
Faculty of Computer Science, Electrical Engineering and Mathematics

Algorithms and Complexity research group

Jun.-Prof. Dr. Alexander Skopalik

Online Algorithms
Notes of the lecture SS13

by Vanessa Petrausch (vape@mail.upb.de)

Contents

1 Introduction 1

2 Paging 3
2.1 Deterministic Algorithms . 3

2.1.1 Marking Algorithms . 3
2.1.2 Lower Bounds . 5
2.1.3 Optimal Offline Algorithm . 5

2.2 Randomised Algorithms . 7
2.2.1 Worst-Case Analysis as a Game 8
2.2.2 Potential Function . 9
2.2.3 Analysis of RANDOM . 9
2.2.4 Analysis of MARK . 12
2.2.5 Lower Bounds for Randomized Online Algorithms 13

3 The k-Server-Problem 15
3.1 Introduction . 15

3.1.1 Greedy Algorithm . 15
3.1.2 The k-Server Conjecture . 15
3.1.3 Optimal Offline Algorithm . 16

3.2 Lower Bound for Deterministic Online Algorithm 18
3.3 k-Server Problem on a Line . 19
3.4 The DC-Algorithm on Trees . 22
3.5 Applying DC-Algorithm . 23
3.6 The 2-Server-Problem in Euclidean Spaces 24

4 Approximation of Metric Spaces 27
4.1 Approximations with Tree Metrics . 27

5 Scheduling 35
5.1 Identical Machines . 35
5.2 Machines with Speed . 36

6 Summary 40

1 Introduction

Definition 1.1. ”classical” optimization problem
given input instance→ compute solution that max-/minimizes object function, e.g.
shortest path

Definition 1.2. Online problem

• instance is not shown in advance

• revealed step by step

• decision (part of solution) have to be made each step, e.g. paging/caching

CPU

4
K

Main Memory: 4GB

Cache: 16MB

Definition 1.3. Optimisation problem II

• Iπ set of instances

• For each σ ∈ Iπ there is

– set of solutions Sσ

– objective functions fσ : Sσ → R≥0

– min/max

• OPT(a) value of optimal solution

• A(σ) solution computed by algorithm A

• wA(σ) = fσ(A(σ)) value of A′s solution

Online Optimization Problem

• Input is of the form σ = (σ1, · · · , σp), p is not fixed

• Online algorithm reacts on every σi

– does not know σi+1, σi+2, · · ·
– does not know their number (p)

• These decisions form the solution A(σ) ← Sσ

• Offline algorithms: know the future

1

Definition 1.4. Competitive ratio

• An online algorithm A for minimization problem π has a competitive ratio
r > 1 if there is some constant τ ∈ R s.t.

wA(σ) ≤ r ·OPT (σ) + τ ∀σ ∈ Iπ

• A is strict r-competitive

wA(σ) ≤ r ·OPT (σ) ∀σ ∈ Iπ

2

2 Paging

2.1 Deterministic Algorithms

Hard Disk

Main Memory

2nd Level Cache

CPU Cache

Registers

CPU

cheap
slow
large

expensive
fast
small

here: only two levels

2 3 ℕ1

21 k

input: σ = (σ1, · · ·σn) sequence of page requests
σi ∈ N denotes the number of requested page

• if σi is in the cache, no additional cost

• if σi is not in the cache, cost of 1 (the algorithm has to load the page into the
cache: page fault)

• if cache is full, the algorithm has to choose a page in the cache that has to be
removed

Deterministic Algorithms

• LRU (least-recently used) removes the page requested least recently

• LFU (last-frequently used) removes the page that was requested least of them

• FIFO (first-in-first-out) removes the oldest page in cache

• LIFO (last-in-first-out) removes newest page in cache

• FWF (flush-when-full) completely empties the cache when the cache is full
and there is a page fault

• LFD (longest-forwarded-distance) remove the page that will be requested the
latest

2.1.1 Marking Algorithms

Decompose input σ = (σ1 · · · σn) into phases as follows

• Phase 1: maximal prefix with k different pages

• Phase i ≥ 2: maximal sequence following phase i-1 with at most k different
pages

• Example: k = 3: σ = 1, 2, 4, 2, 1,︸ ︷︷ ︸
Phase1

3, 5, 2, 3, 5,︸ ︷︷ ︸
Phase2

1, 2, 3, 4︸ ︷︷ ︸
Phase3

3

A marking algorithm is an algorithm that never removes a marked page from the
cache. At the beginning of a phase no page is marked. A page that is accessed
during a phase becomes marked.

Theorem 2.1. LRU is a marking algorithm

Proof. Assume LRU is not a marking algorithm.
⇒ There is an input sequence σ on which LRU removes a marked page x in phase
i. Let σt be the corresponding event

• since x is marked, it was used in phase i before, let σt′ with t′ < t the first
access of page x in phase i.

