minimizing sequence is the one that doesn’t skip any values.

From the above discussion we conclude that we can lower bound ALG as follows:

ALG � 2i`+1 � 1

k
L+

k � i`
k

L.

Finally, we can bound the competitive ratio:

OPT

ALG
=

L2i`+1

(2i`+1 � 1)L/k + (k � i`)L/k
= k

2i`+1

2i`+1 + k � i` � 1
.

The worst-case competitive ratio is obtained by maximizing the above expression. We can do so
analytically (taking derivatives, equating to zero, etc.), which gives i` = k � 1 + 1/ ln(2). Thus,
the competitive ratio is log � = k times a factor that is slightly larger than 1 and approaching 1 as
k !1.

We saw that with time-series search knowing U or L was crucial and knowing just � was not
enough. It turns out that for one-way trading one can prove a similar result to the above assuming
that the algorithm only knows � and doesn’t know U or L. One of the exercises at the end of this
chapter deals is dedicated to this generalization. Another generalization is that we don’t need to
assume that � is a power of 2. Proving this is tedious and has low pedagogical value, thus we state
it here without a proof.

2.8 Exercises

1. Consider the makespan problem for temporary jobs, where now each job has both a load pj
and a duration dj . When a job arrives, it must be scheduled on one of the m machines and
remains on that machine for dj time units after which it is removed. The makespan of a
machine is the maximum load of the machine at any point in time. As for permanent jobs,
we wish to minimize (over all machines) the maximum makespan.
Show that the greedy algorithm provides a 2-approxmimation for this problem.

2. Suppose that in the time-series search problem the algorithm only knows L beforehand. Does
there exist a deterministic algorithm with competitive ratio better than �?

3. Suppose that in the one-way trading problem the algorithm only knows L beforehand. Does
there exist a deterministic algorithm with competitive ratio better than �?

4. (HARD) Suppose that in the one-way trading problem the algorithm only knows � before-
hand. Design a deterministic algorithm with competitive ratio as close to log � as possible.

5. Prove Lemma 2.4.3.

6. Which properties of FirstF it and BestF it were needed for the proof of Theorem 2.4.2? Can
you find any other algorithms with those properties? That is find an algorithm other than
FirstF it and BestF it such that the proof of Theorem 2.4.2 applies to the new algorithm
without any modifications.

2.9. HISTORICAL NOTES AND REFERENCES 29

7. Prove that ⇢(FirstF it) � 1.7 and that ⇢(BestF it) � 1.7 (give an adversarial strategy).

8. Prove that no online algorithm can achieve competitive ratio better than 4/3 for the Bin
Packing problem.

2.9 Historical Notes and References

Request-answer games were introduced in Ben-David et al [6]. As mentioned, request-answer games
serve as a very general abstract model that applies to almost all optimization problems problems
that we will be considering in this text. Moreover, as we will see in Chapter 3, within this model
the di↵erent types of adversaries (with respect to randomized online algorithms) can be compared.

The makespan problem for identical machines was studied by Graham [29, 30]. These papers
present online and o✏ine greedy approximation algorithms for the makespan problem on identical
machines as well as presenting some surprising anomolies. The papers preceed Cook’s seminal
paper [15] introducing NP completeness but still Graham conjectures that it will not be possible
to have an e�cient optimal algorithm for this problem. This work also preceeds the explicit
introduction of competitive analysis by Sleator and Tarjan [46] and does not emphasize the online
nature of the greedy algorithm but still the 2 � 1

m appears to be the first approximation and
competitive bound to be published.

The makespan problem belongs to a wider class of scheduling problems called load balancing
problems, including other performance measures (e.g., where the laod on a machine is its Lp norm
for p � 1) as well as other measures, and scheduling and routing problems. In particular, the
so-called “Santa Claus problem” [4] considers the max�min performance measure for scheduling
jobs the unrelated machines model (see Chapter 4. The name of the problem derives from the
motivation of distributing n presents amongst m children (where now pi,j is the value of the jth

present when given to the ith child) so as to maximize the the value of the least happy child.
Competitive algorithms for the time series and one-way trading problems were introduced and

anlayzed in El-Yaniv-et al [23].
The bin packing problem is a classic NP -hard optimzation problem and one that continues to

be a subject of interest for both the o✏ine and online settings. Early work on the bin packing
problem popularized the field of approximation algorithms although Graham’s makespan results
preceeded the results for bin packing. This chapter was restricted to the classical one-dimensional
bin packing problem. Until recently, the most precise results for the first fit (FF) and best fit (BF)
online bin packing algorithms appeared in Johnsoni et al [35] following an earlier conference version
by Garey,Graham and Ullman [27] which iteself was preceded by a technical report for first fit by
Ullman [47]. Namely, these results showed the competitive ratio to be 1.7. After more than 40
years, the bounds for FF and BF were proven to be strict competitive ratios for FF and BF by
Dósa and Sgall ([19] and [20]). It what might be the first explicit study of competitive anlayis
(before the term was introduced), Yao [52] provided an improved online algorithm called refined
first fit with competitive ratio 5

3 . Furthermore, Yao gave the first negative result for competitive
analysis showing that no online bin packing algorithm can have a competitve ratio better than 3

2 .
Since there early bin-packing online algorithms, there have been a numebr of improvements in the
competitive ratio based on the Harmonic algorithm of Lee and Lee [41]; in partitcular, the current
best ratio is 1.57829 due to Balogh et al [3]. A comprehensive review of the many papers and ideas
leading up to the current best ratio can be found in [3]. This upper bound can be compared to
1.54278, the current best lower bound in Balogh et al [3].

Given the applications and historical interest in bin packing, it is not surprising that there
are many varants of the problem. The most important variant is arguably the two dimensional

30 CHAPTER 2. DETERMINISTIC ONLINE ALGORITHMS

problem, which itself comes in di↵erent versions; for example, can the items be rotated or must they
fit according to the given axis parallel orientation. The two dimensional problem was introduced
in Chung, Garey and Johmson [45]. As in the case of one-dimensional online bin packing, there is
also a substantial sequence of results for axis parallel 2-dimensional bin packing leading up to the
current best 2.5545 competitive ratio in Han et al [32] whereas the most recent lower bound, due
to Epstein [25], is slightly above 1.91.

Chapter 3

Randomized Online Algorithms

The central theme of this chapter is how much randomness can help in solving an online problem. To
answer this question, we need to extend the notion of competitive ratio to randomized algorithms.
Measuring the performance of randomized algorithms is not as straightforward as measuring the
performance of deterministic algorithms, since randomness allows for di↵erent kinds of adversaries.
We look at the classical notions of oblivious, adaptive online, and adaptive o✏ine adversaries,
and explore relationships between them. We cover Yao’s minimax theorem, which is a useful
technique for proving lower bounds against an oblivious adversary. Lastly, we briefly discuss some
issues surrounding randomness as an expensive resource and the topic of derandomization.

3.1 Randomized Online Algorithm Template

We recall that according to our convention random variables are denoted by capital letters and
particular outcomes of random variables are denoted by small case letters. For example, suppose
that B is the Bernoulli random variable with parameter p. Then B is 1 with probability p and 0
with probability 1 � p, and when we write B the outcome hasn’t been determined yet. When we
write b we refer to the outcome of sampling from the distribution of B, thus b is fixed to be either
0 or 1. In other words B is what you know about the coin before flipping it, and b is what you see
on the coin after flipping it once.

A randomized online algorithm generalizes the deterministic paradigm by allowing the decision
in step 5 of the template to be a randomized decision. We view the algorithm as having access to
an infinite tape of random bits. We denote the contents of the tape by R, i.e., Ri 2 {0, 1} for i � 1,
and the Ri are distributed uniformly and independently of each other.

Randomized Online Algorithm Template
1: R infinite tape of random bits
2: On an instance I, including an ordering of the data items (x1, . . . , xn):
3: i := 1
4: While there are unprocessed data items
5: The algorithm receives xi and makes an irrevocable randomized decision Di :=

Di(x1, . . . , xi, R) for xi
(based on xi, all previously seen data items, and R).

6: i := i+ 1
7: EndWhile

31

32 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

Remark 3.1.1. You might wonder if having access to random bits is enough. After all, we often
want random variables distributed according to more complicated distributions, e.g., Gaussian
with parameters µ and �. Turns out that you can model any reasonable random variable to any
desired accuracy with access to R only. For example, if you need a Binomial random variable with
parameters 1/2 and n, you can write a subprocedure that returns

Pn
i=1Ri. If you need a new

independent sample from that distribution, you can use fresh randomness from another part of
the string R. This can be done for all other standard distributions — Bernoulli with parameter
p (how?), Binomial with parameters p and n, exponential, Gaussian, etc. We will often skip the
details of how to obtain a particular random variable from R and simply assume that we have
access to the corresponding subroutine.

Note that the decision in step 4 is now a function not only of all the previous inputs but also of
randomness R. Thus each decision Di is a random variable. However, if we fix R to be particular
infinite binary string r 2 {0, 1}N, each decision becomes deterministic. This way, we can view
an online randomized algorithm ALG as a distribution over deterministic online algorithms ALGr

indexed by randomness r. Then ALG samples r from {0, 1}N uniformly at random and runs ALGr.
This viewpoint is essential for the predominant way to prove inappoximation results for randomized
algorithm, namely the use of the von Neumann-Yao principle.

3.2 Types of Adversaries

For this section we recall the view of an execution of an online algorithm as a game between an
adversary and the algorithm. In the deterministic case, there is only one kind of adversary. In the
randomized case, we distinguish between three di↵erent kinds of adversaries: oblivious, adaptive
o✏ine, and adaptive online, depending on the information that is available to the adversary
when it needs to create the next input item.

Oblivious adversary: this is the weakest kind of an adversary that only knows the (pseu-
docode of the) algorithm, but not the particular random bits r that are used by the algorithm. The
adversary has to come up with the input sequence x1, x2, . . . , xn in advance — before learning any
of the decisions made by the online algorithm on this input. Thus, the oblivious adversary knows
the distribution of D1, D2, . . . , Dn, but it doesn’t know which particular decisions d1, d2, . . . , dn are
going to be taken by the algorithm. Let OBJ(x1, . . . , xn, d1, . . . , dn) be the objective function. The
performance is measured as the ratio between the expected value of the objective achieved by the
algorithm to the o✏ine optimum on x1, . . . , xn. More formally it is

ED1,...,Dn (OBJ(x1, . . . , xn, D1, . . . , Dn))

OPT (x1, . . . , xn))
.

Observe that we don’t need to take the expectation of the optimum, because input items x1, . . . , xn
are not random.

Adaptive o✏ine adversary: this is the strongest kind of an adversary that knows the (pseu-
docode of the) algorithm and its online decisions, but not R. Thus, the adversary creates the first
input item x1. The algorithm makes a decision D1 and the adversary learns the outcome d1 prior
to creating the next input item x2. We can think of the input items as being defined recursively
xi := xi(x1, d1, . . . , xi�1, di�1). After the entire input sequence is created we compare the per-
formance of the algorithm to that of an optimal o✏ine algorithm that knows the entire sequence
x1, . . . , xn in advance. More formally it is

ED1,...,Dn (OBJ(x1, . . . , xn, D1, . . . , Dn))

ED1,...,Dn(OPT (x1, . . . , xn))
.

3.3. RELATIONSHIPS BETWEEN ADVERSARIES 33

Observe that we have to take the expectation of the optimum in this case, because input items
x1, . . . , xn are random as they depend on D1, . . . , Dn (implicit in our notation).

Adaptive online adversary: this is an intermediate kind of an adversary that creates an input
sequence and an output sequence adaptively. As before the adversary knows the (pseudocode of the)
algorithm, but not R. The adversary creates the first input item x1 and makes its own decision on
this item d01. The algorithm makes a random decision D1, the outcome d1 of which is then revealed
to the adversary. The adversary then comes up with a new input item x2 and its own decision
d02. Then the algorithm makes a random decision D2, the outcome d2 of which is then revealed to
the adversary. And so on. Thus, the order of steps is as follows: x1, d01, d1, x2, d

0
2, d2, x3, d

0
3, d3, . . .

We say that the adaptive online adversary can create the next input item based on the previous
decisions of the algorithm, but it has to serve this input item immediately itself. The performance
of an online algorithm is measured by the ratio of the objective value achieved by the adversary
versus the objective value achieved by the algorithm. More formally, it is

ED1,...,Dn (OBJ(x1, . . . , xn, D1, . . . , Dn))

ED1,...,Dn (OBJ(x1, . . . , xn, d01, . . . , d
0
n))

.

Observe that we have to take the expectation of the objective value achieved by the adversary,
since both input items x1, . . . , xn and adversary’s decisions d01, . . . , d

0
n depend on random decisions

of the algorithm D1, . . . , Dn (implicit in our notation).
Based on the above description one can easily define competitive ratios for these di↵erent kinds

of adversaries for both maximization and minimization problems (using lim infs and lim sups in the
obvious way). We denote the competitive ratio achieved by a randomized online algorithm ALG
with respect to the oblivious adversary, adaptive o✏ine adversary, and adaptive online adversary
by ⇢OBL(ALG), ⇢ADOFF(ALG), and ⇢ADON(ALG), respectively.

The most popular kind of adversary in the literature is the oblivious adversary. When we analyze
randomized online algorithms we will assume the oblivious adversary unless stated otherwise. The
oblivious adversary often makes the most sense from a practical point of view, as well. This
happens, when performance of the algorithm is independent of the input. We already saw it for the
ski rental problem. Whether you decide to buy or rent skis should (logically) have no a↵ect on the
weather — this is precisely modelled by an oblivious adversary. However, there are problems for
which decisions of the algorithm can a↵ect the behaviour of the future inputs. This happens, for
example, for paging. Depending on which pages are in the cache, the future pages will either behave
as cache misses or as cache hits. In addition, one can write programs that alter their behaviour
completely depending on cache miss or cache hit. One real-life example of such (nefarious) programs
are Spectre and Meltdown that use cache miss information together with speculative execution to
gain read-only access to protected parts of computer memory. Thus, there are some real-world
applications which are better modelled by adaptive adversaries, since decisions of the algorithm
can alter the future input items.

3.3 Relationships between Adversaries

We start with a basic observation that justifies calling oblivious, adaptive o✏ine, and adaptive
online adversaries as weak, strong, and intermediate, respectively.

Theorem 3.3.1. For a minimization problem and a randomized online algorithm ALG we have

⇢OBL(ALG)  ⇢ADON(ALG)  ⇢ADOFF(ALG).

An analogous statement is true for maximization problems.

34 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

The following theorem says that the adaptive o✏ine adversary is so powerful that any random-
ized algorithm running against it cannot guarantee a better competitive ratio than the one achieved
by deterministic algorithms.

Theorem 3.3.2. Consider a minimization problem given as a request-answer game. Assume that
the set of possible answers/decisions is finite (e.g., Ski Rental) and consider a randomized online
algorithm ALG for it. Then there is a deterministic online algorithm ALG0 such that

⇢(ALG0)  ⇢ADOFF(ALG).

An analogous statement is true for maximization problems.

Proof. We refer to (x1, . . . , xk, d1, . . . , dk) as a position in the game, where the xi are input items,
provided by an adversary, and di are decisions, provided by an algorithm. We say that a po-
sition (x1, . . . , xk, d1, . . . , dk) is immediately winning for adversary if fk(x1, . . . , xk, d1, . . . , dk) >
⇢ADOFF(ALG)OPT (x1, . . . , xk), where fk is the objective function. We call a position winning for
adversary if there exists t 2 N and an adaptive strategy of choosing requests such that an imme-
diately winning position is reached no matter what answers are chosen by an algorithm within t
steps.

Note that the initial empty position cannot be a winning position for the adversary. Sup-
pose that it was, for contradiction. The randomized algorithm ALG is a distribution on deter-
ministic algorithms ALGz for some z ⇠ Z. If the initial empty position was winning for the
adversary, then for every z we would have a sequence of requests and answers (depending on
z) such that ALGz(Iz) > ⇢ADOFF(ALG)OPT (Iz). Taking the expectation of both sides, we get
EZ(ALGZ(IZ)) > ⇢ADOFF(ALG)EZ(OPT (IZ)), contradicting the definition of ⇢ADOFF(ALG).

Observe that a position (x1, . . . , xn, d1, . . . , dn) is winning if and only if there exists xn+1 such
that for all dn+1 the position (x1, . . . , xn, xn+1, d1, . . . , dn, dn+1) is also winning. Thus, if a position
is not winning, then for any new input item xn+1 there is a decision dn+1 that leads to a position
that is also not winning. This precisely means that there is a deterministic algorithm ALG0 that
can keep the adversary in a non-winning position for as long as needed. Since the game has to
eventually terminate, it will terminate in a non-winning position, meaning that after any number t
of steps of the game we have ft(x1, . . . , xt, d1, . . . , dt)  ⇢ADOFFOPT (x1, . . . , xt), where di are the
deterministic choices provided by ALG.

The gap between o✏ine adaptive adversary and online adaptive adversary can be at most
quadratic.

Theorem 3.3.3. Consider a minimization problem and a randomized online algorithm ALG for
it. Then

⇢ADOFF(ALG)  (⇢ADON(ALG))2 .

An analogous statement is true for maximization problems.

Proof. Let ADV be an arbitrary adaptive o✏ine adversary against ALG. Let R denote the ran-
domness used by ALG, and let R0 be its independent copy. Then we can represent ALG as a
distribution on deterministic algorithms ALGr where r ⇠ R. Let x(R) be requests given by ADV
when it runs against ALGR. Let d(R) denote ALGR responses when it runs against ADV .

Consider a fixed value of r and the well-defined sequence of requests x(r). In order to avoid
ambiguity, we are going to label randomness of ALG by a copy of R, namely R0. Since ALGR0 is
⇢ADON(ALG)-competitive against any adaptive online adversary, it is also ⇢ADON(ALG)-competitive

3.4. HOW MUCH CAN RANDOMNESS HELP? 35

against any oblivious adversary (by Theorem 3.3.1). In particular ALGR0 is ⇢ADON-competitive
against the oblivious adversary that presents request sequence x(r):

ER0(ALGR0(x(r)))  ⇢ADON(ALG)OPT (x(r)).

Taking the expectation of both sides with respect to r we get

ERER0(ALGR0(x(R)))  ⇢ADON(ALG)ER(OPT (x(R))). (3.1)

Let f denote the objective function. Now, consider a fixed value of r0. Define an adaptive
online strategy working against ALGR that produces a request sequence x(R) and provides its own
decision sequence d(r0), while ALGR provides decision sequence d(R). Since ALG is ⇢ADON(ALG)-
competitive against this adaptive online strategy, we have:

ER(ALGR(x(R))  ⇢ADON(ALG)ER(f(x(R), d(r0))).

Taking the expectation of both sides with respect to r0 we get

ER(ALGR(x(R))  ⇢ADON(ALG)ER0ER(f(x(R), d(R0))).

The right hand side can be written as ER0ER(f(x(R), d(R0))) = ERER0(ALGR0(x(R)). Combining
this with (3.1) we get

ER(ALGR(x(R)))  ⇢ADON(ALG)2E(OPT (x(R))).

The left hand side is the expected cost of the solution produced by ALG running against the
adaptive o✏ine adversary ADV .

In the following section we establish that the gap between ⇢OBL and ⇢ADOFF (as well as between
⇢OBL and ⇢ADON) can be arbitrary large.

3.4 How Much Can Randomness Help?

We start by showing that the gap between the best competitive ratio achieved by a randomized
algorithm and a deterministic algorithm can be arbitrary large. We begin by fixing a particular
gap function g : N! R. Consider the following maximization problem:

Modified Bit Guessing Problem
Input: (x1, x2, . . . , xn) where xi 2 {0, 1}.
Output: z = (z1, z2, . . . , zn) where zi 2 {0, 1}
Objective: To find z such that zi = xi+1 for some i 2 [n � 1]. If such i exists the payo↵ is
g(n)/(1� 1/2n�1), otherwise the payo↵ is 1.

In this problem, the adversary presents input bits one by one and the goal is to guess the bit
arriving in the next time step based on the past history. If the algorithm manages to guess at least
one bit correctly, it receives a large payo↵ of g(n)/(1� 1/2n�1), otherwise it receives a small payo↵
of 1.

Theorem 3.4.1. Every deterministic algorithm ALG achieves objective value 1 on the Modified
Bit Guessing Problem.

There is a randomized algorithm that achieves expected objective value g(n) against an oblivious
adversary on inputs of length n for the Modified Bit Guessing Problem.

36 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

Proof. For the first part of the theorem consider a deterministic algorithm ALG. The adversarial
strategy is as follows. Present x1 = 0 as the first input item. The algorithm replies with z1. The
adversary defines x2 = ¬z1. This continues for n � 2 more steps. In other words, the adversary
defines xi = ¬xi�1 for i = {2, . . . , n} making sure that the algorithm does not guess any of the bits.
Thus, the algorithm achieves objective function value 1.

Consider the randomized algorithm that selects zi uniformly at random. The probability that
it picks z1, . . . , zn�1 to be di↵erent from x2, . . . , xn in each coordinate is exactly 1/2n�1. Therefore
with probability 1 � 1/2n�1 it guesses at least one bit correctly. Therefore the expected value of
the objective function is at least g(n)/(1� 1/2n�1) · (1� 1/2n�1) = g(n).

Corollary 3.4.2. The gap between ⇢OBL and ⇢ADOFF can be arbitrarily large.

Thus, there are problems for which randomness helps a lot. What about another extreme? Are
there problems where randomness does not help at all? It turns out “yes” and, in fact, we have
already seen such a problem, namely, the One-Way Trading problem.

Theorem 3.4.3. Let ALG be a randomized algorithm for the One-Way Trading problem. Then
there exists a deterministic algorithm ALG0 for the One-Way Trading problem such that

⇢(ALG0)  ⇢OBL(ALG).

Proof. Recall that ALG is a distribution on deterministic algorithms ALGR indexed by randomness
R. For each r consider the deterministic algorithmALGr running on the input sequence p1, . . . , pn.
Let fi(r, p1, . . . , pi) be the fraction of savings exchanged on day i. We can define the average fraction
of savings exchanged on day i, where the average is taken over all deterministic algorithms in the
support of ALG. That is

efi(p1, . . . , pi) :=
Z

fi(r, p1, . . . , pi) dr.

Observe that efi(p1, . . . , pi) � 0 and moreover

nX

i=1

efi(p1, . . . , pi) =
nX

i=1

Z
fi(p1, . . . , pi) dr =

Z nX

i=1

fi(p1, . . . , pi) dr =

Z
1 dr = 1.

Therefore, efi form valid fractions of savings to be traded on n days. The fraction efi depends
only on p1, . . . , pi and is independent of randomness r. Thus, these fractions can be computed by
a deterministic algorithm (with the knowledge of ALG) in the online fashion. Let ALG0 be the
algorithm that exchanges efi(p1, . . . , pi) of savings on day i. It is left to verify the competitive ratio
of ALG0. On input p1, . . . , pn it achieves the value of the objective

nX

i=1

pi efi(p1, . . . , pi) =
nX

i=1

pi

Z
fi(r, p1, . . . , pi) dr =

Z nX

i=1

pifi(r, p1, . . . , pi) dr

= ER(ALGR(p1, . . . , pn)) � OPT (p1, . . . , pn)/⇢OBL(ALG).

The Modified String Guessing problem provides an example of a problem where using random-
ness improves competitive ratio significantly. Notice that the randomized algorithm uses n bits
of randomness to achieve this improvement. Next, we describe another extreme example, where a
single bit of randomness helps improve the competitive ratio.

3.4. HOW MUCH CAN RANDOMNESS HELP? 37

Proportional Knapsack
Input: (w1, . . . , wn) where wi 2 R�0; W — bin weight capacity, known in advance.
Output: z = (z1, z2, . . . , zn) where zi 2 {0, 1}
Objective: To find z such that

Pn
i=1 ziwi is maximized subject to

Pn
i=1 ziwi W .

In this problem the goal is to pack maximum total weight of items into a single knapsack of
weight capacity W (known in advance). Item i is described by its weight wi. For item i the
algorithm provides a decision zi such that zi = 1 stands for packing item i, and zi = 0 stands for
ignoring item i. If an algorithm produces an infeasible solution (that is total weight of packed items
exceeds W), the payo↵ is �1. Thus, without loss of generality, we assume that an algorithm never
packs an item that makes the total weight exceed W . Our first observation is that deterministic
algorithms cannot achieve constant competitive ratios.

Theorem 3.4.4. Let ✏ > 0 be arbitrary and let ALG be a deterministic online algorithm for the
Proportional Knapsack problem. Then we have

⇢(ALG) � 1� ✏

✏
.

Proof. Let n 2 N. We describe an adversarial strategy for constructing inputs of size n. First, let
W = n. Then the adversary presents inputs ✏n until the first time ALG packs such an input. If
ALG never packs an input item of weight ✏n, then ALG packs total weight 0, while OPT � ✏n,
which leads to an infinitely large competitive ratio.

Suppose that ALG packs wi = ✏n for the first time for some i < n. Then the adversary
declares wi+1 = n(1 � ✏) + ✏ and wj = 0 for j > i + 1. Therefore ALG cannot pack wi+1 since
wi + wi+1 = n+ ✏ > W . Moreover, packing any of wj for j > i+ 1 doesn’t a↵ect the value of the
objective function. Thus, we have ALG = ✏n, whereas OPT = wi+1 = n(1 � ✏) + ✏. We get the

competitive ratio of n(1�✏)+✏
✏n � n(1�✏)

✏n = 1�✏
✏ .

Next we show that a randomized algorithm, which we call SimpleRandom, that uses only 1 bit
of randomness achieves competitive ratio 4. Such 1 bit randomized algorithms have been termed
“barely random”. Algorithm 7 provides a pseudocode for this randomized algorithm. The algorithm
has two modes of operation. In the first mode, the algorithm packs items greedily — when a new
item arrives, the algorithm checks if there is still room for it in the bin and if so packs it. In
the second mode, the algorithm waits for an item of weight � W/2. If there is such an item, the
algorithm packs it. The algorithm ignores all other weights in the second mode. The algorithm
then requires a single random bit B, which determines which mode the algorithm is going to use
in the current run.

Algorithm 7 Simple randomized algorithm for Proportional Knapsack
procedure SimpleRandom

Let B 2 {0, 1} be a uniformly random bit . W is the knapsack weight capacity
if B = 0 then

Pack items w1, . . . , wn greedily, that is if wi still fits in the remaining weight knapsack
capacity, pack it; otherwise, ignore it.

else
Pack the first item of weight �W/2 if there is such an item. Ignore the rest of the items.

Theorem 3.4.5.
⇢OBL(SimpleRandom)  4.

38 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

Proof. The goal is to show that OPT  4E(SimpleRandom) on any input sequence w1, . . . , wn. We
distinguish two cases.

Case 1: for all i 2 [n] we have wi < W/2. Subcase 1(a):
Pn

i=1wi  W . In this subcase,
SimpleRandom running in the first mode packs all of the items. This happens with probability
1/2, thus we have E(SimpleRandom) � 1/2

P
iwi and OPT =

P
iwi. Therefore, it follows that

OPT  2E(SimpleRandom) in this subcase. Subcase 1(b):
P

iwi > W . Consider SimpleRandom
running in the first mode again. There is an item that SimpleRandom does not pack in this case.
Let wi be the first item that is not packed. The reason wi is not packed is that the remaining
free space is less than wi, but we also know that wi < W/2. This means that SimpleRandom
has packed total weight at least W/2 by the time wi arrives. Since SimpleRandom runs in the
first mode with probability 1/2 we have that E(SimpleRandom) � (1/2)(W/2) = W/4 � OPT/4,
where the last inequality follows from the trivial observation that OPT W . Rearranging we have
OPT  4E(SimpleRandom) in this subcase.

Case 2: there exists i 2 [n] such that wi �W/2. Consider SimpleRandom running in the second
mode: it packs the first wi such that wi � W/2. Since SimpleRandom runs in the second mode
with probability 1/2 we have E(SimpleRandom) � (1/2)(W/2) = W/4 � OPT/4. Thus, it follows
that OPT  4E(SimpleRandom).

This covers all possibilities. We got that in all cases the competitive ratio of SimpleRandom is
at most 4.

3.5 Derandomization

Randomness is a double-edged sword. On one hand, when we are faced with a di�cult problem for
which no good deterministic algorithm exists, we do hope that adding randomness would allow one
to design a much better (and often simpler) randomized algorithm. On another hand, when we have
an excellent randomized algorithm, we hope that we can remove its dependence on randomness,
since randomness as a resource is quite expensive. If we can design a deterministic algorithm with
the same guarantees (e.g., competitive ratio) as the randomized algorithm ALG, we say that ALG
has been “derandomized.” Whether all algorithms can be derandomized or not depends on the
computational model. For example, we have seen that the general-purpose derandomization is not
possible for online algorithms versus an oblivious adversary, but it is possible for online algorithms
versus an adaptive o✏ine adversary. In the Turing machine world, it is a big open problem whether
all of bounded-error polynomial time algorithms (i.e., the class BPP) can be derandomized or
not. Many believe that such derandomization of BPP should be possible. When general-purpose
derandomization is not possible, it is still an interesting question to see if derandomization is
possible for a particular problem. We saw one such example for the One-Way Trading problem.
Derandomization is a big topic and it will come up several times in this book.

In the remainder of this section, we would like to discuss why randomness as a resource can
be expensive. Best scientists in human history have argued whether “true randomness” exists, or
if randomness is simply a measure of our ignorance. The latest word on the subject is given by
quantum mechanics, which says that, indeed, to the best of our understanding of how the world
works there are truly random events in the nature. In principle, one could build machines that
generate truly random bits based on quantum e↵ects, but there are no cheap commercially available
solutions like that at this moment (to the best of our knowledge). Instead, random bit generators
implemented on the o↵-the-shelf devices are pseudo-random. The pseudo-random bits can come
from di↵erent sources — they can be mathematically generated, or they can be generated from
some physical processes, such as coordinates of the latest mouse click on the desktop, or voltage

3.6. LOWER BOUND FOR PAGING 39

noise in the CPU. Standard programming libraries take some combination of these techniques to
produce random-looking bits. How can one detect if the bits that are being generated are truly
random or pseudo-random? For that we could write a program, called a test, that receives a string
of bits and outputs either “YES” for truly random or “NO” for pseudo-random. The test could
be as simple as checking sample moments (mean and variance, for example) of the incoming bits
and seeing if it falls not too far from the true moments of the distribution. The test could also
compute autocorrelation, and so on. Typically, it is not hard to come up with pseudo-random
generators that would “fool” such statistical tests to believe that the bits are truly random. But it
is again a big open problem to come up with a pseudo-random generator that would provably fool
all reasonable tests. Fortunately, typically all we need for a randomized algorithm to run correctly
is for the pseudo-random bits to pass statistical tests. This is why Quicksort has an excellent
empirical performance even with pseudo-random generators. In addition, even if the bits are not
truly random the only side-e↵ect that your program might experience is a slight degradation in
performance, which is not critical. However, there are cases where breaking truly random guarantee
can result in catastrophic losses. This often happens in security, where using pseudo-random tactics
(such as generating randomness based on mouse clicks) introduces a vulnerability in the security
protocol. Since this book doesn’t deal with the topic of security, we will often permit ourselves to
use randomness freely. Nonetheless, we realize that random bits might be expensive and we shall
often investigate whether a particular randomized algorithm can be derandomized or not.

3.6 Lower Bound for Paging

In this section we revisit the Paging problem. We shall prove a lower bound on the competitive
ratio achieved by any randomized algorithm. In the process, we shall discover a general-purpose
technique called Yao’s minimax principle. In the following section, we will formally state and
discuss the principle. To state the result we need to introduce the nth harmonic number.

Definition 3.6.1. The nth Harmonic number, denoted by Hn, is defined as

Hn = 1 +
1

2
+ · · ·+ 1

n
=

nX

i=1

1

i
.

An exercise at the end of this chapter asks you to show that Hn ⇡ ln(n). Now, we are ready to
state the theorem:

Theorem 3.6.1. Let ALG be a randomized online algorithm for the Paging problem with cache
size k. Then we have

⇢OBL(ALG) � Hk.

Proof. We will first show that there is a distribution on input sequences x1, . . . , xn such that every
deterministic algorithm achieves average competitive ratio greater than Hk with respect to this
distribution. We will then see how this implies the statement of the theorem.

Here is the distribution: pick each xi uniformly at random from [k+1], independently of all other
xj . For every deterministic algorithm, the expected number of page faults is k+ (n� k)/(k+1) �
n/(k + 1) — there are k initial page faults, and there is a 1/(k + 1) chance of selecting a page not
currently in the cache in each step after the initial k steps. Next, we analyze the expected value
of OPT . As in Section 1.6, let’s subdivide the entire input sequence into blocks B1, . . . , BT , where
block B1 is the maximal prefix of x1, . . . , xn that contains k distinct pages, B2 is obtained in the
same manner after removing B1 from x1, . . . , xn, and so on. Arguing as in Section 1.6, we have

40 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

a bound on OPT � T � 1. Note that T is a random variable, and E(OPT) � E(T) � 1. Thus,
the asymptotic competitive ratio is bounded below by limn!1

n
(k+1)E(T) . If |Bi| were i.i.d., then

we could immediately conclude that E(T) = n/E(|B1|). Unfortunately, the |Bi| are not i.i.d., since
they have to satisfy |B1|+ · · ·+ |BT | = n. For increasing n, |Bi| start behaving more and more as
i.i.d. random variables. Formally, this is captured by the Elementary Renewal Theorem from the
theory of renewal processes, which for us implies that the competitive ratio is bounded below by
limn!1

n
(k+1)n/E(W) = E(W)/(k + 1), where W is distributed as |B1| in the limit (i.e., n =1).

Thus, let’s consider n = 1 and compute |B1|. Computing E(|B1|) is known as the coupon
collector problem. We can write |B1| = Z1 + · · ·+ Zk + Zk+1 � 1, where Zi is the number of pages
we see before seeing an ith new page (see it for the first time). The last term (�1) means that
we terminate B1 one step before seeing k + 1st new page for the first time. Then Z1 = 1, i.e.,
any page that arrives first is the new first page. After that, we have the probability k/(k + 1) of
seeing a page di↵erent from the first one in each consecutive step. Therefore, Z2 is a geometrically
distributed random variable with parameter p2 = k/(k + 1), hence E(Z2) = 1/p2 = (k + 1)/k.
Similarly, we get Zi is geometrically distributed with parameter pi = (k � i + 2)/(k + 1), hence
E(Zi) = 1/pi = (k + 1)/(k � i + 2). Thus, we have E(|B1|) = E(Z1) + E(Z2) + · · · + E(Zk) =
1+(k+1)/k+· · ·+(k+1)/(k�i+2)+· · ·+(k+1)/2+((k+1)/1�1) = (k+1)(1/k+· · ·+1) = (k+1)Hk.
Combining this with above, we get the bound on competitive ratio of any deterministic algorithm:
(k + 1)Hk/(k + 1) = Hk.

Let Xn denote the random variable which is the input sequence generated as above of length n.
Also note that ALG is a distribution on deterministic algorithms ALGR. We have proved above
that for each deterministic algorithm ALGr it holds that

EXn(ALGr(X
n)) � HkEXn(OPT (Xn)) + o(EXn(OPT (Xn)).

Taking the expectation of the inequality over r, we get

EREXn(ALGR(X
n)) � HkEXn(OPT (Xn)) + o(EXn(OPT (Xn)).

Exchanging the order of expectations, it follows that

EXnER(ALGR(X
n)) � HkEXn(OPT (Xn)) + o(EXn(OPT (Xn)).

By the definition of expectation, it means that there exists a sequence of inputs xn such that

ER(ALGR(x
n)) � HkOPT (xn) + o(OPT (xn)).

3.7 Yao’s Minimax Principle

In the proof of Theorem 3.6.1 we deduced a lower bound on randomized algorithms against oblivious
adversaries from a lower bound on deterministic algorithms against a particular distribution of
inputs. This is a general technique that appears in many branches of computer science and is
often referred to as Yao’s Minimax Principle. In words, it can be stated as follows: the expected
cost of a randomized algorithm on a worst-case input is at least as big as the expected cost of
the best deterministic algorithm with respect to a random input sampled from a distribution. Let
ALG denote an arbitrary randomized algorithm, i.e., a distribution over deterministic algorithms
ALGR. Let µ denote an arbitrary distribution on inputs x. Then we have

max
x

ER(cost(ALGR, x)) � min
ÂLG:deterministic

EX⇠µ(cost(]ALG,X)). (3.2)

3.8. UPPER BOUND FOR PAGING 41

Observe that on the left-hand side ALG is fixed in advance, and x is chosen to result in the largest
possible cost of ALG. On the right-hand side the input distribution µ is fixed in advance, and
]ALG is chosen as the best deterministic algorithm for µ. Thus, to apply this principle, we fix some
distribution µ and show that the expected cost of every deterministic algorithm with respect to
µ has to be large, e.g., at least ⇢. This immediately implies that any randomized algorithm has
to have cost at least ⇢. In the above, cost() is some measure function. For example, in online
algorithms cost() is the competitive ratio (strict or asymptotic), in o✏ine algorithms cost() is
the approximation ratio, in communication complexity cost() is the communication cost, and so
on. Yao’s minimax principle is by far the most popular technique for proving lower bounds on
randomized algorithms. The interesting feature of this technique is that it is often complete. This
means that under mild conditions you are guaranteed that there is a distribution µ that achieves
equality in (3.2) for the best randomized algorithm ALG. This way, not only you can establish a
lower bound on performance of all randomized algorithms, but you can, in principle, establish the
strongest possible such lower bound, i.e., the tight lower bound, provided that you choose the right
µ.

In order to state Yao’s minimax principle formally, we need to have a formal model of algorithms.
This makes it a bit awkward to state for online algorithms, since there is no single model. We would
have to state it separately for request-answer games, for search problems, and for any other “online-
like” problems that do not fit either of these categories. In addition, for a maximization problem
(for example, see the poof of Theorem 7.4.5 in Chapter 7), the statement of the Yao minimax
principle is di↵erent than for minimization games (i.e., the inequality is reversed) . Moreover,
completeness of the principle depends on finiteness of the answer set in the request-answer game
formulation. Therefore, we prefer to leave Yao’s Minimax Principle in the informal way stated
above, especially considering that it’s application in each particular case is usually straightforward
(as in Theorem 3.6.1) and doesn’t warrant a stand-alone black-box statement.

3.8 Upper Bound for Paging

In this section we present an algorithm called Mark that achieves the competitive ratio  2Hk

against an oblivious adversary for the Paging problem. In light of Theorem 3.6.1, this algorithm is
within a factor of 2 of the best possible online algorithm.

The pseudocode of Mark appears in Algorithm 8 and it works as follows. The algorithm keeps
track of cache contents, and it associated a Boolean flag with each page in the cache. Initially the
cache is empty and all cache positions are unmarked. When a new page arrives, if the page is in the
cache, i.e., it’s a page hit, then the algorithm marks this page and continues to the next request.
If the new page is not in the cache, i.e., it’s a page miss, then the algorithm picks an unmarked
page uniformly at random, evicts it, brings the new page in its place, and sets the status of the
new page to marked. If it so happens that there are no unmarked pages at the beginning of this
process, then the algorithm unmarks all pages in the cache prior to processing the new page.

By tracing the execution of the algorithm on several sample input sequences one may see the
intuition behind it: pages that are accessed frequently will be often present in the cache in the
marked state, and hence will not be evicted, while other pages are evicted uniformly at random
from among all unmarked pages. In the absence of any side information about the future sequence
of requested pages, all unmarked pages seem to be equally good candidates. Therefore, picking a
page to evict from a uniform distribution is a natural choice.

Theorem 3.8.1.
⇢OBL(Mark)  2Hk.

42 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

Algorithm 8 Randomized algorithm for Paging against oblivious adversaries
procedure Mark

C[1...k] stores cache contents
M [1...k] stores a Boolean flag for each page in the cache
Initialize C[i] �1 for all i 2 [k] to indicate that cache is empty
Initialize M [i] False for all i 2 [k]
j 1
while j  n do

if xj is in C then . page hit!
Compute i such that C[i] = xj
if M [i] = False then

M [i] True

else . page miss!
if M [i] = True for all i then

M [i] False for all i

S {i | M [i] = False}
i uniformly random element of S
Evict C[i] from the cache
C[i] xj
M [i] True

j j + 1

Proof. Let x1, . . . , xn be the input sequence chosen by an oblivious adversary. As in Section 1.6,
subdivide the entire input sequence into blocks B1, . . . , Bt, where block B1 is the maximal prefix
of x1, . . . , xn that contains k distinct pages, B2 is obtained in the same manner after removing B1

from x1, . . . , xn, and so on.

Pages appearing in block Bi+1 can be split into two groups: (1) new pages that have not
appeared in the previous block Bi, and (2) those pages that have appeared in the previous block
Bi. Clearly, the case where all pages of type (1) appear before all pages of type (2) results in the
worst case number of page faults of algorithm Mark. Let mi be the number of pages of type (1) in
block Bi, then block Bi contains k �mi pages of type (2).

It is easy to see that while processing the first page from each block Bi all existing pages in the
cache become unmarked. Every new page of type (1) that is brought in results in a page fault and
becomes marked in the cache. A page of type (2) may or may not be present in the cache. If it is
not present in the cache, then it is brought in marked; otherwise, it becomes marked. A marked
page is never evicted from the cache while processing block Bi.

Consider the first page of type (2) encountered in block Bi. Since all mi pages of type (1)
have already been processed, there are k �mi unmarked pages of type (2) currently in the cache.
Moreover, since the choice of an unmarked page to evict during a page fault is uniform, then
the k �mi unmarked pages of type (2) currently in the cache are equally likely to be any of the
original k jobs of type (2) in the cache. Thus, the probability that the first page of type (2) is
present (unmarked) in the cache is

�
k�1
mi

�
/
�

k
mi

�
= (k�mi)/k. Consider the second page of type (2)

encountered in block Bi. We can repeat the above analysis by disregarding the first job of type
(2) and pretending that cache size is k � 1 (since the first job of type (2) has been marked and
for during of block Bi it will never be evicted). Therefore, the probability that the second page of
type (2) is present (unmraked) in the cache is (k �mi � 1)/(k � 1). Proceeding inductively, the

3.9. EXERCISES 43

probability that the jth job of type (2) in block Bi is present (unmarked) in the cache when it is
encountered for the first time is (k �mi � j + 1)/(k � j + 1). Therefore, the expected number of
page faults in block Bi is

mi +
k�miX

j=1

✓
1� k �mi � j + 1

k � j + 1

◆
= mi

k�miX

j=1

mi

k � j + 1
= mi +mi(Hk �Hmi)  miHk.

Note that the number of distinct pages while processing Bi�1 and Bi is k +mi. Therefore, OPT
encounters at least mi page faults. The number of page faults of OPT in B1 is m1. Thus, OPT
encounters at least (

P
imi) /2 page faults overall, whereas Mark has expected number of page

faults at most Hk
P

imi.

3.9 Exercises

1. Prove Theorem 3.3.1.

2. Prove that ln(n)  Hn  ln(n) + 1.

3. The deterministic Algorithm 6 in Chapter 2 for the One-Way Trading problem was obtained
from some randomized algorithm (essentially following the steps of Theorem 3.4.3). Find
such randomized algorithm and show that after applying the conversion in the proof of The-
orem 3.4.3, you get back Algorithm 6.

4. Prove that ⇢OBL(Mark) > Hk.

5. (Harder) Prove that ⇢OBL(Mark) � 2Hk � 1.

6. Prove that if requested pages are restricted to come from [k+1] then Mark is Hk-competitive.

7. Give an example of an online problem where there is a gap between strict competitive ratio
and asymptotic competitive ratio. First, do it for deterministic algorithms, then do it for
randomized algorithms against oblivious adversaries. Try to achieve the gap that is as large
as possible.

3.10 Historical Notes and References

The di↵erent types of adversaries and their relative power is studied in Ben-David et al citeBen-
DavidBKTW94.

The modified bit guessing game is an adaption of the Böckenhauer el al [9] string guessing game
that was used to establish inapproximations for online algorithms with advice. e

The 2Hk Mark algorithm for randomized paging and the Hk lower bound for any randomized
online algorithm is due to Fiat et al [26]. This was followed by McGeoch and Sleator who otanined
the optimal Hk competitive Partitioning algorithm. Randomized paging is the most prominent
natural example for which randomization leads to a signiifcant improvement in the competitive
ratio. Achlioptas, Chrobak and Noga [1] provide a simpler and more e�cient Hk competitive
algorithm Equitable in which the time complexity for each request does not depend on the number
of previous requests.

The minimax theorem was originally proved by John von Neumann [48] in the context of zero-
sum games, and it was adapted to randomized algorithms by Andrew Yao [50]. It is the central

44 CHAPTER 3. RANDOMIZED ONLINE ALGORITHMS

technique used for proving negative results about randomized algorithms. Yao’s application was in
proving negative results concerning the minimum time needed for a problem in a given computa-
tional model. As we have seen in this chapter, it applies equally well to proving negative results
concerning competitive ratios. Since paging is a minimization problem, the application of Yao’s
minimax principle in Section 3.6 follows the statement given in Section 3.7. For a maximization
problem, we have the ambiguity as to whether or not competitive ratios are stated to be at most
or at least equal to one. In applying the principle when dealing with ratios ⇢ < 1, we need a
di↵erent statement of the principle so as to prove an “upper bound” (i.e., a negative result) on the
competitive ratio.