• of all pages requested after σt′ , x is the most least recently used

• since x is removed at time σt there must be k different pages different from x
accessed between σt′ and σt
⇒ together with the requests of x this would be k+1 different pages requested
in one phase. (contradiction definition phase)

Theorem 2.2. Every marking algorithm is strict k-competitive
(at most k time worse than optimal offline algorithm)

Proof. Let σ be an arbitrary input instance and l is the number of phases of this
input instance. w.l.o.g (without loss of generality) l ≥ 2

1. Cost of marking algorithm is at most l · k

• l phases, each phase at most k different request

• every page is marked at the first request and never removed. At most
one page fault per page.

2. Cost of an optimal offline algorithm is at least k + l − 2

• k page faults in the first phase

• one page fault in each of the following phases, except the last one
(l − 2 phases).

• Define subsequence i as follows:

– starts with the second request of phase i+ 1

– ends with first request of phase i+ 2

– Example:

k=3

 σ = 1,2,4,2,1,3,5,2,3,5,1,2,3,4

phase

subsequence

• Beginning of phase i+ 1, there is some request x

• Beginning of subsequence i, x and k + 1 pages different from x in the
cache

4

• in subsequence i there are k different (different from x) requests
⇒ at least one page fault

OPT (σ) ≥ k + l − 2

wA(σ) ≤ l · k ≤ (k + l − 2) · k ≤ k ·OPT

Corollary 2.1. LRU is k-competitive

2.1.2 Lower Bounds

Theorem 2.3. LFU & LIFO are not competitive

Proof. bla

• Given any τ, r construct sequence σ s.t. (such that)

wLFU(σ) > r ·OPT (σ) + τ

• Consider for any constant l ≥ 2 : σ(1l︸︷︷︸
1,··· ,1

, 2l, · · · , (k − 1)l, (k, k + 1)l−1)

• optimal solution, only k + 1 page faults

• LFU/LIFO:

– until first request of k + 1 : k page faults and {1 · · · k} in cache

– Both remove k (last-in/least frequently)

– following request of k : Both remove page k + 1

– this repeats ⇒ at least 2 · (l − 1) page faults

• Choice of l : 2(l − 1) > r · (k + 1) + τ = r ·OPT (σ) + τ

2.1.3 Optimal Offline Algorithm

Lemma 2.1. Let A be an optimal offline algorithm different from LFD and σ an
arbitrary input sequence where LFD and A behave differently. Let σt be the first
request where they differ. Then there is an algorithm B that

• behaves like A on σ1, · · ·σt−1

• at σt it removes the page from the cache that will be requested the latest

• incurs no higher cost than A

Proof. We construct algorithm B as follows:

• on σ1, · · · σt−1 behaves like A

• at σt B removes the LFD-page

• (Idea: from now on, A and B have at least one page different in the cache)

5

– Let b be the LFD-page and a be the page that A chooses.

– Cache content of A after σt : X ∪ {b}; of B is X ∪ {a} with |X| = k − 1

– Denote content of A (or B) cache before σs with As (or Bs, respectively)

• Divide σt+1, σt+2, · · · into two phases

– Phase 1 includes all s ≥ t+ 1 with Bs = (As \ {b}) ∪ {us}
– Phase 2 includes all s ≥ t+ 1 with Bs = As

Construct algorithm B such that there is an event t′ and all events between
σt+1 · · ·σt′ are in phase 1 and all events between σt′+1, σt′+2 · · · are in phase 2.

σ1 σt σt‘

Phase 1 Phase 2

Bs = AsBs = As\{b}ᴜ{us}

• Phase 1: At request σs algorithm B works as follows
(reminder: Bs = (As \ {b}) ∪ {us})

1. request σs ∈ AS ∩Bs : no page faults

2. request σs /∈ AS ∪Bs : A and B cause page faults

(a) A replaces b: B replaces us ⇒ As+1 = Bs+1 (in phase 2)

(b) A replaces v 6= b : B replaces v ⇒ Bs+1 = (As+1 \ {b}) ∪ {us}
(still in phase 1)

3. request us : Only A causes page fault

(a) A replaces b⇒ As+1 = Bs+1 (phase 2)

(b) A replaces v 6= b⇒ Bs+1 = As+1 \ {b} ∪ {v} (phase 1)

4. request of b : Only B causes page faults and B removes page us from
cache. Then As+1 = Bs+1 (phase 2)

• Phase 2: B behaves like A and never leaves phase 2.
Observe that 1) - 4) ensure that we only reach configurations in phase 1 and
2. It remains to show that B causes not more page faults than A:

– Obvious in case 1, 2 and 3

– case 4:

∗ can only happen once

∗ b was the latest requested page at time t
⇒ there must have been a request of page a

∗ until first request of a : us = a
⇒ first request of a : case 3
⇒ also one page fault of A

6

Theorem 2.4. LFD (longest-forwarded-distance) is an optimal offline algorithm for
paging

Proof. Let AOPT be an optimal offline algorithm different from LFD. We modify
AOPT without increasing its cost, s.t. the resulting algorithm is LFD. Repeatedly
apply Lemma 1.1.: For any sequence σ, let A0 = AOPT

1. Let σt be the first request where A0 and LFD differ.

2. Apply Lemma 1.1. and let A1 be algorithm B from Lemma 1.1.

3. repeat step 1 and 2 to obtain algorithm Ai until Ai behaves like LFD
(⇒ same costs of A and LFD)

Theorem 2.5. There is no deterministic r-competitive online algorithm for paging
with r < k.