Chapter 4

Some Classical Problems

As mentioned in the introduction, there were some early seminal papers that began what became
known as competitive analysis. In particular, Paging and List Accessing are fundamental online
problems that attracted much attention and furthermore motivated the Metrical Task Systems
and the k-Server problems. These problems have provided frameworks that have led to innovative
algorithmic approaches. As we have also mentioned in the introduction, other classical o✏ine
optimization problems, namely the Makespan and Bin Packing problems, were previously studied
in the online framework. All of these “classical problems” continue to motivate substantial research
activity. In this section, we will mainly review results that have been known since the initial
interest in competitive analysis. In Chapter 9, we will present relatively new results providing
some indication of the continued interest in these problems.

4.1 Potential Function Method Primer

The potential function method is an important technique in the analysis of algorithms. In this
section we provide a high level description of this method, give a rather straightforward application
of this method in the area of dynamic data structures, and discuss how this method is applied in
the setting of online algorithms. In the next section, we apply this method to the List Accessing
Problem.

In the setting of dynamic data structures, the task is to design a data structure that supports
di↵erent types of operations so as to minimize the total cost (or equivalently, the average/amortized
cost) of processing a sequence of operations op1, op2, . . . , opm chosen by an adversary. There are
typically only finitely many di↵erent types of operations, e.g., insert, delete, update, etc. It is
usually easy to bound the worst-case cost of the ith operation opi if we assume that it is of a given
type. For example, we might know that if opi is of type 1 it costs 1, but if it is of type 2 it costs i. The
simplest way to bound the total cost is to prove a uniform worst-case bound cost(opi)  ci that is
independent of the type of opi. Then we could conclude that

Pm
i=1 cost(opi) 

Pm
i=1 ci. Proceeding

naively, we could obtain the uniform worst-case bound on the cost of opi by the maximum cost over
all possible types, since we don’t know the type of opi chosen by the adversary. However, most of
the time this leads to an extremely pessimistic estimate of the total cost, since not all sequences
of operations are possible. It could happen (and often does) that every expensive operation has to
be preceded by many inexpensive operations. By taking the maximum possible cost and applying
it to every single operation, we are pretending as if every single operation can be an expensive
operation.

The idea behind the potential method is to smoothen costs of individual operations: introduce a

45

46 CHAPTER 4. SOME CLASSICAL PROBLEMS

virtual cost/amortized cost of an operation with the goal of making cheap operations have slightly
higher amortized costs and making expensive operations have significantly lower amortized costs.
This allows you to get a uniform bound on each operation. If you manage to define amortized
costs so that the total amortized cost doesn’t di↵er too much from the total real cost then you
get a reasonable bound by the naive approach described above, but applied to the amortized costs
rather than the real costs. Intuitively, this is similar to financial maintenance funds of buildings
– everyone living in the building contributes slightly more than the real on-going month-to-month
expenses, so that when the building requires a big repair resulting in a huge and sudden expense,
it can be covered out of the accumulated reserve.

Let’s look at it more formally in the setting of dynamic data structures. Let S be the set
of all possible internal states of the data structure (e.g., cache contents, arrays, pointers, etc.).
Let si 2 S be the state of the data structure at time i. Note that s0 is the initial state prior to
seeing any operations. Define a function, called the potential function, � : S ! R, and define the
virtual/amortized cost gcost(opi) = cost(opi) + �(si)� �(si�1). Then we have

mX

i=1

gcost(opi) =
mX

i=1

(cost(opi) + �(si)� �(si�1)) =

mX

i=1

cost(opi)

!
+ �(sm)� �(s0),

where the last equality holds since the sum of terms �(si) � �(si�1) is telescoping. Thus, if
�(sm) � �(s0) is o(OPT) then the sum of amortized costs is a good approximation of the sum
of real costs. Since you control �, this gives you the possibility to define gcosts that are more
well-behaved than the original costs.

As an example we briefly mention a vector, that is, the data structure for a dynamically re-
sizeable array. The goal in this problem is to have quick random access to stored elements, but
also allow the storage to grow as much as needed to accommodate new elements that are being
inserted. Maintaining a single array is not an option, because arrays are of fixed size. Maintaining
a balanced binary search tree is also not an option, because we would like to have O(1) access time
to the ith stored element. The idea is to maintain an array A of capacity N that is dynamically
resized when the capacity is reached. Thus, when A becomes full, you create a new array of twice
the capacity, i.e., N 2N , and you copy the contents of the old array over to the new array. The
internal state of this data structure is a pair (n,N) where N is the capacity and n is how many
elements are actually stored with n  N .

Consider a sequence of operations op1, . . . , opm where each operation is either insert or access.
The insert operation inserts a new element at the end of the array, and each access operation
returns an element at the specified position. Clearly, each access operation costs 1). However,
insert operations are of two types: (1) if we insert an element when n < N then the operation
costs 1, and (2) if we insert an element when n = N , then the operation costs N , since we need to
double the capacity and copy the contents. The worst-case cost of an operation is then O(N) and
N can be as large as ⇥(m). If we estimate the cost of each operation by O(m), then we get that
the cost of all operations is O(m2). This is too pessimistic, because we won’t be doubling the size
of array at each step. Let (ni, Ni) be the state at time i.

We introduce �(ni, Ni) = 2ni � Ni. Then we define gcost(opi) = cost(opi) + �(ni, Ni) �
�(ni�1, Ni�1). If opi is an insertion and ni�1 < Ni�1, then Ni = Ni�1 and ni = ni�1 + 1. So
�(ni, Ni)��(ni�1, Ni�1) = (2ni�Ni)�(2ni�1�Ni�1) = (2(ni�1+1)�Ni�1)�(2ni�1�Ni�1) = 2,
and cost(opi) = 1; therefore, gcost(opi) = 3. If opi is insertion and ni�1 = Ni�1 then ni = ni�1 + 1
and Ni = 2Ni�1 = 2ni�1. So �(ni, Ni) � �(ni�1, Ni�1) = (2ni � Ni) � (2ni�1 � Ni�1) =
(2(ni�1 + 1) � 2Ni�1) � (2ni�1 � Ni�1) = 2 � Ni�1 = �ni�1 + 2, whereas cost(opi) = ni�1.
Therefore we have gcost(opi) = ni�1 + (�ni�1 + 2) = 2. In all cases, we get that the amortized

4.2. LIST ACCESSING PROBLEM 47

cost of an operation is O(1). Hence the total amortized cost is O(m). Combining this with the
observation that �(nm, Nm)  Nm  m and �(n0, N0) = 0 and the telescoping sum trick, we get
that the actual total cost is O(m); that is, linear instead of quadratic in the number of operations!

In the case of online algorithms, the internal state of the online algorithm often does not have
enough information to define a useful potential function. Instead, we fix an o✏ine optimal algorithm
and pretend that it runs on the same input sequence (with the knowledge of the future) in parallel
with our online algorithm. The potential function can then depend on both internal states – that
of our online algorithm and that of the o✏ine optimal solution.

4.2 List Accessing Problem

In this section, we consider the static version of the famous List Accessing problem with unit costs.
In this problem, you maintain an ordered list of m elements. Each online request is to a particular
element in the list. To service this request, you have to access the element in the list. If the
requested element is at position i in the list, the cost of accessing that element is i. At any point
in time, you can swap two adjacent elements at a cost of 1. The goal is to maintain the ordered
list in such a way as to minimize the total cost of processing all requests.

Static List Accessing Problem with Unit Costs
Input: (r1, . . . , rn);m — m is the number of elements labelled by [m]; ri 2 [m] is the ith request
for an element.
Output: (�1, . . . ,�n) where �i : [m] ! [m] is a permutation denoting the ordering of the list
immediately prior to processing request ri: �i(j) is the position of element j in the list prior to
processing item i; �1 is the identity permutation.
Objective: To find �1, . . . ,�n so as to minimize total cost, which consists of the number of swaps
of two adjacent elements required to transform �i into �i+1 plus the cost of processing item ri,
given by �i(ri), summed over all i.

More general versions of the List Accessing problem have also been considered in the literature.
Although we do not cover these more general problems here, we mention a few popular versions.
The first generalization is to the dynamic version of the problem, where new elements can be
added to the list and old elements can be removed from the list. The new operations incur costs
proportional to the position of the element to be removed or the position where the new element is
to be inserted. The second generalization is to consider two types of swaps: (a) swaps that involve
ri immediately after processing it, and (b) swaps that involve elements 6= ri immediately following
accessing ri. The idea is that type (a) swaps should intuitively be cheaper than type (b) swaps —
this is because in accessing ri we would have computed a pointer to ri within a list, while swapping
other elements incurs an additional cost of finding those elements within the list. Thus in this
second generalization, one assigns di↵erent costs to swaps of type (a) and type (b).

4.2.1 Deterministic Algorithms

The following are three classical algorithms for the static List Accessing problem:

Move-to-Front (MTF): after processing an item, move the item to the front of the list.

Transpose (TRANS): after processing an item, swap it with the immediately preceding item (if
there is one).

48 CHAPTER 4. SOME CLASSICAL PROBLEMS

Frequency Count (FC): maintain an array F : [m]! Z�0 such that F [j] is the number of times
element j has been accessed so far. Maintain �i such that the elements are ordered in the
order of non-increasing F [j].

Exercises 4-7 asks you to formalize TRANS and FC and analyze their competitive ratios (spoiler:
they are not good). In the next two sections we analyze the performance of MTF. The pseudocode
for MTF is presented in Algorithm 9. The following easy observation is used a few times throughout
the pseudocode: the inverse permutation ��1

i has the meaning ��1
i (j) = the name of the element

(in [m]) located at position j in the list immediately preceding the ith request.

Algorithm 9 Move-to-Front algorithm for the List Accessing problem.
procedure MTF

�1 the identity permutation on [m]
i 1
while i  n do

Process the new request ri 2 [m]
. In the following steps we construct the new permutation �i+1

�i+1(ri) 1 . move ri to the front of the list
for j = 1 to j < �i(ri) do

` ��1
i (j) . element at position j in �i

�i+1(`) j + 1 . shift this element over by one position

. Positions of other elements are unchanged
for j = �i(ri) + 1 to j  m do

` ��1
i (j)

�i+1(`) j

i i+ 1

Observe that the cost of moving ri to the front of the list is �i(ri)�1 since the element ri needs
to be swapped with each of the preceding elements. Together with the cost �i(ri) of accessing
element ri, we get that the overall cost of processing ri and preparing the new permutation �i+1 is
2�i(ri)� 1.

The MTF algorithm is very important in theoretical and practical aspects of computer science.
In addition to the obvious applications of MTF to memory management, there are much less obvious
applications of MTF to e�cient encoding of information for communication (almost matching the
Shannon’s bound), as well as e�cient compression that has been shown to empirically outperform
gzip.

4.2.2 Upper Bound on MTF via the Potential Method

In this subsection we prove that MTF is 4-competitive using the potential function method as
outlined in Section 4.1.

Theorem 4.2.1.
⇢(MTF)  4.

Proof. Let r1, . . . , rn be the input sequence, (�1, . . . ,�n) be the list orders of MTF where �1 is the
identity permutation and �i is the order of the list immediately prior to the ith item arrival. Lastly,
let (�0

1, . . . ,�
0
n) denote the list orders of some optimal algorithm. We say that a pair of elements j

and k form an inversion with respect to �i and �0
i if either (1) �i(j) < �i(k) and �0

i(j) > �0
i(k), or

4.2. LIST ACCESSING PROBLEM 49

(2) �i(j) > �i(k) and �0
i(j) < �0

i(k). In words, a pair of elements form an inversion w.r.t. �i and �0
i

if the two elements appear in di↵erent orders in �i and �0
i. The value of the potential function at

step i, denoted by �i, is defined as follows:

�i = twice the number of inversions w.r.t �i+1 and �0
i+1.

Let cost(i) = 2�i(ri)�1 denote the cost that MTF incurs while processing request ri. We define
the amortized cost gcost(i) as usual:

gcost(i) = cost(i) + �i � �i�1.

Observe that �0 = 0 since �1 = �0
1 = the identity permutation. Also, we have �i � 0 for all

i. Thus, by the standard application of the potential function method we have
Pn

i=1
gcost(i) =

�n ��0 +
Pn

i=1 cost(i) �
Pn

i=1 cost(i). Hence to prove the statement of the theorem it su�ces to
show that

Pn
i=1

gcost(i)  4OPT (r1, . . . , rn). We establish this claim by showing that for each i,
the amortized cost is at most 4 times the cost incurred by OPT in processing ri. We first analyze
how the potential function changes when �0

i+1 = �0
i, i.e., when OPT doesn’t change its permutation

while processing ri. Later, we will see that the invariant gcosti  4OPT (ri) continues to hold even
if �0

i 6= �0
i+1.

For now, assume that �0
i = �0

i+1. To see how the value of the potential function changes in
processing ri we need to see how many pairs of elements j, k change their inversion status: j, k was
an inversion w.r.t. �i and �0

i and j, k becomes not an inversion w.r.t. �i+1 and �0
i+1, and vice versa.

First of all, observe that if j 6= ri and k 6= ri then their relative orders are exactly the same in �i
and �i+1, hence they do not change their inversion status. Thus, we only need to consider pairs
that involve ri. For the following argument it is helpful to consult Figure 4.1. Let k be an element
that appears after ri in the MTF’s list, i.e., �i(k) > �i(ri). Moving ri to the front of the list does
not a↵ect the relative order of ri and k in the MTF’s list, therefore ri and k do not change their
inversion status and such pairs do not need to be considered as well. Consider an element j that
appears before ri in �i. Moving ri to the front of the list flips the inversion status of j, ri. In order
for j, ri to flip the status from being an inversion to not being an inversion, j has to appear before
ri in �0

i, as well. Thus, out of all �i(ri) � 1 elements preceding ri in the MTF’s list, there can be
at most �0

i(ri)� 1 pairs that switch from being non-inversion to inversion. The remaining at least
�i(ri)� �0

i(ri) pairs switch from being inversion to non-inversion. Thus, we get that

gcost(i) = cost(i) + �i � �i�1

 2�i(ri)� 1 (the true cost of the operation)

+ 2(�0
i(ri)� 1) (bound on the positive change in the potential function)

� 2(�i(ri)� �0
i(ri)) (upper bound on the negative change in the potential function)

 4�0
i(ri)

Observe that in this case the cost of processing ri by OPT is OPT (ri) = �0
i(ri), hence we get

the desired statement that gcost(i)  4OPT (ri).
To handle the general case of �0

i+1 6= �0
i we observe that we can treat transformation of �0

i

into �0
i+1 one swap of adjacent items at a time. If OPT swaps any two adjacent items j, k then

it contributes 1 to its own cost and it can create at most 1 inversion leading to the change in the
potential function of at most 2.

50 CHAPTER 4. SOME CLASSICAL PROBLEMS

j

MTF

OPT

�i(ri)

�0
i(ri)

�i+1(ri)

�0
i+1(ri)

ri j

j ri

kri

ri

kj

Figure 4.1: States of MTF and OPT at times i and i+ 1 for the case where �0
i+1 = �0

i.

4.2.3 Lower Bound on MTF via the Averaging Technique

In this section we prove a lower bound on the asymptotic competitive ratio of MTF for the List
Accessing problem. Asymptotically (in terms of m and n) this lower bound that matches the upper
bound of Theorem 4.2.1. We begin by describing the averaging technique that allows us to establish
a non-constructive upper bound on the performance of OPT on any sequence of input requests.

Lemma 4.2.2. Let r1, . . . , rn be an arbitrary sequence of requests for the List Accessing problem
with m elements. Then we have

OPT (r1, . . . , rn)  m+

✓
m

2

◆
+

m+ 1

2
(n� 1).

Proof. We use an averaging technique to prove a good upper bound on OPT .

Let S denote the set of all permutations of [m], hence |S| = m!. For each � 2 S consider the
following simple algorithm ALG�: it sets �i = � for all i � 2 regardless of the request sequence.
Observe that the cost of processing the first request is �1(r1)  m plus the number of swaps of
consecutive elements needed to transform the identity permutation into �, which is upper bounded
by
�
m
2

�
– the number of pairs of elements. After that �i is never transformed, so the incurred costs

are exactly �(ri) for all i � 2. The overall cost of ALG� is bounded by
�
m
2

�
+m+

Pn
i=2 �(ri).

Although for each � the simple algorithm ALG� can perform poorly on the input sequence,
the key insight of the averaging technique is to observe that on average ALG�s perform very well,
where the average is taken over all values of �. The crucial observation in the computation of this
average is that no matter what r is we have:

X

�2S
�(r) =

mX

i=1

i(m� 1)! =
m(m+ 1)

2
(m� 1)!

The reason the equality holds is that here (m� 1)! permutations that place r in position i for
each i 2 [m]. Now we can compute the average (over �) cost of ALG�

4.2. LIST ACCESSING PROBLEM 51

1

m!

X

�2S
ALG�(r1, . . . , rn) 

1

m!

X

�2S

✓
m

2

◆
+m+

nX

i=2

�(ri)

!

=

✓
m

2

◆
+m+

1

m!

nX

i=2

X

�2S
�(ri)

=

✓
m

2

◆
+m+

1

m!

nX

i=2

m(m+ 1)

2
(m� 1)!

=

✓
m

2

◆
+m+

m+ 1

2
(n� 1).

By the definition of the average, the above computation means that there is some � such that
ALG�(r1, . . . , rn) 

�
m
2

�
+ m + m+1

2 (n � 1). Since OPT performs at least as well as ALG�, the
claim follows.

Now, we are ready to prove the main result of this subsection.

Theorem 4.2.3.
⇢(MTF)

m!1����! 4.

Recall that m is the size of the static list.

Proof. Consider an adversarial sequence r1, r2, ..., rn that always requests the element at the last
position of the current list of MTF. Observe that each request always costs 2m � 1 to process.
Therefore, the overall cost of MTF is (2m�1)n. The overall cost of OPT is bounded by m+

�
m
2

�
+

m+1
2 (n� 1) by Lemma 4.2.2. Thus, the competitive ratio can be computed as follows:

lim
n!1

ALG(r1, . . . , rn)

OPT (r1, . . . , rn)
 lim

n!1

ALG(r1, . . . , rn)

ALG�(r1, . . . , rn)

 lim
n!1

(2m� 1)n�
m
2

�
+m+ ((m+ 1)/2)(n� 1)

=
4m� 2

m+ 1
= 4� 6

m+ 1
.

Lemma 4.2.2 is quite helpful in the analysis of List Accessing problem. It can be used to show
that any deterministic algorithm for the List Accessing problem has to have competitive ratio � 2
as m!1 by considering only the cost of looking up an element during the requests (see Exercises
at the end of this section).

4.2.4 A Simple Randomized Algorithm BIT

Consider the following randomized algorithm called BIT for the static List Accessing problem with
unit costs. The algorithm maintains a Boolean array B of size m, where B[i] 2 {0, 1} for all i.
Initially, B[i] is set to a uniformly random bit independently for all i 2 [m]. When an element ri is
requested, complement its bit (B[i] 1�B[i]), and if B[i] = 1 move ri to the front of the list and
otherwise (B[i] = 0) leave ri in place. The pseudocode is given in Algorithm 10. Observe that this

52 CHAPTER 4. SOME CLASSICAL PROBLEMS

Algorithm 10 Simple randomized algorithm for the List Accessing problem.
procedure BIT

for i 1 till i = m do
B[i] a uniformly random bit from {0, 1}

�1 the identity permutation on [m]
i 1
while i  n do

Process the new request ri 2 [m]
B[ri] 1�B[ri]
if B[ri] = 1 then

�i+1 the permutation obtained from �i by moving ri to the front — see Algorithm 9
else

�i+1 �i
i i+ 1

algorithm uses m bits of randomness that is independent of the input sequence length n. During
the execution of BIT, the values of B[i] are never resampled after the initial phase; instead, the
values simply keep flipping on relevant requests.

Next we analyze BIT against an oblivious adversary and show that it improves upon the MTF
algorithm: the asymptotic competitive ratio of BIT is bounded by 11/4 = 2.75 instead of the 4 of
MTF.

Theorem 4.2.4.

⇢OBL(BIT)  11

4
.

Proof. We prove the statement by adapting the proof of Theorem 4.2.1. Thus, the proof is going
to be based on the potential function method. We shall reuse the notation of Theorem 4.2.1 and
its proof, so the reader should familiarize themselves with that proof first.

Consider a particular time step i. Suppose that a pair of elements {j1, j2} form an inversion.
Then we define its type as B[argmax(�i(j1),�i(j2))]. In words, the type of an inversion is the
current state of the bit corresponding to the element of the pair that appears later according to �i.
Let �i

b denote the number of inversions of type b 2 {0, 1} with respect to �i+1 and �0
i+1. Define

the value of the potential function as follows:

�i = 2�i
0 + 3�i

1.

Observe that �0 = 0 and �i � 0 for all i. The amortized cost is defined as usual:

gcosti = costi + �i � �i�1.

To establish that ⇢OBL(BIT)  11
4 , it su�ces to show that

E(gcosti)  (11/4)�OPTi,

where gcosti = costi+��i denotes the change in the amortized cost while processing request i, and
�OPTi denotes the change in OPT while processing request i. We write ��i = Ai+Di+Ci, where
Ai is the change in potential due to new inversions being added in processing ri, Di is the change
in potential due to inversions being deleted, and Ci is the change in potential due to inversions
changing type. This accounts for all changes that happen during timestep i. Thus, we have:

4.3. K-SERVER PROBLEM 53

E(gcosti) = E(costi +Ai +Di + Ci) = E(costi +Di + Ci) + E(Ai).

The plan for the rest of the proof consists of 2 parts: (1) analyze E(costi +Di +Ci) by looking
the move of BIT alone, i.e., without OPT ’s move; and (2) analyze E(Ai) by looking at the move
of OPT and BIT. Observe that OPT ’s move does not a↵ect costi and Ci, and can only a↵ect Di

favourably for our goal; therefore, we can ignore its a↵ect in part (1). To simplify the presentation
of the two parts, we introduce some notation. Let k = �i(ri), ` = �0

i(ri), `
0 = �0

i+1(ri). For now,
assume that `0  `. Let Ni denote the number of inversions j, ri such that �i(j) < k. This means
that there are k �Ni � 1 elements preceding ri in BIT’s list that do not form an inversion. Hence
`� 1 � k �Ni � 1, so k  `+Ni.

PART (1). Consider first the move of BIT alone. We claim that costi+Ci+Di  (B0[ri] + 1)`,
where B0[ri] is the new value of B after processing ri. Consider subcase B[ri] = 1 immediately
prior to processing ri: no inversions are created or destroyed, so the change in potential only comes
from inversions changing type. Exactly Ni inversions change their type from 1 to 0, resulting in the
change in potential �Ni. In this subcase we have costi = k  `+Ni since BIT only accesses ri and
doesn’t perform any swaps. Hence, we have costi+Ci+Di  `+Ni+0�Ni = ` = (B0[ri]+1)`. Now,
consider subcase B[ri] = 0 immediately prior to processing ri: Ni inversions of type 0 are destroyed.
No new inversions are created. Hence Ci+Di  �2Ni. We also have costi = 2k�1  2k  2`+2Ni.
Thus, we get costi + Ci +Di  2`+ 2Ni � 2Ni + 0  2` = (B0[ri] + 1)`. It follows that

E(gcosti) = E(costi +Ai + Ci +Di)  E((B0[ri] + 1)`) + E(Ai) =
3

2
`+ E(Ai). (4.1)

PART (2). Now, we need to compute E(Ai). Consider the step of OPT . Let x1, . . . , x`�1

denote the elements preceding ri in OPT ’s list immediately before processing ri. A new inversion
is created only when xj precedes ri in BIT’s list and either BIT or OPT , but not both, moves ri in
front of xj . Let Xj denote a contribution to Ai of the inversion xj , ri if such an inversion is created.
OPT moves ri from ` to `0 < `. If B[ri] = 0 then ri is moved to the front of the list of BIT and
we have Xj = 2 + B[Xj] for 1  j < `0 and Xj = 0 for j � `0. If B[ri] = 1 then ri is not moved
and B[ri] is flipped to zero resulting in Xj = 0 for 1  j < `0 and Xj  2 for j > `0. The value of
B[ri] is a random variable that is distributed uniformly throughout the runtime of the algorithm
(why?). Thus, we have

E(Ai) =
`�1X

j=1

E(Xj) 
`0�1X

j=1

1

2

✓
1

2
2 +

1

2
3

◆
+

`�1X

j=`0

1

2
2  5

4
`. (4.2)

Combing equations (4.1) and (4.2), we get that the change in the amortized cost is bounded as
follows:

E(gcosti) 
3

2
`+

5

4
` =

11

4
`.

Since �OPTi = `+ (`� `0) � `, the claim follows in this case.
If OPT makes any other move not covered by the above (e.g., `0 > `), the move costs OPT

exactly 1, and it creates at most one transposition which results in the expected change in the
potential of 1

22 +
1
23 = 5

2 
11
4 .

4.3 k-Server Problem

The k-Server problem is among the most famous and influential problems in the area of online
algorithms. Actually, it is not even a single problem, but rather a whole family of problems. Each

54 CHAPTER 4. SOME CLASSICAL PROBLEMS

particular problem in the family is characterized by the underlying metric space. To state the
k-Server problem formally takes some preparation, which we do in Section 4.3.1. Readers familiar
with metric spaces, configurations, and min-cost matchings can skip ahead to Section 4.3.2. We
introduce the notion of a “work function” and discuss its properties in Section 4.3.5. The work
function can be used to design an optimal o✏ine algorithm, but more importantly it is used in the
best known online algorithm for the k-Server problem on general metrics — the Work Function
algorithm. We present the algorithm in Section 4.3.6. We defer the discussion of randomized
algorithms for the k-Server problem till a later chapter on recent progress.

4.3.1 Preliminaries

We begin with the definition of a metric space, followed by some example.

Definition 4.3.1. Ametric space M is a pair (X, d) whereX is a set of points and d : X⇥X ! R�0

is a metric/distance function that satisfies the following metric space axioms :

Positivity. d(x, y) > 0 for all x, y 2 X such that x 6= y.

Reflexivity. d(x, x) = 0 for all x 2 X.

Symmetry. d(x, y) = d(y, x) for all x, y 2 X.

Triangle Inequality. d(x, y)  d(x, z) + d(z, y) for all x, y, z 2 X.

The above definition is the mathematical abstraction of a space where you can measure the distance.
If X is finite then we call M a finite metric space.

Example 4.3.2. The standard 1-dimensional real line is a metric space M = (R, | · |), where the
distance between two real numbers is simply the absolute value of their di↵erence.

Example 4.3.3. Generalizing the previous example, the n-dimensional real space is a metric
space M = (Rn, || · ||2), where the distance between two vectors x and y is the standard Euclidean
distance ||x � y||2 =

p
(x1 � y1)2 + · · ·+ (xn � yn)2. Such M is called the standard Euclidean

space. Observe that Rn can be paired with other notions of distance to create metric spaces on Rn

di↵erent from the standard Euclidean space.

Example 4.3.4. Previous examples gave infinite metric spaces. For an example of a finite metric
space, consider a weighted undirected graph G = (V,E,w), where w : E ! R�0 is a non-negative
weight function. Define d(x, y) = the weight of shortest path between x and y. Then one can check
that M = (V, d) is a finite metric space.

Example 4.3.5. The following is an example of a simple distance function d that can be defined
on any set of points X (finite or infinite):

d(x, y) =

⇢
1 if x 6= y
0 if x = y

The above is known as the discrete or uniform metric on X.

For the following definitions, fix some metric space M and a natural number k 2 N.

Definition 4.3.6. A multiset C of k points from M is called a configuration.

4.3. K-SERVER PROBLEM 55

Definition 4.3.7. Consider two configurations C1 and C2. A perfect matching between C1 and
C2 is a bijection � : C1 ! C2. Thus a matching between C1 and C2 associates exactly one unique
point of C2 to each point of C1.

Definition 4.3.8. Given a perfect matching � between configurations C1 and C2, the cost of �, is
defined as

P
x2C1

d(x,�(x)).

Definition 4.3.9. The distance between configurations C1 and C2, denoted by d(C1, C2) is defined
as the minimum cost of a perfect matching between C1 and C2. Intuitively, d(C1, C2) is the least
distance that needs to be travelled to transform C1 into C2 (or vice versa, which is the same thing
by symmetry).

Definition 4.3.10. Let x 2 C and y 2 X. We write C � x + y to denote the new configuration
that is obtained from C by replacing x with y.

4.3.2 Formulation of the Problem

For concreteness, suppose that you run a consulting company. You have k consultants on sta↵.
When a new request comes in, you have to dispatch a consultant to the location of the customer.
Once the consultant finishes the job, they can be assigned to travel to the location of a new request.
Consultants travel from a location of one customer immediately to a location of a new customer,
because there is no “home base” of operations of your company. The consultants are completely
interchangeable, and the questions is how to assign consultants to customers so that to minimize
the total travelled distance.

In the more formal statement of the problem, you fix a metric space M = (X, d) and you control
k servers (correspond to consultants), which are initially located at a multiset of points from X.
We use C0 to denote this initial configuration. A sequence of requests is simply a sequence of points
xi 2 X (correspond to locations of customers). To process each xi you can reposition the k servers
into a new configuration Ci such that at least one of the servers is located at xi, i.e., xi 2 Ci. The
goal is to minimize the total travel distance, as measured by

Pn
i=1 d(Ci, Ci�1) (see Definition 4.3.9).

k-Server Problem
Input: (x1, . . . , xn);M = (X, d); k;C0 — M is a metric space; k is the number of servers; C0 is
the initial configuration of the servers; xi 2 X is the ith request.
Output: (C1, . . . , Cn) where Ci is a multiset of k points from X denoting the ith configuration
of the servers.
Objective: To find C1, . . . , Cn so as to minimize the total distance

Pn
i=1 d(Ci, Ci�1) subject to

servicing all requests, i.e., xi 2 Ci for all i 2 [n].
This problem generalizes the Paging problem (see Exercises 10 and 11). One algorithm imme-

diately comes to mind:

Greedy: to process xi relocate the closest server to xi breaking ties arbitrarily. If we let yij denote

the location of jth server in Ci, then to process xi we pick the server argminj{d(xi, yij)}.

It is easy to see that the competitive ratio of the greedy algorithm is unbounded (see Exercise 9).
In general, the best achievable competitive ratio could depend on M. However, the following
conjecture that is quite widely believed to be true states that the deterministic competitive ratio
is k regardless of the metric space (as long as M has at least k + 1 points).

Conjecture 4.3.1 ((Deterministic) k-Server Conjecture). Consider the k-Server problem with metric
space M. Let ALG be a best deterministic online algorithm for this problem. If M has at least
k + 1 points, then

⇢(ALG) = k.

56 CHAPTER 4. SOME CLASSICAL PROBLEMS

There has been a lot of progress on the above conjecture, but it is still open. The best bounds
for general metric spaces are ⇢(ALG) � k, which we show in Section 4.3.3, and ⇢(ALG)  2k � 1,
which we outline in Section 4.3.6.

Conjecture 4.3.2 (Randomized k-Server Conjecture). For every metric space there is a randomized
online algorithm for the k-Server problem that achieves competitive ratio O(log k) against oblivious
adversaries.

There is also a randomized version of the k-Server conjecture that is also wide open, but there
were important recent developments, which we will cover in Chapter 9.

The formulation of the k-Server problem allows an online algorithm to relocate several servers
in between requests. A natural class of algorithms, called “lazy algorithms”, consists of those
algorithms that never move servers that they do not have to move to serve a request. This means
that if the new request is already covered by the current configuration then no servers are moved,
and if the new request is not covered by the current configuration then exactly 1 server is moved.
Formally, we have

Definition 4.3.11. An online algorithm for the k-Server problem is called lazy if its configurations
C1, . . . , Cn satisfy the property:

• if xi 2 Ci�1 then Ci = Ci�1;

• if xi 62 Ci�1 then there exists one y 2 Ci�1 such that Ci = Ci�1 � y + xi, i.e., we reposition
exactly one server.

By Exercise 12 it su�ces to consider only lazy algorithms for the k-Server problem.

4.3.3 Deterministic Lower Bound

In this section we show that no algorithm can be better than k-competitive for the k-Server problem
with respect to any metric space M, as long as M has at least k + 1 distinct points.

Theorem 4.3.1. Let M be an arbitrary metric space with at least k + 1 distinct points. Let ALG
be a deterministic online algorithm for the k-Server problem with respect to M. Then, we have

⇢(ALG) � k.

Proof. Fix a set eX = {p1, . . . , pk+1} of k+1 points from M. Set C0 = {p1, . . . , pk}. The adversary
will construct a sequence of requests using only points from eX. Since ALG has k servers and eX
has k + 1 points, for each configuration Ci�1 there is a point xi that is not covered by Ci�1, e.g.,
x1 = pk+1. The adversary presents the sequence x1, . . . , xn, i.e., the adversary keeps requesting
an uncovered point from among eX. We assuming that ALG is lazy, without loss of generality.
Let yi denote the original position of the server that got moved to process xi. Clearly, we have
ALG(x1, . . . , xn) =

Pn
i=1 d(yi, xi). Observe that xi+1 = yi — if a server is moved, the adversary

requests its previous position in the very next step. Thus, we can rewrite ALG(x1, . . . , xn) =Pn�1
i=1 d(xi+1, xi) + d(yn, xn) �

Pn�1
i=1 d(xi+1, xi).

To bound OPT we use the averaging technique. Consider k algorithms ALGi for i 2 [k] defined
as follows. Initially, ALGi starts at configuration C0. To service x1 = pk+1 algorithm ALGi uses
the server at pi. Observe that there exists exactly one location that is covered by all ALGi, namely,
pk+1. Algorithms ALGi are lazy and they behave so as to maintain this invariant. We illustrate
it with an example. Suppose that x2 = p5 arrives. Since x2 is covered by all ALGi with i 6= 5,
none of these algorithms move a server. The only algorithm that has to move a server is ALG5.

4.3. K-SERVER PROBLEM 57

Since we want to maintain that at all times there is exactly one point from X that is covered by all
algorithms ALGi, ALG5 has to move the server that is presently at location pk+1. Next, suppose
that x3 = p10. Arguing as before, only ALG10 has to move a server, and it has to move the server
that is presently at location p5. And so on.

Let T (x1, . . . , xn) =
Pk

i=1ALGi(x1, . . . , xn) denote the sum of costs of all algorithms ALGi.
Following the example in the previous paragraph, it is easy to see by induction that at each time
step j only one algorithm has to move a server and moreover the algorithm moves a server that
is at location xj�1. Thus, we have T (x1, . . . , xn) =

Pn
j=2 d(xj , xj�1) +

Pk
i=1 d(pi, pk+1), where the

second term is from the initialization procedure during processing x1. Therefore, the average cost
over the k algorithms is

1

k
T (x1, . . . , xn) =

1

k

n�1X

j=1

d(xj+1, xj) +
1

k

kX

i=1

d(pi, pk+1).

In particular, one of the algorithms achieves this cost, henceOPT (x1, . . . , xn)  1
k

Pn�1
j=1 d(xj+1, xj)+

1
k

Pk
i=1 d(pi, pk+1). Note that 1

k

Pk
i=1 d(pi, pk+1) = o(OPT). Thus, we have

ALG(x1, . . . , xn) �
n�1X

i=1

d(xi+1, xi) � kOPT (x1, . . . , xn) + o(OPT).

4.3.4 k-Server on a Line

In this section we present an elegant algorithm for the special case of the k-Server problem, where
we take M to be the standard Euclidean 1-dimensional space, a.k.a., a real line (see Example 4.3.2).
The algorithm is called DoubleCoverage or DC, for short. The pseudocode is presented in Algo-
rithm 11. We use p1  . . .  pk to denote positions of the k servers of the algorithm during its
runtime. The algorithm works as follows. Consider a new request xj . If xj is to the right of the
right-most server then the algorithm uses the right-most server to serve xj . If xj is to the left of
the left-most server then the algorithm uses the left-most server to process xj . The remaining case
is when xj is in between two servers i⇤ and i⇤, i.e., pi⇤  xj  pi⇤ and there are no other servers
between pi⇤ and xj , and xj and pi⇤ . Then DC starts moving both servers i⇤ and i⇤ towards xj at
the same speed until one of the servers reaches xj .

Notice that DC, as stated, is not a lazy algorithm. Although by Exercise 12 we could modify
DC to be lazy, it is conceptually easier to analyze the non-lazy version of the algorithm. Also
observe that the relative order of servers p1  p2  · · ·  pk can be easily preserved during the
execution of the algorithm.

Next, we show that DC is k-competitive. In light of Theorem 4.3.1, this ratio is tight and it is
the best possible deterministic competitive ratio for the real line.

Theorem 4.3.2.

⇢(DC)  k.

Proof. Consider an input instance x1, . . . , xn. As discussed before, we use p1  p2  · · ·  pk to
denote the sorted positions of the servers during the execution of the DC algorithm. Similarly, let
q1  q2  · · ·  qk denote the sorted positions of the servers during the execution of OPT . We use

58 CHAPTER 4. SOME CLASSICAL PROBLEMS

Algorithm 11 DoubleCoverage algorithm for the k-Server problem on a line.
procedure DC

. C0 is the initial pre-specified configuration.
Initialize pi 2 R to the initial coordinate of server i according to C0

. we have p1  p2  · · ·  pk, which is maintained during execution
j 1
while j  n do

The new request xj 2 R arrives
if xj > pk then . request is to the right of the right-most server

pk xj . use the right-most server to process xj
else if xj < p1 then . request is to the left of the left-most server

p1 xj . use the left-most server to process xj
else . request is in between the right-most and left-most servers

i⇤ argmini{pi | pi � xj} . find a server that is immediately to the right of xj
i⇤ argmaxi{pi | pi  xj} . find a server that is immediately to the left of xj
� min(|pi⇤ � xj |, |pi⇤ � xj |) . distance until one of the servers reaches xj
. Move the two servers
pi⇤ pi⇤ � �
pi⇤ pi⇤ + �

Cj the multiset formed by p1, . . . , pk
j j + 1

the potential function method to establish the result. We use the following potential function:

� = k
kX

i=1

|pi � qi|+
X

i<j

|pi � pj |.

Thus, we can write � = �1 + �2, where �1 = k
Pk

i=1 |pi � qi| and �2 =
P

i<j |pi � pj |. Since we
shall analyze how the potential function changes in each step j, we assume that � refers to the
current step under consideration and so do the pi and the qi. Thus, we drop index j from all the
variables to reduce clutter in our notation. Let �� denote the change in potential, �DC denote
the true cost incurred by DC, and �OPT denote the cost incurred by OPT . In processing xj both
OPT and DC have to move. By the potential function method, our goal is to show that after both
moves we have

�DC +��  k�OPT. (4.3)

We can prove this by showing that the inequality holds for the move of OPT in isolation followed
by the move of DC, i.e., we can analyze the inequality one move at a time. We provide the summary
of how di↵erent moves can a↵ect DC, OPT , and �� in Table 4.1. It is relatively straightforward
to verify that the table is correct and that equation (4.3) follows from the summary in the table.

4.3.5 Work Function

Let x = (x1, . . . , xn) be the request sequence. We write xt to denote the subsequence consisting of
the first t elements, i.e., xt = (x1, . . . , xt). Thus, x0 is the empty sequence and xn = x. Recall
that C0 denotes the initial pre-specified configuration.

4.3. K-SERVER PROBLEM 59

Move type �DC ��1 ��2 �DC +�� �OPT

OPT moves 0  k�OPT 0  k�OPT �OPT
DC moves right-most or
left-most server

�DC �k�DC (k � 1)�DC 0 0

DC moves two servers
for an “in-between” re-
quest

�DC  0 ��DC 0 0

Table 4.1: Summary of changes to DC, OPT , and potential function during one step.

Definition 4.3.12. The work function wx : Xk ! R�0 is defined with respect to the request
sequence x = (x1, . . . , xn) and initial configuration C0. The work function maps configurations
in the metric space M to real numbers with the following meaning: wx(C) is the minimum total
distance that is needed to process all requests x (in order) and end up in configuration C. Note
that C can be an arbitrary configuration and is not required to contain xn or, in fact, any xi.
Formally, wx(C) is defined as follows

wx(C) = min
C1,...,Cn

(
nX

i=0

d(Ci, Ci+1) : 8i 2 [n] ri 2 Ci and Cn+1 = C

)
.

We will consider work functions with respect to prefixes xt of x, i.e., wxt
. To simplify notation

we will denote these work functions by wt. Note wx = wn.

The following lemma collects a number of observations regarding the work function.

Lemma 4.3.3. 1. w0(C) = d(C0, C).

2. OPT (x) = minC{wn(C)}.

3. wt(C) � wt�1(C).

4. If xt 2 C then wt(C) = wt�1(C).

5. If xt 62 C then wt(C) = minx2C{wt�1(C � x+ xt) + d(xt, x)}.

6. wt(C) = minx2C{wt�1(C � x+ xt) + d(xt, x)}.

Proof. 1. The meaning of w0(C) is the minimum distance to end up in C without processing
any requests. Since the initial configuration is C0 we have to move from C0 to C, the answer
is given precisely by d(C0, C).

2. OPT is the minimum total distance required to process the entire sequence of requests starting
from C0 and ending in some configuration C.

3. Clear, since in wt you need to process more requests than in wt�1.

4. There are two possible strategies to process x1, . . . , xt and end up in C. The first strategy is
to process x1, . . . , xt�1 and end up in C and stay in C, since xt 2 C. The total distance of the
first strategy is wt�1(C). Another strategy is to process x1, . . . , xt�1 and end up in C 0 6= C
and then move from C 0 to C. The total distance of the second strategy is wt�1(C 0)+d(C,C 0).
By the definition of w, we have wt�1(C)  wt�2(C 0) + d(C 0, C)  wt�1(C 0) + d(C 0, C),
where the last step is by the previous item.

60 CHAPTER 4. SOME CLASSICAL PROBLEMS

5. In this case xt is not in C but we still have to process it before moving to configuration
C. Consider the time immediately after some server processed xt. The order in which we
reposition servers into configuration C does not matter. Thus, we can assume that the server
that processed xt is repositioned last. The other servers occupy all but one of the positions in
C, say, x. The optimal distance of achieving this step is wt(C�x+xt) = wt�1(C�x+xt) (by
the previous item). Then it is left to move the server from xt to x, which adds distance d(xt, x)
to the total cost. Overall, processing xt and moving to C costs wt�1(C � x+ xt) + d(xt, x).
Since we don’t know which server is the best to process xt, we have to minimize over all
choices of x.

6. This is a straightforward consequence of the previous two items.

The observations in the lemma can be used to come up with an optimal o✏ine algorithm for
the k-server problem based on dynamic programming: item (1) gives the base case and item (6)
shows how to fill out the table. Exercise 15 asks you to fill in the details.

4.3.6 Work Function Algorithm

In this section we describe the online algorithm that achieves the best known upper bound for
the k-Server problem — the Work Function algorithm, or WFA for short. The algorithm is easy
to describe: it is a lazy algorithm that processes request xt by moving the server x 2 Ct�1 that
minimizes wt�1(Ct�1 � x+ xt) + d(xt, x). Algorithm 12 provides the pseudocode.

Algorithm 12 The Work Function algorithm for the k-Server problem on general metrics.
procedure WFA

. C0 is the initial pre-specified configuration.
j 1
while j  n do

The new request xj arrives
x argminx2Cj�1

{wj�1(Cj�1 � x+ xj) + d(xj , x)}
Cj Cj�1 � x+ xj
j j + 1

We state the best known upper bound on the performance of WFA in the following theorem.
We omit the proof of this result, as it is quite long and involved and there are already several
excellent expositions listed in the historical notes at the end of this chapter.

Theorem 4.3.4.
⇢(WFA)  2k � 1.

It is possible that ⇢(WFA) = k, but no one has been able to prove it yet. The claim that
⇢(WFA) = k has only been established for certain special cases of metrics, e.g., M = (X, d) such
that |X| = k + 1.

4.4 Exercises

1. Consider the following randomized version of MTF: after processing an item request, move
the item to the front of the list with probability 1/2 and leave the item in its original place

4.4. EXERCISES 61

with probability 1/2. What is the asymptotic competitive ratio of this randomized version of
MTF?

2. Fix c � 1. Analyze the competitive ratio of MTF (in terms of c) for the generalized version
of the List Accessing problem, where swaps of type (a) cost 1 and swaps of type (b) cost c.
See Section 4.2 for the relevant definitions.

3. In the case of unit costs of all types of swaps in the static List Accessing problem, is it
necessary for OPT to use type (b) swaps? If it is, then give an instance where OPT cannot
be achieved without using type (b) swaps and prove it. If it is not necessary, give a general
conversion procedure (and prove that it works) that transforms any optimal algorithm that
uses type (b) swaps into an algorithm that uses only type (a) swaps.

4. Write down pseudocode for the algorithm TRANS for the List Accessing problem.

5. Prove that the algorithm TRANS for the List Accessing problem does not achieve any constant
competitive ratio.

6. Write down pseudocode for the algorithm FC for the List Accessing problem.

7. Does the algorithm FC for the List Accessing problem achieve a constant competitive ratio?

8. Prove that the metric spaces in Examples 4.3.2-4.3.5 satisfy the metric space axioms.

9. Write down pseudocode for the greedy algorithm for the k-Server problem. Give an adver-
sarial input sequence that shows that the the competitive ratio of the greedy algorithm is
unbounded.

10. Prove that Paging is a special case of the k-Server problem. Specifically, define M such that
the corresponding k-Server problem is exactly the Paging problem.

11. Is List Accessing a special case of the k-Server problem? Specifically, can you define M such
that the corresponding k-Server problem is exactly the List Accessing problem? If not, what’s
the main di�culty?

12. Prove that any online algorithm for the k-Server problem can be converted into a lazy algo-
rithm without hurting its competitive ratio.

13. Show that the result of Exercise 9 can be achieved for the 2-Server problem with respect to
the Euclidean 1-dimensional space and by considering only requests coming from 3 possible
locations. Trace how the DC algorithm works on such an adversarial instance and see why it
is able to outperform greedy.

14. Verify Table 4.1.

15. Design an o✏ine optimal algorithm for the k-Server problem based on Lemma 4.3.3. Describe
it in pseudocode, prove its correctness, and analyze its running time.

16. Design a more e�cient o✏ine optimal algorithm for the k-Server problem than the one sug-
gested in Exercise 15.

17. Use Lemma 4.2.2 to prove that any deterministic algorithm for the List Accessing problem
has to have competitive ratio � 2 as m!1. Can you prove a stronger lower bound?

62 CHAPTER 4. SOME CLASSICAL PROBLEMS

4.5 Historical Notes and References

NOTE: The history of the these more classical online problems is extensive. Like the history of
the bin packing problem, we will only give a partial list of references. The interested reader can
find reasonably comprehensive history in the papers we cite. And very recent results have made
very significant advances for the MTS and k-server problems.

Chapter 5

Game Theory Analysis for Online
Algorithms

5.1 Two-Person Zero-Sum Games

5.2 Application to Competitive Analysis

5.3 Paging

Is Paging is an exam-
ple of the Yao Prin-
ciple so not sure this
is the best place for
this. Matching is
a good example for
analysis.

Is Paging is an exam-
ple of the Yao Prin-
ciple so not sure this
is the best place for
this. Matching is
a good example for
analysis.

5.4 Online Algorithms and Pricing

5.5 Exercises

5.6 Historical Notes and References

5.7 Additional Related Results

63

64 CHAPTER 5. GAME THEORY ANALYSIS FOR ONLINE ALGORITHMS

Chapter 6

Primal-Dual Method for Online
Problems

6.1 Linear Programming and Duality

6.2 Primal-Dual Approach in the Online Setting-Pricing Revis-
ited

6.3 Online Set Cover

Not sure why MTS is
here so I am taking
it out and now it is
introdyced in chapter
4.

Not sure why MTS is
here so I am taking
it out and now it is
introdyced in chapter
4.

6.4 Exercises

6.5 Historical Notes and References

6.6 Additional Related Results

65

66 CHAPTER 6. PRIMAL-DUAL METHOD FOR ONLINE PROBLEMS

Chapter 7

Graph Problems

In this chapter we study graph problems in an online setting. More specifically, we consider
problems where the input contains a graph that is not known in its entirety in advance and is
revealed in an online fashion. These types of problems are not to be confused with online problems
that are defined in terms of graphs that are known in advance (e.g., the k-Server problem with
respect to graph metrics). From complexity theory, we know that many graph problems are not
only NP -hard but, moreover, hard (under various complexity assumptions) to approximate much
beyond what are trivial approximations. This is the case, for example, for computng a maxmum
independent set, and for computing a minimum graph coloring. However, these complexity based
hardness results do not preclude the possibility that there can be an online algorithm with a
good approximation since we do not impose complexity assumptions in competitive analysis. We
shall see, however, that many graph programs cannot be well approximated using only the myopic
information theoretic constraints.

There are several issues involved in the study of online graph problems. The first issue is in
defining a representation of an online input item. Turns out that there are at least four di↵erent
natural input models. The input model that should be used for a particular graph problem depends
on the application domain. In addition to the four input models for general graphs, there is also
another natural input model that is specific to bipartite graphs. The second issue arises from the
fact that many online graph problems do not admit any non-trivial deterministic or randomized
algorithms under any of the input models. In other words, many graph problems are completely
hopeless for online algorithms under worst-case input models. Thus, the literature on worst-case
analysis of online graph problems is rather scarce in comparison with scheduling, routing, and
packing problem domains. In order to get meaningful results, one often has to restrict inputs to
come from a special class of graphs, e.g., bipartite, small degree, or k-colorable for small values of
k. There are some success stories with regards to studying more specialized graph problems. In
this chapter, we will study two such success stories: Bipartite Maximum Matching and Bipartite
Graph Coloring.

We begin this chapter by introducing the di↵erent input models and discussing relationships
between them. Then, we show that several natural graph problems are completely hopeless for
online algorithms on general graphs. We then move on to studying Bipartite Maximum Matching,
and we finish the chapter by studying Graph Coloring.

67

68 CHAPTER 7. GRAPH PROBLEMS

7.1 Input Models for General Graphs

In the online world, we are always faced with the question as to what is an input item. For some
problem areas (e.g. Paging, Makespan, Bin Packing), there is a seemingly most natural choice for
an input item. For graph problems, there are a number of reasonable choices which we discuss in
this section, but first we introduce some notation.

We shall consider an undirected and unweighted graph G = (V,E), where E ✓
�
V
2

�
. We

typically use n to denote |V | and m to denote |E|. Most definitions in this section generalize to
directed and weighted graphs in a rather straightforward way. We use ⇠ to denote adjacency, i.e.,
u ⇠ v is the same thing as {u, v} 2 E. We define the neighborhood of a set of vertices S ✓ V ,
denoted by N(S), as those nodes outside S that have a neighbor in S, i.e.:

N(S) := {v 2 V : 9u 2 S such that u ⇠ v} \ S.

For a single vertex v 2 V we denote its neighborhood N({v}) by N(v) for short.
A graph is composed of two kinds of objects — vertices and edges. An adversary will present

corresponding input items in a certain order. Thus, we will often assume that the sets V and E
are totally ordered. We will use the symbol � to indicate the order. For example, if � is a total
order defined on V , then for two vertices u, v 2 V we write u � v to indicate that the input item
associated with u is revealed before the input item associated with v.

Now, we are ready to describe the basic online input models for graphs.

The Edge Model (EM). Each input item is an edge given by its two endpoints. Thus, the input
graph G is presented as a sequence of edges {u1, v1}, {u2, v2}, . . . , {un, vn}. The algorithm
does not know V a priori and it is understood that V =

Sn
i=1{ui, vi}.

The Vertex Adjacency Model, Past History (VAM-PH). Each input item consists of a ver-
tex together with a set of neighbors among the vertices that have appeared before. Suppose
that input items are revealed in the order given by � on V , then each new input item can be
described as follows:

(v;N(v) \ {u : u � v}) .

The Edge Adjacency Model (EAM) In this model, we associate with each edge e = {u, v} a
label `e. Note that the label does not carry the information about the endpoints of an edge
e. An input item in this model consists of a vertex together with a set of labels of edges that
are incident on that vertex. Formally, each input item is of the form:

(v; {`e : v 2 e}) .

Thus, if a neighbor u ⇠ v has appeared before v, i.e., u � v, then an online algorithm can
recover the information that u ⇠ v, since both data items corresponding to u and v will
contain the same label `{u,v}. If a neighbor u ⇠ v appears after v, i.e., v � u, then an online
algorithm only knows that some neighbor is going to appear later in the input sequence, but
it does not know the identity of u at the time of processing v.

The Vertex Adjacency Model, Full History (VAM-FH). Each input item consists of a ver-
tex together with the set of all its neighbors (even the neighbors that have not appeared
before):

(v;N(v)) .

7.1. INPUT MODELS FOR GENERAL GRAPHS 69

For two models M1 and M2 we use the notation M1M2 to indicate that any algorithm that
works in model M1 can be converted into an algorithm that works in model M2 without any
deterioration in the performance, as measured by the worst-case competitive ratio. Intuitively,
M1M2 means that M1 is a harder model for online algorithms, while M2 is harder for adversaries.
In light of this definition, we have the following lemma.

Lemma 7.1.1. We have the following relationships

EMVAM-PHEAMVAM-FH

Proof. We will show the first relation. The rest are delegated to exercises.
Let ALG be an algorithm for the EM model. We show how to convert it into an algorithm

ALG0 that operates in the VAM-PH model. Suppose that an input item in VAM-PH model arrives:
(v; {u1, . . . , uk}), where {u1, . . . , uk} = N(v) \ {u : u � v}. Then ALG0 splits this input item into
a sequence of edges {v, ui} and feeds these edges into ALG. It uses responses of ALG to create
its own response for (v; {u1, . . . , uk}) in a consistent manner. Thus, ALG0 achieves the same value
of the objective function as ALG, which is at least the value of the objective function achieved by
ALG on the worst-case ordering of edges (v, ui). This finishes the proof.

Note that this proof essentially says that VAM-PH can be thought of as presenting edges of
graph G in groups, where edges are grouped together by a vertex on which they are incident. Thus
we can think of running ALG in VAM-PH as running ALG in EM, but on restricted kinds of input
sequences.

The relationship  used in Lemma 7.1.1 is transitive: M1M2 and M2M3 implies that
M1M3. Thus, EM is the hardest model for the algorithms and VAM-FH is the easiest model
for online algorithms, as expected.

We note that the model that makes the most sense for online applications is often (but not
always) the VAM-PH model, especially when a graph problem requires decisions about nodes.
Suppose we want to apply the theory of online algorithms to graphs that grow dynamically, for
example, graphs arising out of social networks. In those real-life scenarios, consider the graph
growing because of new users joining the network (as opposed to new friendships being established
between existing users). When a new user joins the network, they establish connections with
friends that are already using the social network. Let � denote the order in which the users join
the network. Then when user v arrives we learn about v together with its friends u1, . . . , uk such
that ui � v. Therefore, VAM-PH is the most suitable model for such applications. In contrast,
consider what it means to analyze social networks in VAM-FH, for example. When a user v joins
the network, not only do we learn about its friends who are already in the network, but we also
learn about all its friends that are not yet in the network, but are guaranteed to join the network
later. This is a less realistic scenario for these kinds of applications.

In some graph problems, it might be more appropriate to make decisions about edges rather
than about nodes. For instance, suppose that a solution to a problem is a matching or a path or
a tree (as in the MST problem). Then such a solution can be represented as a sequence of 0/1
decisions about edges – whether or not to include an edge in a matching or path or tree. In such
scenarios, the EM input model might be more natural than the VAM-PH input model. Often,
there are graph problems where either model can be considered natural. For example, consider a
maximum matching problem. A matching can either be thought of as a collection of vertex-disjoint
edges, which leads to 0/1 decisions in the EM model, or it can be viewed as a map going from a
vertex to its (potentially matched) neighbor, which leads to decisions labelled by names of neighbors
in the VAM-PH model.

70 CHAPTER 7. GRAPH PROBLEMS

The EAM and VAM-FH models provide partial information about the future, so these models
are not so easily justified. However, in some applications you do have side-information. For instance,
you sometimes either know the true degree of each arriving node or you have an upper bound on the
degree of each arriving node. The EAM and VAM-FH models can be viewed as stronger versions
of this degree side-knowledge.

7.2 Special Input Model for Bipartite Graphs

Let G = (U, V,E) be an unweighted bipartite graph, where U and V are the sets of vertices in
the two parts and E ✓ U ⇥ V is the set of edges going between the two parts. We can always
“forget” the bipartite structure of the graph and consider G as a general graph. Thus, we can
always consider G given in one of the input models of Section 7.1. However, in many applications
a special kind of input model can be assumed. This model is specific to bipartite graphs only and
it is defined as follows:

The Bipartite Vertex Arrival Model (BVAM). In this model, one part of the graph is re-
vealed to an algorithm in advance, and vertices from another part arrive in the vertex adja-
cency format. We assume that vertices in V are revealed in advance. Thus, V is also called
the set of “known” or “o✏ine” vertices. Vertices from U arrive one at a time in a certain
order chosen by an adversary. Thus, U is also called the set of “online” vertices. When an
online node u 2 U arrives, all of its incident o✏ine vertices, N(u), are revealed as well.

Lemma 7.2.1. For bipartite graphs we have

VAM-PHBVAM

Proof. Let ALG be an algorithm that works on bipartite graphs presented in VAM-PH model. We
shall design ALG0 with the same performance guarantees, but it will work in the BVAM model.
Before arrival of any of the vertices u 2 U , ALG0 feeds vertices V into ALG without any edges.
Observe that vertices in V do not have edges between each other, thus this step simulates graph
G in VAM-PH correctly so far. Now, when ALG0 receives an item (u,N(u)), it can feed this item
into ALG, because N(u) ✓ V and V have already appeared in the simulated input to ALG. Lastly,
ALG0 uses the decisions of ALG verbatim.

The relationships between BVAM and EAM, as well as between BVAM and VAM-FH are not so
straightfoward. For example, we almost have BVAMVAM-FH, because when VAM-FH receives
an input item corresponding to the “o✏ine” side V , it can ignore the input item; and when VAM-
FH receives an input item corresponding to the “online” side U , it can use an algorithm for BVAM
to make a decision about the input item. The reason that this reduction does not quite work is
that in VAM-FH nothing is known about the set of nodes in advance, while in BVAM the entire
o✏ine side V is known in advance. Suppose that an online algorithm in BVAM model makes online
decisions that depend not only on data items corresponding to u 2 U but also on V . Then such
decisions cannot be simulated in VAM-FH without additional a priori knowledge.

7.3 Hard Online Graph Problems

In this section we present several online graph problems under various input models from Section 7.1.
The results are pessimistic in the sense that all the problems that we consider do not admit non-
trivial online algorithms. Unfortunately, this is a standard state of a↵airs when it comes to online

7.3. HARD ONLINE GRAPH PROBLEMS 71

graph problems. The main take-away point of this section is that to study online graph problems,
we need to either restrict input graphs to special classes, or change the input model from worst-case
online to say average-case, or change the algorithmic model to some other online-like models, e.g.,
streaming, online with advice, priority, dynamic data structures, and so on.

7.3.1 Maximum Independent Set

A subset of vertices S ✓ V is called an independent set if there are no edges between any pair
of vertices in S. In the Maximum Independent Set problem, we wish to find an independent set
of largest possible cardinality. In the online version of the problem, we need to decide whether to
include a newly arriving vertex into an independent set or not. We consider this problem in the
VAM-PH input model. More formally, the problem is stated as follows:

Maximum Independent Set
Input: G = (V,E,�); G is an unweighted and undirected graph; � is the total order on V ;
(v1, N1), . . . , (vn, Nn) is the sequence of input items, where vi � vi+1 and Ni = N(vi)\ {vj : j < i}.
Output: d1, . . . , dn — such that di 2 {0, 1} indicates whether to include vi into an independent
set or not.
Objective: To find d1, . . . , dn so as to maximize the size of the constructed set S = {vi : di = 1}
subject to S being an independent set: vi 6= vj 2 S implies vi 6⇠ vj .

We begin by showing that every deterministic online algorithm ALG can be fooled by an
adversary in the following strong sense: the algorithm can be forced to find an independent set of
size 1 in a graph with an independent set n� 1, where n = |V |. In the standard notation, we have
⇢(ALG) � n� 1.

Theorem 7.3.1. Let ALG be a deterministic online algorithm for the Maximum Independent Set
problem under the VAM-PH input model. Then we have

⇢(ALG) � n� 1.

Proof. As long as decisions of the algorithm ALG are 0, an adversary keeps presenting isolated
vertices. That is, the first few items are of the form (vi, Ni) such that Ni = ; and di = 0. This
happens for i = 1 to j. Then for some j an adversary presents (vj , Nj) with Nj = ; and ALG
responds with dj = 1 for the first time. First, we claim that j <1, since otherwise ALG finds an
independent set of size 0, whereas OPT includes all the isolated vertices into the solution, leading
to an infinite competitive ratio. Thus, an adversary has to encounter dj = 1 eventually. After
that point onward the adversary presents items that have vj as their sole neighbor. That is, items
(vi, Ni) for i > j have Ni = {vj}. This continues until the nth item is presented. Note that ALG
cannot answer di = 1 on any of the items with i > j, since then the solution constructed by ALG
is not an independent set. Thus, ALG = 1. Also, observe that the maximum independent set
includes all the vertices, except for vj . Thus, OPT = n� 1. The result follows.

Observe that any greedy algorithm would find an independent set of size at least 1 in non-empty
graphs. The above theorem says that this is the best one can hope for! The following theorem
shows that randomized algorithms cannot do much better.

Theorem 7.3.2. Let ALG be a randomized online algorithm for the Maximum Independent Set
problem under the VAM-PH input model. Then we have

⇢OBL(ALG) = ⌦(n).

72 CHAPTER 7. GRAPH PROBLEMS

Proof. We will use Yao’s minimax principle (see Section 3.7) to prove the claim. Thus, we shall
present a distribution on inputs and show that every deterministic algorithm achieves competitive
ratio ⌦(n) on average with respect to that distribution.

The distribution is as follows. The input is generated two vertices at a time. The first two
vertices v0 and v1 are isolated. Thus, the first two items are (v0, ;) and (v1, ;). To generate the next
two vertices, first sample a random bit b1 2 {0, 1} uniformly at random. Then the next two vertices
vb10 and vb11 are presented as having vb1 as their neighbor. Thus, the two items corresponding to
these vertices are (vb10, {vb1}) and (vb11, {vb1}). To generate the next two vertices, again sample a
random bit b2 2 {0, 1} uniformly at random. The next two vertices vb1b20 and vb1b21 are presented
as having vb1 and vb1b2 as their neighbors. Thus, the two items corresponding to these vertices are
(vb1b20, {vb1 , vb1b2}) and (vb1b21, {vb1 , vb1b2}). This process continues for n/2 rounds. During the ith
round we generate two vertices vb1...bi�10 and vb1...bi�11 with neighbors vb1 , vb2 , . . . , vbi�1 . At the end
of the process (after n/2 rounds) there are n vertices in total. See Figure 7.1 for an example.

First, observe that the vertices v(¬b1), vb1(¬b2), vb1b2(¬b3), . . . , vb1b2...(¬bn/2�1) form an independent

set. Thus, OPT � n/2� 1. Second, consider an arbitrary deterministic algorithm running on such
a random instance. Observe that in each round the algorithm is given two vertices: vb1...bi�10 and
vb1...bi�11. We say that the algorithm participates in a round if it chooses at least one of the vertices.
Note that choosing one of these vertices, namely the vertex vb1...bi , prevents the algorithm from
choosing any future vertices since all the future vertices contain vb1...bi in the neighborhood. We
will call this vertex as the incorrect vertex and the other vertex in that round is called the correct
vertex. Thus, if the algorithm participates in a round by choosing both vertices, the algorithm
cannot participate in any future rounds because it is guaranteed to choose the incorrect vertex. If
the algorithm participates in a round by choosing a single vertex, it has a 50-50 chance of choosing
the correct vertex vb1...bi�1(¬bi) that will not prevent the algorithm from participating in future
rounds. The reason it is 50-50 is because bi is not yet decided at the time the algorithm has to
make a choice. Thus, on average the algorithm participates in 2 rounds until it picks one of the
“incorrect” vertices. Therefore the independent set constructed by this deterministic algorithm is
of size at most 2 on average. Together with the first observation about OPT this results in the
competitive ratio of ⌦(n).

7.3.2 Maximum Clique

A subset of vertices S is called a clique if every two distinct vertices from S are adjacent. In the
Maximum Clique problem the goal is to find a clique of maximum cardinality. We consider this
problem in the VAM-PH input model. Formally this problem is stated as follows (it looks very
similar to Maximum Independent Set):

Maximum Clique Problem
Input: G = (V,E,�) — G is an unweighted and undirected graph; � is the total order on V ;
(v1, N1), . . . , (vn, Nn) is the sequence of input items, where vi � vi+1 and Ni = N(vi)\ {vj : j < i}.
Output: d1, . . . , dn — such that di 2 {0, 1} indicates whether to include vi into a clique or not.
Objective: To find d1, . . . , dn so as to maximize the size of the constructed set S = {vi : di = 1}
subject to S being a clique: vi 6= vj 2 S implies vi ⇠ vj .

In this section we establish results analogous to Theorems 7.3.1 and 7.3.2. Rather than proving
the analogous statements from scratch, we will use the reduction technique. We say that an online
problem P1 reduces to another online problem P2 if any online algorithm that achieves competitive
ratio ⇢ for P2 can be transformed into an online algorithm that achieves competitive ratio ⇢ for P1.
This implies that lower bounds proved on competitive ratios of online algorithms for P1 immediately

7.3. HARD ONLINE GRAPH PROBLEMS 73

v0111

v011

v0 v1

v01

v00

v010

v0110

Figure 7.1: Example of an input instance used in Theorem 7.3.2. In this example, we have b1 = 0,
b2 = 1, b3 = 1. The vertices v1 = v(¬b1), v00 = vb1(¬b2) and v010 = vb1b2(¬b3) form an independent
set (shown in red).

carry over to the same lower bounds for P2. Thus, we need to prove the following:

Theorem 7.3.3. Maximum Independent Set reduces to Maximum Clique under the VAM-PH input
model.

Proof. We start with a simple observation: S is a clique in G = (V,E) if and only if S is an
independent set in the complement graph of G, i.e., Gc = (V,

�
V
2

�
\ E).

Let ALG be an online algorithm for Maximum Clique. We need to construct an algorithm ALG0

for Maximum Independent Set that has the same competitive ratio as ALG. The idea behind the
reduction is that while ALG0 is receiving G in the VAM-PH model it can generate the VAM-PH
representation of the complement graph Gc. Thus, it can feed Gc into ALG and use ALG’s decisions
di as its own. While ALG finds a clique in Gc, ALG0 finds an independent set of exactly same size
in G. In addition OPT is exactly the same whether we look for a maximum clique in Gc or for a
maximum independent set in G. Thus, the competitive ratio is preserved.

It is left to see how ALG0 can generate Gc online. ALG0 receives an input item (v; {u : u �
v and u ⇠G v}), where u ⇠G v denotes the adjacency of u and v in G. Observe u and v are adjacent
in Gc if and only if they are not adjacent in G. Therefore, to generate an input item corresponding
to v in Gc, the algorithm ALG0 can simply declare that the neighborhood of v consists of those
vertices that have already appeared and are not adjacent to v in G. That is ALG0 creates an input
item (v; {u : u � v and u 6⇠G v}).

Observe that the above reduction works for both deterministic and randomized algorithms.
Thus, we have an immediate corollary:

Corollary 7.3.4.

1. Let ALG be a deterministic online algorithm for the Maximum Clique problem under the
VAM-PH input model. Then we have

⇢(ALG) � n� 1.

74 CHAPTER 7. GRAPH PROBLEMS

2. Let ALG be a randomized online algorithm for the Maximum Clique problem under the VAM-
PH input model. Then we have

⇢OBL(ALG) = ⌦(n).

7.3.3 Longest Path

A path in G is called simple if it does not contain any repeated vertices. In the Longest Path
problem the goal is to find a simple path that is as long as possible. We will consider this problem
in the EM input model. Formally, it is defined as follows:

Longest Path
Input: G = (V,E),�) — G is an unweighted and undirected graph; � is the total order on E;
e1 � · · · � em is the sequence of input items, where ei = {vi, ui} 2 E is an edge, and

S
i{ei} = E.

Output: d1, . . . , dm — such that di 2 {0, 1} indicates whether to include ei into a path or not.
Objective: To find d1, . . . , dm so as to maximize the length of the constructed path P = {ei :
di = 1} subject to P forming a simple path.

We begin by proving a strong lower bound on the competitive ratio of deterministic algorithms.

Theorem 7.3.5. Let ALG be a deterministic algorithm for the Longest Path problem in the EM
model. Then

⇢(ALG) � n� 3.

Proof. We give an adversarial argument. The adversary fixes V = {v1, . . . , vn} and presents the
first edge e1 = {v1, v2}. If ALG does not take this edge, i.e., d1 = 0, then the adversary presents
e2 = {v2, v3}. If ALG does not take this edge, i.e., d2 = 0, then the adversary presents e3 = {v3, v4}.
And so on. If ALG does not accept any edges in this process, then the input terminates after en�1.
In this case, we have ALG = 0 and OPT = n � 1, since the entire graph is just a simple path of
length n� 1. This leads to an infinite competitive ratio.

Suppose that ALG accepts the first edge e1 = {v1, v2} in the above process, i.e., d1 = 1. Then
the adversary is going to switch its strategy from the above one in the next step. The adversary
will present e2 = {v3, v4}, e3 = {v4, v5} and so on until en�2 = {vn�1vn}. Observe that ALG
cannot accept any ei with i > 1 since this would lead to a disconnected solution. Also observe that
the entire graph in this case consists of two disjoint simple paths: one of length 1 and another of
length n� 3. Hence, OPT � n� 3 and ALG = 1. This leads to a competitive ratio n� 3.

Lastly, suppose that ALG accepts an edge ei = {vi, vi+1} for some i > 1 in the process described
in the first paragraph. Then the adversary is going to switch its strategy: instead of {vi+1, vi+2}
it will present ei+1 = {vi�1, vi+2}, ei+2 = {vi+2, vi+3}, ei+3 = {vi+3, vi+4}, and so on until en�1.
Observe that ALG cannot accept any of the edges ej with j > i, because it would lead to a
disconnected solution. Thus, ALG = 1. Meanwhile OPT can take the entire graph without edges
ei, ei�1 as a solution, since it forms a path of length n� 3. This leads to a competitive ratio n� 3.

See Figure 7.2 for an example of each of the above scenarios.

Note that the above lower bound is very strong, it says that the simplest algorithm that just
accepts the first edge it is presented is essentially optimal when it comes to worst-case analysis.
The Longest Path problem is also di�cult for the randomized algorithms. Exercise 3 asks you to
prove the following theorem.

Theorem 7.3.6. Let ALG be a randomized algorithm for the Longest Path problem in the EM
model. Then

⇢OBL(ALG) = ⌦(n).

7.3. HARD ONLINE GRAPH PROBLEMS 75

v1 v2 v3 v4 vn

v1 v2 v3 v4 vnv5

Figure 7.2: Example of adversarial instances used in Theorem 7.3.5. At the top we have the input
graph constructed by the adversary when ALG accepts the first edge. At the bottom we have the
input graph constructed by the adversary when ALG accepts the third edge. Red edges correspond
to ALG solution and bold edges correspond to OPT .

7.3.4 Minimum Spanning Tree

Given a graph G = (V,E), a subgraph T = (V,E0 ✓ E) is called a spanning tree if T is connected
and acyclic. If the graph G is edge-weighted, i.e., there is a weight function w : E ! R, then we
can also define the weight of the tree T as w(T) :=

P
e2E0 w(e). In the Minimum Spanning Tree

(MST, for short) problem the goal is to find a spanning tree of minimum weight. We consider this
problem in the EM input model. In the weighted version of the EM model, when an edge e is
revealed its weight w(e) is revealed as well. Formally, the problem is defined as follows:

Minimum Spanning Tree
Input: G = (V,E,w,�) ; G is an edge-weighted undirected graph; w : E ! R is the weight
function; � is the total order on E; (e1, w(e1)) � · · · � (em, w(em)) is the sequence of input items,
where ei = {vi, ui} 2 E is an edge and w(ei) is its weight; we have

S
i{ei} = E.

Output: d1, . . . , dm — such that di 2 {0, 1} indicates whether to include ei into a tree or not.
Objective: To find d1, . . . , dm so as to minimize the total weight w(T) of the constructed tree
T = (V,E0), where E0 = {ei : di = 1}, subject to T forming a spanning tree.

In this section, we show that even a randomized online algorithm cannot perform well for this
problem. More specifically, we prove:

Theorem 7.3.7. Let ALG be a randomized algorithm for the MST problem in the EM model.
Then

⇢OBL(ALG) = ⌦(n).

Proof. We present a distribution on inputs and show that any deterministic algorithm has com-
petitive ratio ⌦(n) on average with respect to this distribution. The claim then follows by Yao’s
minimax principle.

Let n be even and let V = {v0, v1, . . . , vn�1}. We place all vertices with an even index in a
row, and all vertices with an odd index in another row immediately above. Vertices in the bottom
row form a path where each edge is of weight ✏. Each vertex in the bottom row is connected
to a vertex directly above it in the top row via an edge of weight 1. Lastly, we select an index
i 2 {0, 1, . . . , n/2�1} uniformly at random. We connect vertices in the top row from v1 to v2i�1 via
a path where each edge is of weight ✏, and we connect vertices in the top row from v2i+3 to vn�1 via
another path where each edge is of weight ✏. This construction is depicted in Figure 7.3. Formally,
it can be described as follows: set E1 := {{v2j , v2j+2} : j 2 {0, . . . , n/2� 2}}, E2 = {{v2j , v2j+1} :
j 2 {0, . . . , n/2 � 1}}, E3 = {{v2j+1, v2j+3} : j 6= i, i � 1}, and let E = E1 [E2 [E3. All edges

76 CHAPTER 7. GRAPH PROBLEMS

in E1 and E3 have weight ✏, while all edges in E2 have weight 1. We call the edge {v2i, v2i+1} an
“isolated column edge,” since its top vertex is isolated from all other top vertices.

Let ALG be a deterministic algorithm working on this distribution. The order of arrival
of edges is as follows: edges from E1 and E2 are presented first in an interleaved fashion, fol-
lowed by all edges from E3. Thus, the first few terms of the input sequence look like this:
{v0, v2}, {v0, v1}, {v2, v4}, {v2, v3}, {v4, v6}, {v4, v5}, . . . Observe that the random choice i can be
deferred until all of E1 and E2 edges have been presented. We claim that in order for the algorithm
to guarantee a feasible solution that it has to accept all E2 edges. Suppose that an algorithm
decides not to pick edge {v2j , v2j+1}, then in the case that i = j the algorithm cannot cover vertex
v2j+1 in the tree. This leads to an infeasible solution and an infinitely bad payo↵. This happens
with a positive probability, i.e., 2/n, hence this decision would contribute infinity to the expected
cost of a solution. Thus, if ALG hopes to achieve any bounded competitive ratio, it has to accept
all of E2. This means that ALG � n/2. Meanwhile, as can be seen from Figure 7.3, OPT can
achieve a solution of cost 3+ ✏(n/2� 2). By taking ✏ > 0 su�ciently small, we get that OPT ’s cost
is at most 4. This leads to the competitive ratio ⌦(n).

v0

v1

v2

v3

v4

v5

v2i

v2i+1 vn�1

v0

v1

v2

v3

v4

v5

v2i

v2i+1 vn�1

OPT

ALG

vn�2

vn�2

Figure 7.3: Example of an adversarial instance used in Theorem 7.3.7. In the instance bold (vertical)
edges have weight 1 and thin (horizontal) edges have weight ✏. The position of the “isolated column
edge” {v2i, v2i+1} is random. The solution of OPT is shown at the top in red, while the solution
of ALG is shown at the bottom in red. The blue edges are edges that are not in the matching.

7.3.5 Travelling Salesperson Problem

In the Travelling Salesperson Problem (TSP, for short), you are given an edge-weighted complete
graph G = (V,E =

�
V
2

�
);w : E ! R�0 [{1}, and the goal is to find a minimum-weight cycle that

visits every node exactly once. We consider this problem in the EM input model. Formally, this
problem is defined as follows.

Travelling Salesperson Problem
Input: G = (V,E,w,�); G is an edge-weighted complete graph; E =

�
V
2

�
); w : E ! R�0 [{1}

7.4. BIPARTITE MAXIMUM MATCHING 77

is the weight function; � is the total order on E; (e1, w(e1)) � · · · � (em, w(em)) is the sequence of
input items, where ei = {vi, ui} 2 E is an edge and w(ei) is its weight.
Output: d1, . . . , dm — such that di 2 {0, 1} indicates whether to include ei into a cycle.
Objective: To find d1, . . . , dm so as to minimize the total weight w(C) of the constructed cycle
C = {ei : di = 1}, subject to C forming a well-defined cycle.

Like some other problems in this section, TSP is a very di�cult problem for online (and o✏ine)
algorithms. We start with deterministic algorithms.

Theorem 7.3.8. Let ALG be a deterministic algorithm for the TSP problem in the EM model.
Then

⇢(ALG) =1.

Proof. Let V = {v1, . . . , vn}. The adversary presents edges incident on vertex v1 first: {v1, v2}, {v1, v3}, . . . , {v1, vn}.
The adversary declares the weight of each edge to be 1 until one of two things happen: (1) either
ALG accepts such an edge, or (2) there is only one edge left to present, namely {v1, vn}.

In case (1), the adversary declares all other edges (even those not incident on v1) to have weight
0. In this case, ALG = 1 and OPT = 0 leading to competitive ratio 1.

In case (2), ALG is forced to take edge {v1, vn} to maintain feasibility, so the adversary declares
the weight of this edge to be1. All other edges are revealed in an arbitrary order and with weight
0. Thus, we have that OPT = 1 and ALG =1 leading to competitive ratio 1, as well.

In Exercise 5 you are asked to establish a similar result for randomized algorithms.

7.4 Bipartite Maximum Matching

Online Bipartite Maximum Matching (BMM for short) provides one of the most interesting online
graph problems both because of its relevance to the applications in Auctions and Online Advertising
(see Chapters 19 and 20), and because the bipartite matching problem has led to an number of
new algorithmic developments. Indeed, we shall be considering BMM in a number of other online
and “online-like” models in Chapters 10, 11, 12, 14, 16 and 17.

In this chapter we only consider the basic adversarial online framework for the BMM problem in
the BVAM input model while deferring alternative computational models to later chapters. Given
a graph G = (U, V,E) a subset of edges M ✓ E is called a matching if the edges in M do not share
any vertices, i.e., for all e, e0 2M we have e\e0 = ;. In the unweighted matching problem, the goal
is to find a matching that is as large as possible. In Chapter 20, we will consider various weighted
versions of bipartite matching which more realistically model applications in online advertising.
The size of a maximum matching in G is denoted by µ(G). We now restrict attention to the BMM
problem, that is, the “one sided” online bipartite maximum matching problem where one-sided
refers to the setting where only one side of the bipartite graph is considered as the online nodes.
More formally it is defined as follows:

Bipartite Maximum Matching
Input: G = (U, V,E, n �); G is an unweighted bipartite graph; n = |U | is the number of online
vertices; � is the total order on online vertices U ; V consists of o✏ine vertices that are known to
an algorithm in advance; (u1, N(u1)) � · · · � (un, N(un)) is the sequence of input items, where
ui 2 U is an online vertex and N(ui) ✓ V is its neighborhood.
Output: d1, . . . , dn — such that di 2 N(ui)[{?} indicates how to match vertex ui to its neighbor
(? indicates ui remains unmatched).
Objective: To find d1, . . . , dn so as to minimize the size of the constructed matching M =
{(ui, di) : di 6= ?}, subject to M forming a well-defined matching.

78 CHAPTER 7. GRAPH PROBLEMS

Before discussing algorithms for BMM, we introduce some notation. We often consider neigh-
borhoods of vertices when a partial matching has been constructed. Then we write Nc(u) to denote
the neighbors of u that are still available, i.e., they do not participate in the partial matching. Let
� : V ! [n] be a permutation. The rank of v 2 V is �(v). A vertex of rank t refers to ��1(t).
Vertex v is said to have a better rank than u if �(v) < �(u). If we imagine V sorted in the order
given by �, then v having better rank that u means that v appears before u. Vertex v is said to
have best rank in S ✓ V if it has a better rank than all other vertices in S.

7.4.1 Deterministic Algorithms

We begin with what is arguably the simplest algorithm for the online BMM in the adversarial
setting. Namely, we consider the natural greedy algorithm, called SimpleGreedy, where an arriving
online node u is matched to the first available neighbor according to some fixed predetermined
order of V . If there are no available neighbors, the simple online greedy algorithm must leave u
unmatched. The pseudocode is presented in Algorithm 13.

Algorithm 13 Simple greedy algorithm for BMM.
procedure SimpleGreedy

V – set of o✏ine vertices
Fix a ranking � on vertices V
M ;
i 1
while i  n do

New online vertex ui arrives according to � together with N(ui)
if Nc(u) 6= ; then . if there is an unmatched vertex in N(ui)

. select an unmatched vertex v of best rank in Nc(ui)
v argmin{�(v) : v 2 Nc(u)}
M M [{(ui, v)} . match ui with v

i i+ 1

We begin by showing that this algorithm achieves competitive ratio 1
2 via a classical argument

that we expect will be familiar to most readers.

Theorem 7.4.1.

⇢(SimpleGreedy) =
1

2
.

Proof. First, we show that the competitive ratio is no better than 1
2 . A matchingM ✓ E is maximal

if there is no edge e 2 E \ M that can be added to M without violating the vertex disjointness
constraint. Recall, that a subset of vertices S ✓ U [V is a vertex-cover if every edge is incident
to some vertex of S. The size of the smallest vertex cover is denoted by ⌫(G). By definition, each
maximal matching gives rise to a vertex cover by including both endpoints of each edge in the
matching. Thus, we have ⌫(G)  2|M |. In addition, every vertex cover has size at least the size
of a matching (since edges in a matching are vertex-disjoint). In particular, we have ⌫(G) � µ(G).
Thus, we have µ(G)  2|M |. This part of the proof is complete by observing that the simple greedy
algorithm always constructs a maximal matching.

Next, we show that the competitive ratio is at least 2. Let V = {v1, v2} and suppose that the
order in which the simple greedy tries to match neighbors is v1 followed by v2. Consider the behavior
of the algorithm on the input where U = {u1, u2} and E = {(u1, v1), (u1, v2), (u2, v1)}. Upon seeing

7.4. BIPARTITE MAXIMUM MATCHING 79

u1, the simple greedy matches it to v1, so when u2 arrives it cannot be matched. Thus, the simple
greedy finds a matching of size 1, whereas an optimal matching is M = {(u1, v2), (u2, v1)}. This
construction can be replicated arbitrarily many times to obtain an asymptotic bound.

An argument similar to the second half in the above proof can be used to show that no deter-
ministic algorithm can achieve a competitive ratio better than 2 in the adversarial setting.

Theorem 7.4.2. Let ALG be a deterministic algorithm for the BMM problem in the BVAM input
model. Then

⇢(ALG)  1

2
.

7.4.2 A Simple Randomized Algorithm

Arguably the most natural randomized greedy algorithm matches an arriving online node u to
a random available neighbor. We shall refer to this algorithm as the natural randomized greedy
algorithm. Consider the following family of graphs. The vertices are U = {u1, . . . , u2n} and
V = {v1, . . . , v2n}. Each node in the first half of U is connected to each node in the second half
of V by an edge. In addition, each “parallel” edge, that is (ui, vi), is present. Formally, we have:
E = {(ui, vj) | i 2 [n], j 2 [n + 1, . . . , 2n]} [{(ui, vi) | i 2 [2n]}. Exercise 9 asks you to prove
that the natural randomized greedy algorithm achieves competitive ratio 1

2 on this instance. Thus,
this algorithm provides no improvement over the simple greedy algorithm. This could lead one
to believe that maybe randomness does not add power in the adversarial setting. Surprisingly,
there is another simple greedy strategy that, although somwehat less natural, provides a significant
improvement over the competitive ratio of the natural randomized greedy.

7.4.3 The Ranking Algorithm

In this section we present and analyze the randomized Ranking algorithm. We will see that Ranking
achieves competitive ratio 1 � 1

e ⇡ .632 and that this ratio is the best possible for randomized
algorithms for BMM. For the purpose of this algorithm it is useful to take V = [n], which can be
assumed without loss of generality. With this notation, the description of Ranking is easy: initially,
pick a uniformly random permutation of V and fix it for the whole duration of the online phase. In
the online phase, when a vertex u arrives, match it with a vertex of best rank among the unmatched
neighbors of u. The pseudocode of Ranking is given in Algorithm 14.

Algorithm 14 The Ranking algorithm for BMM.
procedure Ranking

V – set of o✏ine vertices
Pick a ranking � on vertices V uniformly at random
M ;
i 1
while i  n do

New online vertex ui arrives according to � together with N(ui)
if Nc(u) 6= ; then . if there is an unmatched vertex in N(ui)

. select the vertex of best rank in N(ui)
v argmin{�(v) : v 2 N(u)}
M M [{(ui, v)} . match ui with v

i i+ 1

80 CHAPTER 7. GRAPH PROBLEMS

Let’s compare Ranking with SimpleGreedy and the natural randomized greedy. Ranking di↵ers
from SimpleGreedy in a single line: rather than picking a fixed ranking � of o✏ine vertices V , it
picks one at random. Also while the natural randomized greedy uses fresh random coins to make
decisions for each arriving online node, the Ranking algorithm “shares” the random coins among all
online decisions. This sharing improves the competitive ratio, but also makes the algorithm harder
to analyze. Ranking has an interesting discovery and analysis history (see the historical notes at the
end of this chapter). The remainder of this section is dedicated to proving the following theorem.

Theorem 7.4.3.

⇢OBL(Ranking) = 1� 1

e
⇡ .632.

We begin by establishing the positive result, i.e., ⇢OBL(Ranking) � 1 � 1
e . Let G = (U, V,E)

be a given bipartite graph with U = V = [n] (disjoint copies). Exercise 10 asks you to prove that
we can assume G has a perfect matching without loss of generality. Let M⇤ denote some perfect
matching. We will use notation M⇤(x) to denote the neighbor of x as given by the matching M⇤.
We note that a vertex of rank t is a random variable. Let pt denote the probability over � that the
vertex of rank t in V is matched by Ranking. We are interested in computing the expected size
of the matching returned by Ranking, which is given by

Pn
t=1 pt. Our analysis of Ranking will be

centered around establishing the following lemma:

Lemma 7.4.4. For all t 2 [n] we have 1� pt  (1/n)
Pt

s=1 ps.

We first assume Lemma 7.4.4 to prove that Ranking has competitive ratio 1 � 1
e as follows.

Observe that p1 = 1, since G has a perfect matching. By induction and the lemma, it follows that
pt � (1� 1/n)(n/(n+ 1))t�1 for all t � 2. Thus, we have

nX

t=1

pt = p1 +
nX

t=2

pt �
1

n
+

✓
1� 1

n

◆ nX

t=1

✓
n

n+ 1

◆t�1

� 1

n
+

✓
1� 1

n

◆ 1�
⇣

n
n+1

⌘n

1�
⇣

n
n+1

⌘

=
1

n
+

✓
n� 1

n

◆
1�

✓
n

n+ 1

◆n�
� n


1�

✓
1� 1

n+ 1

◆n�
,

where the first inequality follows by representing p1 = 1/n + (1 � 1/n) and absorbing the second
(1� 1

n) term into the sum, and the last inequality follows since 1/n � 1/n(1�(n/(n+1))n). Lastly,

to conclude the proof of Theorem 7.4.3, we observe that 1�
⇣
1� 1

n+1

⌘n
! 1� 1/e as n!1.

Next, we show how to prove the lemma. Let At denote the set of permutations such that a
vertex of rank t is matched by Ranking. Let S[n] denote the set of all permutations V ! V and
define Bt = S[n] \ At; that is, Bt is the set of permutations such that a vertex of rank t is not

matched by Ranking. We shall construct an injection of the form [n] ⇥ Bt !
St

i=1Ai. This will
prove the lemma. (See Exercise 7.)

The injection is defined as follows. Let � 2 Bt and i 2 [n]. Let v be the vertex of rank t in �,
define �i to be the permutation obtained by moving v into a position i and shifting other elements
accordingly, so that the rank of v in �i is i. It is not di�cult to see that this map is injective, so it
remains to show that it is well defined, i.e.: for all � 2 Bt and i 2 [n] we have �i 2

St
s=1As. There

are two cases to consider, namely, when i � t (see Exercise 11) and when i < t which we will now
consider. Let u be neighbor of v in the perfect matching that we initially fixed, i.e., M⇤(u) = v.
Note that since v is not matched by Ranking with respect to �, it follows that u is matched by
Ranking to some vertex of rank < t with respect to �, otherwise when u arrives it would have been

7.4. BIPARTITE MAXIMUM MATCHING 81

matched to an available neighbor of rank t, namely, v. In fact, an even stronger statement is true:
u is matched by Ranking to a vertex of rank  t with respect to �i for all i 2 [n]. This is clearly
true for i > t, because by moving v to a worse rank than t has no a↵ect on how vertices of rank
< t are matched. Thus u remains matched to a vertex of rank < t. Moving v to a better rank than
t, results in a new matching constructed by Ranking. The di↵erence between the new matching
and the old matching is given by an alternating path with every vertex from U being matched to a
vertex of rank that is at most 1 worse than before (this is because moving v to rank i < t increases
the ranks of vertices between i and t by 1). Figure 7.4 is helpful in following this argument.

u v rank t

U V

...
...

...

Ranking before moving v

Ranking after moving v

moving v to a better rank

Figure 7.4: The di↵erence between the matching constructed by Ranking on � and the matching
constructed by Ranking on �i with i < t.

This completes the proof of the positive result concerning Ranking. In the remainder of this
section, we argue that the competitive ratio of any randomized algorithm for bipartite matching
cannot be better than e/(e� 1).

Theorem 7.4.5. Let ALG be a randomized algorithm for BMM in the BVAM input model. Then

⇢OBL(ALG)  1� 1

e
.

Proof sketch. We prove this result by exhibiting a family of bipartite graphs, which have a perfect
matching, but a given randomized algorithm matches at most a 1� 1/e fraction of nodes in expec-
tation (asymptotically). In particular, this would imply that the above analysis of Ranking is tight
(asymptotically).

A given randomized algorithm can be viewed as a distribution, denoted by A, on deterministic
algorithms. Let P denote a distribution on inputs G. For a maximization problem, Yao’s minimax
lemma is as follows: for any A and P we have:

min
G

EA⇠A(A(G))  max
A

EG⇠P(A(G)).

Thereefore, to prove a negative result, it su�ces to exhibit a distribution on inputs such that the
best deterministic algorithm does not perform very well with respect to that distribution. Next, we

82 CHAPTER 7. GRAPH PROBLEMS

define the distribution. We fix the vertex sets to be U = {u1, . . . , un} and V = {v1, . . . , vn}. For a
permutation ⇡ : [n] ! [n] we define a graph G⇡ := (U ⇥ V,E⇡), where E⇡ = {(ui, vj) | ⇡�1(j) �
i}. The distribution P is the distribution of G⇡ when ⇡ is chosen uniformly at random among
all possible permutations. Observe that when ⇡ is the identity permutation, G⇡ is the so-called
triangular graph, because the biadjacency matrix where rows are indexed by U and columns are
indexed by V is the upper-triangular matrix. Any other graph from the support of P is obtained
by permuting the columns of the upper-triangular matrix. Observe that G⇡ has a perfect matching
given by matching ui with v⇡(i).

Fix a deterministic algorithm A. By Exersize 6 we can assume that A is greedy. The intuition
behind the negative result is that by choosing ⇡ randomly we hide the “true” identities of o✏ine
nodes. By “true” identities of o✏ine nodes we mean their ranks in the triangular graph. The
algorithm sees an o✏ine node vi, but the true identity of the node is given by v⇡�1(i). By an
easy induction, when an online node ui arrives with k available neighbors, the true identities of
those neighbors form a uniformly random set of size k from among {vi, . . . , vn}. It follows that
the performance of A on P is exactly equal to the performance of the natural randomized greedy
algorithm on the triangular graph. The analysis of the natural randomized greedy on the triangular
graph is carried out via a technique of partial di↵erential equations. The technique is somewhat
cumbersome to state formally, but it is very simple to apply. We give a high level overview here.
The idea is to introduce random variables that track the progress of the algorithm. Let Xi denote
the number of remaining online nodes at time i (it’s not random, but will be useful) and Yi denote
the number of unmatched neighbors of ui (they are among {vi, . . . , vn}). We are interested in index
i when Yi drops to zero, because from i onward the ui won’t be matched. In order to keep track of
Yi we analyze how Xi and Yi change in time. First of all, Xi+1 �Xi is always �1. Second of all,
Yi+1�Yi is �2 if vi is available and was not matched, and �1 otherwise. By our earlier observations,
the available neighbors of ui form a uniformly random set of size Yi from among {vi, . . . , vn}, thus
we have the following expected di↵erence equation:

E(Yi+1 � Yi | Yi) = (�2)⇥ Yi
Xi
⇥ Yi � 1

Yi
+ (�1)⇥

✓
1� Yi

Xi
⇥ Yi � 1

Yi

◆
= �1� Yi � 1

Xi
.

Thus, we have E
⇣

Yi+1�Yi

Xi+1�Xi
| Yi
⌘

= 1 + Yi�1
Xi

since Xi+1 � Xi = �1. As the next step in the

method of partial di↵erential equations, you syntactically replace the finite di↵erence equation with
a continuous di↵erential equation, i.e., dy/dx = 1 + (y � 1)/x, and solve it with initial conditions
x = y = n to get y = 1 + x

�
n�1
n + ln x

n

�
. When y = 1 (i.e., there is only one available neighbor)

we get that the number of remaining unmatched online nodes is x ⇡ n/e. The theorems of Kurtz
and Wormald show that as n goes to 1, the di↵erence equation is closely approximated by the
di↵erentai equation. Hence we can conclude that for large n the expected number of online nodes
that do not have available neighbors is n/e ± o(n). Thus, the size of the matching found by the
natural randomized greedy is bounded by n

�
1� 1

e

�
± o(n).

7.5 Coloring

Given a graph G = (V,E), a function c : V ! [k] is called a valid k-coloring of G if for every edge
{u, v} 2 E we have c(u) 6= c(v). The value c(v) is called a color of the vertex v. A graph is called
k-colorable if there exists a valid k-coloring. For concreteness, imagine that G represents a political
map of the world, where V is the set of countries and u ⇠ v if and only if countries u and v share
a border. You would like to color the countries in such a way that any two countries that share a

7.5. COLORING 83

border are colored di↵erently1. The goal is to minimize k — the total number of colors used. This
is the Graph Coloring problem. In this section we consider this problem in the VAM-PH input
model. Formally, the problem is defined as follows:

Graph Coloring
Input: G = (V,E,�); G is an unweighted and undirected graph; � is the total order on V ;
(v1, N1), . . . , (vn, Nn) is the sequence of input items, where vi � vi+1 and Ni = N(vi)\ {vj : j < i}.
Output: c : V ! [k] — such that c(vi) indicates the color assigned to vertex vi.
Objective: To find c so as to minimize k – the number of colors used, subject to c being a valid
coloring, i.e., 8{u, v} 2 E c(u) 6= c(v).

Trivially, every graph on n = |V | vertices is n-colorable. Some graphs, in fact, require that many
colors, e.g., the complete graph; however, many graphs can be colored with much fewer colors. The
question we are interested in is the following: if G is k-colorable, how many colors do you need to
color G online? Although there are nontrivial online coloring algorithms for large values of k, e.g.,
k = nc for some c 2 (0, 1), tight bounds are not known for all values of k. In this chapter, we shall
tackle one of the most basic versions of this question: case k = 2. In other words, in the rest of
this chapter we are interested in how many colors does a deterministic algorithm need to color a
2-colorable graph online. Observe that 2-colorable graphs are precisely the bipartite graphs, where
the two parts of the partition correspond to the two colors. We begin with a lower bound.

Theorem 7.5.1. Let ALG be a deterministic online algorithm for Graph Coloring problem re-
stricted to bipartite graphs in the VAM-PH input model. Then

⇢(ALG) � logn

2
.

Proof. We prove the following statement by induction on k: given an arbitrary sequence of input
items I1, . . . , Im, the adversary can extend the sequence with disjoint trees T1, T2, T3, . . . such that
ALG colors roots of the trees with k di↵erent colors and the combined size of the trees is  2k � 1.

Base case is k = 1: the adversary presents T1 consisting of a single node. No matter what the
previous items were, ALG clearly has to use 1 color to color the root of T1. Moreover, the size of
T1 is 1.

Inductive assumption. Fix k � 1. We assume that any sequence of items I1, . . . , Im can be
extended by an adversary with disjoint trees T1, T2, . . . such that ALG colors roots of the trees with
k di↵erent colors and the combined size of the trees is  2k � 1.

Inductive step: constructing trees for k + 1. We are given an arbitrary sequence of items
I1, . . . , Im. We apply the inductive assumption and extend it with a sequence of trees T 1

1 , T
1
2 , . . .

such that the roots of T 1
1 , T

1
2 , . . . are colored with k di↵erent colors, and the combined size of all

trees is  2k�1. Let S denote the set of colors used by ALG to color roots of all the T 1
i , so we have

|S| = k. We apply the inductive assumption again after all the items corresponding to the last of T 1
i

have been presented, and start presenting T 2
1 , T

2
2 , One of two things can happen: (1) either we

present a tree in the second sequence T 2
i such that the root of that tree is colored with a color that is

not in S; or (2) we present the whole sequence of T 2
i guaranteed by the inductive assumption, such

that roots of the T 2
i are colored with k di↵erent colors and moreover, the colors are precisely S. In

case (1), we are done, since roots of the combined sequence T 1
1 , T

1
2 , . . . , T

2
1 , T

2
2 , . . . are colored with

k+1 distinct colors, and the total size of the sequence is 2k � 1+ 2k � 1 = 2k+1� 2  2k+1� 1. In
case (2), let r1, . . . , r` denote roots corresponding to the T 2

1 , . . . , T
2
` . The adversary then presents a

brand new vertex v connected to each of r1, . . . , r`. Since ALG used colors S to color r1, . . . , r` and
v is connected to all of them, ALG has to use a new (k+ 1)st color to color v in order to maintain

1Of course, the example here is that of a planar graph which, therefore, can be colored with at most 4 colors.

84 CHAPTER 7. GRAPH PROBLEMS

feasibility. Note that T 2
1 , . . . , T

2
` together with the new item form a new tree of size 2k�1+1 = 2k.

Thus, the combined size of T 1
1 , . . . together with the new tree obtained from T 2

1 , . . . is at most
2k � 1 + 2k = 2k+1 � 1. This completes the inductive step.

Applying the statement to the initial empty sequence, we get that the adversary can present
trees T1, T2, . . . such that the combined size of trees is  2k � 1 and ALG uses at least k distinct
colors to color the roots of the Ti. Letting n = 2k � 1 denote the number of vertices, we see that
ALG uses k = log(n+ 1) � log(n) colors. Lastly, note that trees are bipartite which are bipartite
and hence can be colored with 2 colors.

Consider the following algorithm, called CBIP, for online Graph Coloring of bipartite graphs.
When a vertex v arrives, CBIP computes the connected component Cv (so far) to which v belongs.
Since the entire graph is bipartite, Cv is also bipartite. CBIP computes a partition of Cv into two
blocks: Sv that contains v and eSv that does not contain v. In other words, Cv = Sv [eSv. Note
that neighbors of v are only among eSv. Let i denote the smallest color that does not appear in eSv.
CBIP colors v with color i. Next, we show that this algorithm is 2 log n competitive.

Theorem 7.5.2.
⇢(CBIP)  2 log n.

Proof. Let n(i) denote the minimum number of nodes that have to be presented to CBIP in order
to force it to use color i for the first time. We will show that n(i) � d2i/2e by induction on i.

Base cases: clearly we have n(1) = 1 and n(2) = 2.
Inductive assumption: assume that the claim holds for i � 2.
Inductive step: let v be the first vertex that is colored with color i+1 by CBIP. Consider Cv, Sv,

and eSv as defined in the paragraph immediately preceding this theorem. In particular, all colors
1, 2, . . . , i appear among eSv. Let u be a vertex in eSv that is colored i. Let Cu, Su, eSu be defined
as before, but for the vertex u at the time that it appeared. Since u was assigned color i, then all
colors 1, 2, . . . , i� 1 appeared in eSu. Observe that eSu ✓ Sv. Therefore, there exists vertex u1 2 eSv

colored i�1 and there exists vertex u2 2 Sv colored i�1, as well. Without loss of generality assume
that u1 � u2. At the time that u2 was colored the connected component of u2, i.e., Cu2 , had to
be disjoint from the connected component of u1, i.e., Cu1 , for otherwise u2 would not have been
colored with the same color as u1. Thus, we have Cu1 \ Cu2 = ;. Furthermore, we can apply the
inductive assumption to each of Cu1 and Cu2 to get that |Cu1 |, |Cu2 | � d2(i�1)/2e. Thus, the number
of vertices that have been presented prior to v is at least |Cu1 | + |Cu2 | � 2d2(i�1)/2e � d2(i+1)/2e.
See Figure 7.5.

7.6 Exercises

1. Finish the proof of Lemma 7.1.1. That is, prove V AM � PH  EAM  V AM � FH.

2. Does there exists a deterministic algorithm ALG for the Maximum Independent Set problem
in the VAM-PH model that achieves competitive ratio strictly better than n� 1 (⇢(ALG) <
n� 1) when input graphs are restricted to be trees?

3. Prove Theorem 7.3.6.

4. For both deterministic and randomized online MST algorithms, provide a specific lower bound
cn instead of the asymptotic bound ⌦(n) in Theorem 7.3.7.

7.7. HISTORICAL NOTES AND REFERENCES 85

v, col = i+ 1u, col = i

u1, col = i� 1 u2, col = i� 1

e
Sv

Sv

e
Sucolors 1, . . . , i

colors 1, ..., i� 1

Figure 7.5: Schematic representation of the inductive step in Theorem 7.5.2.

5. What is the best competitive ratio achievable by a randomized algorithm for the TSP in the
EM model?

6. Show that if there is an algorithm (either deterministic or randomized) achieving competitive
ratio ⇢ for BMM, then there is a greedy algorithm (respectively, deterministic or randomized)
achieving competitive ratio at least ⇢.

7. Explain why it is su�cent to construct an injection � : [n] ⇥ Bt !
SSt

i=sAs top prove
Lemma 7.4.4.

8. Prove Theorem 7.4.2.

9. Write down pseudocode for the natural randomized greedy algorithm for the BMM problem
(see Section 7.4.2). Prove that the natural randomized greedy algorithm has competitive
ratio 1

2 in the adversarial setting.

10. Prove that for every � : V ! [n] removing a vertex fromG (could be either from U or V) either
leaves the matching size returned by Ranking unchanged or reduces it by 1. Conclude that
the worst-case competitive ratio of Ranking is witnessed by graphs with perfect matchings.

11. Show that the injective mapping in the proof of Lemma 7.4.4 is well defined when i � t.

7.7 Historical Notes and References

Many of the graph theoretic problems in this chapter are known to be hard to approximate even
in the o✏ine setting (under well accepted complexit assumptions). Hastad [33] shows that unless
NP = co�RP , max clique (and therefore max independent set) cannot be e�ciently approximated
to within a factor ⌦(n1�✏) for any ✏ > 0. The same inapproximation also holds for the min
coloring problem. However, as we have indicated, these complexity based inapproximations do
not necessarily imply similar negative results for online algorithms (that can have unlimited time
bounds) nor do they hold for restricted classes of graphs.

86 CHAPTER 7. GRAPH PROBLEMS

The seminal 1 � 1
e competitive Ranking algorithm is due to Karp, Vazirani and Vazirani [37]

who also showed that the simple randomized algorithm does not asymptototically improve upon
the 1

2 approximation achieved by any deterministic greedy online algorithm. Several years after this
publication, it was discoved that there was a technical error in the proof and this was independently
observed in Goel and Mehta [28] who provide a correct proof, and Krohn and Varadarajan [39].
Subsequent alternative proofs appear in Birnbaum and Mathieu [7], Devanur, Jain and Kleinberg
[17] and Alon et al [22]. We have presented the proof as provided in [7]. The proofs that the
competitive ratio for the simple randomized algorithm is 1

2 and that the competitive ratio for
Ranking is tight appear in the seminal [37] paper. The latter proof relies on the di↵erential equation
technique initially due to Kurtz [40] and adapted to discrete probability spaces by Wormhold [49].

The graph coloring problem has a long history and indeed is a foundational problem within
graph theory. The coloring problem is also a fundamental problem in the analysis of algorithms
and, in particular, in online analysis. Gyárfás and Lehel [31] show that the first fit online algorithm
(i.e., color each online node with the lowest numbered color available) colors trees with O(log n)
colors and Bean [5] shows that online algorithms require ⌦(log n) colors establishing the asymptotic
competitive ratio for trees. Irani [34] generalizes the results for trees to the much broader class of
d-inductive graphs. These are graphs for which there is an ordering of the vertices v1, v2, . . . , vn such
that for each vi, there are at most d vertices adjacent to vi when restricted to vertices vj with j > i
. In [34], it is shown that first fit colors every d-inductive graph with at most O(d log n) colors and
that there exists such graphs that require ⌦(d log n) colors establishing ⇥(log n) as the competitve
ratio for this class of graphs. Note that trees are d inductive for d = 1, graphs with treewidth d are
d-inductive, planar graphs are d-inductive for d = 5, and k-colorable chordal graphs are d = k � 1
inductive so that this is indeed a broad class of graphs. Although there are bipartite graphs for
which first fit uses ⌦(n) colors, Lovász, Saks and Trotter provide the O(log n) competitve algorithm
shown in Theorem ??. Whereas we now have an asymptotically tight bound for the competitive
ratio of bipartitie graph coloring (i.e., online coloring of a 2-colorable graph), the most glaring open
problem is to determine the competitive ratio for coloring a k-colorable graphs for small k � 3.
Perhaps this is not surprising as the Blum and Karger [8] Õ(n3/14) approximation is the best known
o✏ine approximation for 3-colorable graphs. The current state of the art for the online competitive
ratio is O(n1� 1

k!) (and an improved Õ(n2/3) for 3-coloroable graphs) for coloring k-colorable due
to Kierstead [38].

Chapter 8

Online MaxSat and Submodular
Maximization

We wil now consider two problems which are not naturally thought of as online problems, namely
the max-sat problem and the unconstrained maximization of an arbitrary non montone submodular
set function. We will see that these problems are related and, furthermore, the current best known
combinatorial algorithms 1 for these two problems are the online algorithms that will be presented.
We will start with the max-sat problem as it is a more well known and well studied problem.

8.1 Max-sat

The satisfiability problem (SAT) was the first problem to be shown to be NP-complete. While
the theory of NP-completeness argues that there can not be a polynomial time algorithm for the
satisfiability decision problem, it is believed that SAT can often be solve “in practice’ and is therefore
a common way to solve many problems that can be encoded as a SAT problem.

The corresponding NP-hard optimization problem is the max-sat problem and is perhaps the
most basic constraint satisfaction problem. Like SAT, although the problem is NP hard (and there
is a known 7

8 -hardness of approximation), there is much evidence to suggest that “in practice”,
max-sat problems are solved at or close to optimality. We consider the weighted max sat problem.

Max-sat
Input: Clauses C1^C2 . . . ,^Cm where each clause Ci has a weight wi; each clause is a disjuntion
of literals over propositional variables x1, . . . xn.
Output: A truth assignment ⌧ ! {True, False}.
Objective: To find ⌧ so as to maximize

P
i:⌧ satisfies Ci

wi.

If every clause has at most (resp., exactly) k literals, the problem is called max-k-sat (resp.,
exact max-k-sat). In the online version of this problem, we assume that the online input items
are the propositional variables {xi} where each input propositional variable xi is represented by
information about the clauses in which xi appears positively and the clauses where it appears
negatively. We can consider the following possible input representations for each variable xi:

• (Input model 0): For each xi only the names of the clauses in which xi occurs positively and
those in which it appears negatively.

1We have not defined the concept of a combinatorial algorithm but su�ce it to say, the algorithms are relatively
easy to state and implement

87

88 CHAPTER 8. ONLINE MAXSAT AND SUBMODULAR MAXIMIZATION

• (Input model 1): Input model 0 plus the lengths of those clauses.

• (Input model 2): Input model 0 plus the names of the oher varaiables occuring in each of
those clauses but not their signs.

• (Input model 3): A complete description of each of the clauses in which xi occurs.

Clearly, Input model 3 is the most general input representation and input model 0 is e↵ec-
tively a minimal representation. We begin with the most elementary algorithm, namely the naive
randomized algorithm for which input model 0 su�ces.

Algorithm 15 The naive online greedy max-sat algorithm.
procedure naive online max=sat

i 1
while i  n do

With probability 1
2 set ⌧(xi) to True (or False)

return ⌧

Rather than analyze the competitive ratio of Algorithm 15, consider its (expected) totality ratio.
The totality ratio (for a max-sat algorithm) is the worst case ratio of the (expected) value of the
algorithm compared to

P
j wj , whether or not the formula is satisfiable. Clearly, the competitive

ratio is at least as good as the totality ratio and equal if and only if the formula is satifisfiable.

Theorem 8.1.1. For exact max-k-sat (with just input model 0), the totality ratio of Algorithm 15

is equal to 1 � 1
2k

= 2k�1
2k

. In particular, for a formula consisting only of unit clauses, the totality

ratio is 1
2 .

Proof. Let F = C1 ^ C2 ^ . . . ^ Cm with clause weights {wi}. Let ⌧ be a random setting of the
variables and let E⌧ [F] denote expectation of

P
i:Ci is satisfied by ⌧ wi. Therefore, if every clause

has length k, the expected totality ratio will be
P

j
wj ·E⌧ [Cj]

wj
from which the result immediately

follows. Note that the method requires that the branching probabilities (in this case 1
2 for each xi)

do not depend on the previous settings of xj for j < i.

8.1.1 Derandomization by the method of conditional expectations; Johnson’s
algorthm rediscovered.

Theorem 8.1.2. Using input model 1, the naive randomized algorithm can be used to derive a
deterministic online algorithm that constructs a specific truth assignment resulting in a totality
ratio is at least as good as the expected totality ratio of Algorithm 15.

Proof. In order to de-randomize Algorithm 8.1.1, we will need input model 1. In the method of
conditional expectations, we consider the randomization tree where at each node, a propositional
variable xi is being set randomly. Consider the first online input x1. Before we set x1 randomly,
consider a clause Cj in which x1 occurs positively and say Cj has length `. As already stated we
know the contribution of this clause to the expected value of the algorithm, namely wj · (1� 1

2`
). If

we set x1 to TRUE, the contribution to the expected value of the formula increases to wj since Cj is
now satisfied. On the other hand, if we set x1 to FALSE, then the expected contribution decreases
to wj · (1 � 1

2`�1). We can similarly determine the gain and loss for a clause in which x1 occurs
negatively. Thus when setting the value of x1, we can determine the change in the expectation

8.1. MAX-SAT 89

by knowing the lengths of the clauses in which x1 occurs posiively and negatively (i.e., given the
representation of x1 using input model 1).

The method of conditional expectations is based on the observation that

E⌧ [F] =
1

2
E⌧ 0 [F |x1 = TRUE] +

1

2
E⌧ 0 [F |x1 = FALSE]

where ⌧ 0 is a random setting of all variables except x1. One of the two terms must be at least as
great as E⌧ [F] and since we can determine which term is at least as good as the other, we can know
which branch to follow in the randomization tree when setting x1. We can do this for each variable
and hence find a path in the randomization tree (and hence a fixed setting for a truth assignment
⌧⇤) which gives an approximation that is at least as good as the expected totality ratio.

The de-randomization (by the method of conditional expectations) leaves open a question as to
the competitive ratio (in contrast to the totoality ratio) achieved by this deterministic algorihm for
an arbitrary max-sat formula. Namely, one expects that it should be better than 1

2 . Remarkably,
the de-randomized algorithm turns out to be equivalent to Johnson’s algorithm, a deterministic
online algorithm known since 1974.

Algorithm 16 The Johnson’s deterministic max-sat algorithm.
procedure Johnson’s algorithm

For all clauses Ci, set w0
i :=

wi

2|Ci|

Let L be the set of clauses in formula F and X the set of variables
for x 2 X (or until L empty) do

Let P = {Ci 2 L such that x occurs positively}
Let N = {Ci 2 L such that xi occurs negatively}
if
P

Ci2P w0
i �

P
Cj2N w0

j then

x := true;L := L \ P
for Cr 2 N do

w0
r := 2w0

r

else
x := false;L := L \N
for Cr 2 P do

w0
r := 2w0

r

Theorem 8.1.3. No deterministic online algorithm for max-2-sat can achieve a competitive ratio
better than 2

3 . The competitive ratio of Johnson’s max-sat algorithm is 2
3

Proof. It is easy to see why a deterministic algorithm cannot exceed competitive ratio 2
3 . Consider

followng two instances of max-2-sat:

• C1 = x _ y, C2 = x̄ _ ȳ, C3 = x

• C1 = x _ y, C2 = x̄ _ ȳ, C3 = x̄

Note that in each instance all three clauses can be satisfied once we know whether x or x̄ is
the third clause. However, a deterministic algorithm can be forced to satisfy at most two clauses,
since satisfying both C1 abd C2 forces the assignment of the variable x which allows an adversary
to choose C3.

90 CHAPTER 8. ONLINE MAXSAT AND SUBMODULAR MAXIMIZATION

8.2 A randomized max-sat algorithm with competitive ratio 3
4

The underlying idea for improving upon the “naive” randomized algorithm is that in setting the
variables, we want to balance the weight of clauses satisfied with that of the weight of clauses that
can no longer be satsified.

Let Si be the assignment to the first i variables and let w(SATi) = w(Si) be the weight of
satisfied clauses with respect to the partial assignment Si of propositional variables. Let UNSATi

be the set of clauses that can no longer be satisfied given the assignment Si; that is, the clauses
that are unsatsifed by Si and containing only variables in {x1, . . . , xi}. Let w(UNSATi) be the
weight of clauses in UNSATi. In order to balance the weights w(SATi) and w(UNSATi), we
define Bi =

1
2(SATi +W � UNSATi) where W is the total weight of all clauses, so that w(Bi) =

1
2(w(SATi) + W � w(UNSATi). Note that w(S0) = w(UNSAT0) = 0 so that B0 = 1

2W ; note
also that w(Sn) = W � w(UNSATn) = the weight of the clauses satsified by the algorithm upon
termination which implies w(Bn) = w(Sn).

As in the de-randomization analysis of the naive randomized algorithm in Theorem 8.1.2, an
online algorithm can calculate the changes in SATi and UNSATi and hence Bi when setting xi
to true and when setting xi to false. The algorithm’s plan is to randomly set variable xi so as
to increase E[Bi � Bi�1] where the expectation is conditioned on the setting of the propositional
variables x1, . . . , xi�1 in the previous iterations. To that end, let ti (resp. fi) be the value of
w(Bi) � w(Bi�1) when xi is set to true (resp. false). In order to insure that the value ofthe
partial solution cannot decrease in any iteration, we will need to eventually prove the basic Lemma
8.2.1 below which establishes that fi + ti � 0. We then have the following randomized online 3

4
competitive algorithm (without explicity showing the calculations for SATi, UNSATi and Bi).

Algorithm 17 The 3
4 randomized max-sat algorithm.

procedure random 3/4 approximation for online max-sat

B0 0
for i  n do

Bi(true) value of Bi if xi is set true; Bi(false) value of Bi if xi is set false
ti Bi(true)�Bi�1; fi Bi(false)�Bi�1

if fi  0 then
⌧(xi) := True

else if ti  0 then
⌧(xi) := False

else if fi and ti are both positive then
With probability ti set ⌧(xi) to True and Bi Bi(true)
With probability fi set ⌧(xi) to False and Bi Bi(false)

. If fi = ti = 0, the algorithm is (arbitrarily) setting xi = TRUE
. Since fi + ti � 0, Bi is non-decreasing.

return ⌧

Lemma 8.2.1. The basic lemma
fi + ti � 0

We now establish the competitive ratio of Algorithm 17.

8.2. A RANDOMIZED MAX-SAT ALGORITHM WITH COMPETITIVE RATIO 3
4 91

Theorem 8.2.2. Using input model 1, Algorithm 17 is a randomized 3
4 -approximation algorithm

for max-sat. Furthermore, this bound is the precise competitive raio for Algorithm 17.

For any integer program (IP) for max-sat (.e., constraining variables xi = TRUE = 1 and
xi = FALSE = 0), we consider its fractional relaxation LP for the constraints 0  xi  1. In
proving the approximation bound, we want to consider the progress of the algorithm in terms of
how much an optimal fractional solution OPTLP deteriorates as more and more variables become
fixed to 0 or 1.

Let OPTLP = (x⇤1, . . . , x
⇤
n) denote an optimal fractional solution for the given max-sat in-

stance. Clearly w(OPTLP) � w(OPT) where OPT denotes an optimal solution. Let OPTi =
(x1, . . . , xi, x⇤i+1, . . . , x

⇤
n) be the assignment coinciding with the partial assignment Si of the algo-

rithm and completed by the assignment in OPTLP .
The proof of Theorem 8.2.2 relies on a key lemma showing in every iteration that (in expectation)

the increase in Bi is no worse than the decrease in OPTi whereas the key lemma depends on a
supporting lemma showing that the decrease in OPTi is bounded as a function of fi and ti. We will
first prove the theorem given the key lemma and then prove the key lemma using the supporting
lemma.

Lemma 8.2.3. The key lemma
E[w(OPTi�1)� w(OPTi)]  E[Bi �Bi�1].

Lemma 8.2.4. A supporting lemma
If fi + ti > 0 then

E[w(OPTi�1 � w(OPTi)]  max{0, 2fiti
fi + ti

}

Proof. (Theorem 8.2.2)

We first note that S0 = OPT0 = OPTLP and that Sn = OPTn is the final assignment of the
algorithm. We recall that W =

P
j wj is the total weight of all clauses, w(B0) = 1

2W and that
Bn = Sn. The proof establishes something stronger than stated. Namely,

E[w(Sn)] �
2w(OPTLP) +W

4
� 3

4
w(OPTLP) �

3

4
w(OPT)

Summing the inequalities provided by the key lemma 8.2.3, we have

nX

i=1

E[w(OPTi�1)� w(OPTi)] 
nX

i=1

E[Bi �Bi�1]

This then implies (by linearity of expectations) and telescoping that

E[w(OPT0)]� w(OPTn)]  E[Bn]� E[B0]

Restated:

w(OPTLP)� E[w(Sn)]  E[w(Sn)]�
1

2
W

Rearranging and dividing by 2::

1

2
(OPTLP) +

1

4
W  E[w(Sn)]

92 CHAPTER 8. ONLINE MAXSAT AND SUBMODULAR MAXIMIZATION

Which (since OPTLP W) implies the desired result:

3

4
w(OPTLP) 

1

2
+

1

4
W  Ew(Sn)]

Proof. (The key Lemma 8.2.3)
We recall the definition of ti (resp. fi) as the increase/decrease in Bi when setting xi = true

(resp. false); namely,
ti = Bi(true)�Bi�1 and fi = Bi(false)�Bi�1.
There are two cases to consider:

• fi  0 or ti  0 in which case xi is set determiniistically so that Bi � Bi�1 � 0. The lemma
follows since fi + ti � 0 and hence we must have fiti  0.

• fi > 0 and ti > 0 so that fiti > 0 and fi + ti > 0.
By definition
E[Bi �Bi�1] =

fi
fi+ti

E[Bi(false)�Bi�1] +
ti

fi+ti
E[Bi(true)�Bi�1]

� f2
i +t2i
fi+ti

by the supporting lemma

� 2fiti
fi+ti

since f2
i � 2fiti + t2i = (fi � ti)2 � 0.

Proof. (The supporting Lemma 8.2.4)
We are considering an optimal fractional solution x⇤1, . . . , x

⇤
n) for a given max-sat instance. Simi-

lar to the definition ofBi(true) andBi(false), we can define SATi(true), SATi(false), UNSATi(true)
and UNSATi(false).

We need to bound the change in w(OPTi) when the algorithm replaces x⇤i by xi = true and
when x⇤i is replaced by xi = false. Lets consider w(OPTi�1) � w(OPTi) when we reverse setting
xi = true = 1 back to x⇤i . Any clause Cj that contributes positively to w(OPTi�1)�w(OPTi) must
be a clause in which x̄i occurs and the increase due to such a clause Cj is bounded by (1�x⇤i) times
the weight of Cj . That is, the total possible increase is bounded by (1 � x⇤i) · (w(SATi(false)) �
w(SATi�1a). On the other hand, any clause Cj containing xi will cause a decrease of exactly (i�x⇤i)

times the weight of Cj . That is, the total decrease is (1�x⇤i)·(w(UNSATi(false))�w(UNSATi�1).
Hence the total change in w(OPTi�1 � w(OPTi) is at most

(1� x⇤i) · [(w(SATi(false))� w(Sati�1)� w(UNSATi(false))� w(UNSATi�1)] = (1� x⇤i) · 2fi.

By the same type of reasoning, when setting of xi = false, we obtain w(OPTi�1)�w(OPTi) 
x⇤i · 2ti.

So to conclude the supporting lemma, we just need to recall how the algorithm is probabilisti-
cally setting xi = true (resp. false) with probability ti

ti+fi
(resp. with probability fi

ti+fi
. We then

obtain the desired bound

E[w(OPTi�1)� w(OPTi)] 
ti

ti + fi
· (1� x⇤i) · 2fi +

fi
ti + fi

· x⇤i · 2ti =
2fiti
ti + fi

.

8.3. THE UNCONSTRAINED SUBMODULARMAXIMIZATION PROBLEMAND THE “TWO-SIDED” ONLINE ALGORITHM93

Finally we need to prove the basic fact that fi + ti � 0

Proof. The basic Lemma 8.2.1

With some care, Algorithm 8.2.2 can be implemented so as to have time complexity linear in
|F | where |F | is the encoded length of the input formula F .

8.3 The unconstrained submodular maximization problem and
the “two-sided” online algorithm

Submodular set functions occur in many applications and have been the motivation for a number
of novel algorithmic ideas. Let U be a set or universe of elements. There are two alternative
definitions for submodular functions. The following is perhaps the standard definition and the one
that we will rely upon for this section. Namely, a submodular function f : U ! R satisfies the
following property for all S, T ✓ U :

f(S [T) + f(S \ T)  f(S) + f(T), 8S ✓ T ⇢ U

An equivalent definition which is often the more useful characterization for applications such
as auction is that submodular set functions are functions which satisfy the property of diminishing
marginal gains. More precisely, a function f is submodular if it satisfies the following property for
all S ✓ T ✓ U and x /2 T :

f(S [{x}) � f(T [{x})

In considering submodular functions, we usually have the additional properties that the func-
tions are normalized (i.e., f(;) = 0) and monotone (i.e. f(S)  f(T) whenever S ✓ T). A common
optimization problem is to find a subset S that maximizes f(S) subject to some constraint. There
are also examples of non monotone submodular functions and in the non-monotone case, it is also
meaningful to study the unconstrained maximization problem. The two most prominent examples
of non-monotone submodular functions are finding maximum cuts in graphs and directed graphs;
that is, given a graph (or digraph) G = (V,E), find a subset S that maximizes |{(u, v) 2 E such
that u 2 S, v 2 V \S}|. In the edge weighted case, the objective is to maximize

P
u2S,v2V \S w(u, v)

where w(u, v) is the weight of an edge (u, v).
For an arbitrary (possibly non-monotone) submodular function f , the problem of finding a

subset S so as to maximize f(S) is referred to as the unconstrained submodular maximization
problem (USM) and the problem has an interesting history as discussed in Section 8.6. For a
universe U of n elements, the input for the problem consists of the 2n possible subset values. Hence
to be able to consider more e�cient algorithms, we need to have a model that allows access to
information about the function f without having to explicitly list all subset values. The most
common type of access is called a value oracle which allows an algorithm to ask for the value of
f(S) for any specified subset S. The complexity of algorithms that utilize a value oracle is often
measured by the number of oracle calls, ignoring other computational steps. For an explicity defined
function (such as max cut), we do not have to assume access to an oracle and time is measured in
the usual way by counting all time steps.

For the general USM problem there is an elegant “linear time” deterministic 1
3 algorithm which

is the best known deterministic approximation. Moreover, there is a natural “canonical random-
ization” of the algorithm that achieves a 1

2 approximation. This is the best possible approximation
in the oracle model in the sense that exponentially many value oracle calls are necessary in order

94 CHAPTER 8. ONLINE MAXSAT AND SUBMODULAR MAXIMIZATION

to achieve a 1
2 + ✏ approximation for any ✏ > 0. (There is also an explicitly given non monotone

submodular function for which a 1
2 + ✏ approximation is not possible unless RP 6= NP .). It should

be noted that the “natural” (forward) greedy and reverse greedy algorithms both fail to provide
any constant approximation for the USM problem. Instead, it is possible in some sense to run the
forward and reverse greedy algorithms at the same time, and even to do so in an online manner.

The 1
3 deterministic and 1

2 randomized approximation algorithms can be viewed as online algo-
rithms in the sense that for both algorithms, the input items are elements in the universe U and
they arrive in an adversarial online order. In principle, a value oracle algorthm can obtain the value
f(S) for any subset S ✓ U . However, to better capture the online model as given in the templates
for explicitly given problems, we might want to restrict an online oracle model so that when the
ith element ui arrives, we restrict oracle calls to subsets S ✓ {u1, u2, . . . , ui}. This turns out to be
too restrictive to model a reverse greedy algorithm where we start with a solution consisting of all
elements in the universe U and “greedily” eliminate elements. To capture the deterministic and
randomized algorithms for USM, we can also allow “compliment oracle” calls to f̄(S) = f(U \ S).

The randomized algorithm for USM is conceptually similar to the 3
4 approximation for max-sat

which is not a coincidence as the randomized algorithm for USM becomes the max-sat algorithm
when applied to that problem. Indeed, the randomized algorithm can be extended to privde a 3

4
approximation for submodular max-sat where the value of a solution is a submodular function of
the satisfied clauses (rather than a weighted sum). We first state the deterministic algorithm.

Algorithm 18 The deterministic “double-sided” greedy USM algorithm.

procedure deterministic 1/3 approximation for “online” USM

X0 ;;Y0 U
. The sets Xi will build up a solution while the sets Yi eliminate elements in such a way that

Xi and Yi will agree with respect to the first i elements.
for i  n do

ai f(Xi�1 [{ui})� f(Xi�1); bi f(Yi�1 \ {ui})� f(Yi�1)
if ai � bi then

Xi Xi�1 [{ui};Yi Yi�1 . Add an element to X if that is at least as good as
taking away an element from Y

else if bi > ai then
Xi Xi�1;Yi Yi�1 \ {ui}

return Xn = Yn

Theorem 8.3.1. Using a value oracle that in the ith iteration allows calls to f(S) and f̄(S) for
S ✓ U \ {u1, u2, . . . , ui}, Algorithm 18 is a deterministic 1

3 -approximation algorithm for the USM
problem. In such a value oracle model, the algorithm can be viewed as an online algorithm. This 1

3
approximation is the precise competitive raio for Algorithm 18.

Proof. Intuitively, it seems important (if not necessary) that Algorithm 18 requires at least one of
ai or bi to be positive if the algorithm is going to make “progress” in each iteration (or at least be
non-negative so as to not not “lose ground”). The following basic fact (analogous to Lemma 8.2.1)
gives us that assuarance.

Lemma 8.3.2. ai + bi � 0 for 1  i  n.

Proof. Note that Yi�1 = (Xi�1 [{ui}) [(Yi�1 \ {ui}) and Xi�1 = (Xi�1 [{ui}) \ (Yi�1 \ {ui}).
Since f is submodular (and letting S = Xi�1 [{ui} and T = Yi�1 \ {ui}), it follows from the

8.3. THE UNCONSTRAINED SUBMODULARMAXIMIZATION PROBLEMAND THE “TWO-SIDED” ONLINE ALGORITHM95

“standard submodular definition” that

f(Yi�1) + f(Xi�1)  f(Xi�1 [{ui}) + f(Yi�1 \ {ui})

Therefore, ai + bi = [f(Xi�1 [{ui})� f(Xi�1)] + [f(Yi�1 \ {ui})� f(Yi�1)]
= [f(Xi�1 [{ui}) + f(Yi�1 \ {ui})]� [f(Xi�1) + f(Yi�1)] � 0.

Note that for all i, Xi and Yi agree on elements {u1, u2, . . . , un}, X0 = ;, Y0 = U , and Xn = Yn
is the solution returned by Algorithm 8.3.1. Let OPT be an optimal solution. In order to monitor
the progress of the algorithm, we define OPTi = (OPT [Xi)\Yi so that OPTi agrees with Xi and
Yi on the first i elements and agrees with OPT on the remaining elements {ui+1, . . . , un}. Thus
OPTn = Xn = Yn. As i increases OPTi is non increasing while Xi is non-decreasing (using the
Lemma 8.3.2.

The crux of the proof of Theorem 8.3.1 is that the decrease in f(OPTi) in any iteration is
bounded by the sum of the increases in f(Xi) and f(Yi). That is, we need to prove the following:

Lemma 8.3.3. For (1  i  n), f(OPTi�1)� f(OPTi)  [f(Xi)� f(Xi�1)] + [f(Yi)� f(Yi�1)]

Proof. There are two cases to consider, namely when ai � bi and bi � ai. The proof is similar in
both cases, so we will just do the proof for ai � bi and leave the other case for exercise 1.

When ai � bi, we have Xi = Xi�1 [{ui} and Yi = Yi�1. The lemma then can be restated as:

f(OPTi�1 � f(OPTi)  f(Xi)� f(Xi�1)

We once again have two cases:

Case 1: ui 2 OPT .
This is the easier case, as the left side of the inequality is 0, while the right hand side is ai � 0
since ai � bi and ai + bi � 0.

Case 2: ui /2 OPTi

ui /2 OPT and hence ui /2 OPTi�1. We note that in this case, we also have

OPTi�1 = ((OPT [Xi�1) \ Yi�1) ✓ Yi�1 \ ui

Using the definition of submodularity, we have: we have:

f(Yi�1\{ui})+f(OPTi�1[{ui}) � f [((Yi�1\{ui})[(OPTi�1[{ui})]+f [((Yi�1\{ui})\(OPTi�1[{ui})]

= f(Yi�1) + f(OPTi�1)

from which the required inequality follows, namely that:

f(OPTi�1)� f(OPTi�1 [{ui})  f(Yi�1 \ {ui})� f(Yi�1) = bi  ai

96 CHAPTER 8. ONLINE MAXSAT AND SUBMODULAR MAXIMIZATION

We can now conclude the proof of Theorem 8.3.1.

Using Lemma 8.3.3, we have

nX

i=1

[f(OPTi�1)� f(OPTi)] 
nX

i=1

[f(Xi)� f(Xi�1)] +
nX

i=1

[f(Yi)� f(Yi�1)]

These sums telescope so that

f(OPT0)� f(OPTn)  [f(Xn � f(X0)] + [f(Yn � Y0)]  f(Xn) + f(Yn)

Recalling the measning of OPT0 and OPTn) we have

f(OPT0) = f(OPT)  f(OPTn) + f(Xn) + f(Yn) = 3f(Xn)

This concludes the proof of the deterministic approximation ratio (or competitive ratio when
viewing the double-sided algorithm as an online algorithm in terms of an appropriate value oracle).

8.4 The natural randomization of the double sided-greedy algo-
rithm

We now want to consider the “natural randomization” of algorithm 8.3.1 as presented in Algo-
rithm 8.4. That is, rather than making a deterministic decision for choosing A over B based on
whether or not a � b, one decides randomly in proportion to relative values of a and b.

Algorithm 19 The randomized “double-sided” greedy USM algorithm.

procedure randomized 1/2 approximation for “online” USM

X0 ;;Y0 U
for i  n do

ai f(Xi�1 [{ui})� f(Xi�1); bi f(Yi�1 \ {ui})� f(Yi�1)
a0 max{ai, 0}; b0 max{bi, 0}
if a0 = b0 = 0 then

Xi Xi�1 [{ui}
else if a0 + b0 > 0 then

With probability a0

a0+b0 , Xi Xi�1 [{ui}, Yi Yi�1; and

with probabiity b0

a0+b0 , Xi Xi�1, Yi Yi�1 \ {ui}
return Xn = Yn

We have the following Theorem proving that Algorithm 19 achieves an optimal competitve ratio
(under either of the assumptions stated in Section 8.3).

Theorem 8.4.1. The randomized algorithm 19 achieves a 1
2 competitive ratio.

Using the same definition of OPTi, the proof will parallel the proof of Theorem 8.3.1 using
the same idea of bounding the decrease in f(OPTi�1 � f(OPTi). Here we now need to show the
following analogue of Lemma 8.3.3:

8.5. EXERCISES 97

Lemma 8.4.2. For (1  i  n), E[f(OPTi�1)�f(OPTi)]  1
2E[f(Xi)�f(Xi�1)]+[f(Yi)�f(Yi�1)]

Of course, now OPTi, Xi and Yi are random variables. Looking back at section 8.2, we will see
that the proof of Lemma 8.4.2 will then have analogues to the lemmas used to establish Lemma
8.2.3, the key lemma in the proof of Theorem 8.2.2 which gave a 3

4 competitive ratio for max-sat.
As in the proof of the 1

3 deterministic bound in Theorem 8.3.1, the same telescoping argument
will establish the proof for the 1

2 randomized bound. That is, assuming Lemma 8.4.2, we have:

Proof.

E[
nX

i=1

f(OPTi�1)� f(OPTi)] 
1

2
E[

nX

i=1

f(Xi)� f(Xi�1) +
nX

i=1

[f(Yi)� f(Yi�1)]

By telescoping then:

E[f(OPT0)� f(OPTn)] 
1

2
E[f(Xn � f(X0) + f(Yn � Y0)] 

E[f(Xn) + f(Yn)]

2

And as before, we have OPT0 = OPT and OPTn = Xn = Yn, so that we obtain the desired
competitive ratio.

8.5 Exercises

1. Provide the proof for the case bi � ai in Lemma 8.3.3.

2. Consider the implementation (as an online algorithm) of Algorithm 18 for the explicitly
defined maximum directed cut (DICUT) problem. Here the online input items are the nodes
of the directed graph. In particular, what information must be provided in the representation
of each node?

8.6 Historical Notes and References

8.7 Additional Related Results