Proof. Let A be an arbitrary deterministic online algorithm for paging. We show
that for any τ ∈ R and every r < k there exists a sequence σ with

wA(σ) > r ·OPT (σ) + τ

• We construct sequence σ with k + l different page request

• k + 1 different pages

• σ1, · · ·σk: k different pages, i.e. 1, 2, · · · , k
σk+1, · · · σk+l: request the page that is not in the cache of A
⇒ A causes k + l page faults.

• Show that LFD will have first k and then at most k + dle
k
≤ k + 1 + l

k
page

faults.

• For every choice of k, τ and r < k we can choose a l, such that

wA(σ) = k + l > r(k + 1 +
l

k
) + τ by

l >
k

k − r
· (r(k + 1)− k + τ)

2.2 Randomised Algorithms

Idea: algorithms use randomness for some of their decisions. Hope, that by using
these algorithms, at the end you have better competitive factor than k.
Two simple algorithms:

1. RANDOM: Upon a page fault, select a page from the cache uniformly at
random and replace it.

2. MARK: If we have a page request, we mark the requested page. If we have
a page fault, we choose unmarked page uniformly at random. If all pages
are marked, remove all markings and choose the page to remove uniformly at
random.

7

Redefined Measures:

• Costs are random variables that depend on the random decisions of the algo-
rithm.

• We study expected cost:

E(wA(σ)) =
∞∑

i=−∞

i · Pr(wA(σ) = i)

where Pr(wA(σ) = i) is the probability that cost of A on input σ is exactly i.

2.2.1 Worst-Case Analysis as a Game

1. algorithm A tries to achieve a certain competitive ratio

2. adversary (Adv) chooses an input sequence such that algorithm A violates that
competitive ratio. Adv knows A including the probability distribution of A′s
random bits.

When does the adversary chooses σ and what does he know?

1. Oblivious (Obl): adversary choose σ at the beginning (no knowledge about
realization of random experiments)
Comparison: OPT (σ)

2. adaptive adversary: creates σ online after observing the realization of A′s
random experiments.
σ is now a random variable

(a) adaptive online: constructs a solution for comparison online.

(b) adaptive offline: takes the expected value of the optimal solution of σ :
E(OPT (σ))

Notation:
Online Algorithm A, adversary Adv. Input created by Adv : σAdv, cost of Adv on
σAdv : wAdv

Definition 2.1. Let A be a randomized online Algorithm. A has a competitive
factor of r ≥ 1 against a class C ∈ {Obl, AdOn,AdOf} of adversaries if there is a
constant τ ∈ R s.t. for every Adv ∈ C:

E(wA(σAdv) ≤ r · E(wAdv) + τ

holds. If τ = 0 then A is strict r-competitive.

8

2.2.2 Potential Function

• For online algorithms let SA be the set of configurations of A and SAdv the set
of configurations of Adv.

• Paging: SA = SAdv = set of possible contents of the cache.

• A potential function Φ : SA × SAdv → R creates for a sequence σ1 · · ·σn a
sequence of potential Φ0,Φ1, · · · ,Φn where Φ0 is the potential value before σ1

and Φi(i ≥ 1) the value of the event σi.

• Cost of algorithm A at event σi : Ai

• amortised cost of A at event σi = Ai + Φi − Φi−1

• Cost of adversary: Advi

Theorem 2.6. Let A be an online algorithm and C ∈ {Obl, AdOn,AdOf}. If there
is a constant b ≥ 0 s.t. for every Adv ∈ C there is a potential function Φ which
satisfies following two conditions then A is r-competitive against C.

1. ∀i ≥ 1 : E(ai) ≤ r · E(Advi)

2. ∀i ≥ 1 : E(Φi) ∈ [−b, b]

Proof. Let Adv ∈ C and σ = (σ1, · · · , σn) input created by Adv.
(Note: E(X + Y) = E(X) + E(Y) holds, even if X, Y are correlated.)

E(wA(σ)) =
n∑
i=1

E(Ai)

=
n∑
i=1

E(ai − Φi + Φi−1)

=
n∑
i=1

(E(ai)− E(Φi) + E(Φi−1))

=
n∑
i=1

E(ai) + E(Φo)− E(Φn)

≤ r ·
n∑
i=1

E(Advi) + 2b

= r · wAdv + 2b

2.2.3 Analysis of RANDOM

Theorem 2.7. RANDOM is k-competitive against an adaptive online adversary.

Proof. Let Adv ∈ AdOn

• Denote by zi the number of pages in the caches of RANDOM and Adv that
both have in common after σi.

9

• Let Φi = k(k − zi) for i ≥ 1 and Φ0 = k2. Observe Φi ∈ [0, k2]

• Let Randi and Advi be the cost of RANDOM and Adv respectively after σi.
To use Theorem 2.6. we need to show:

E(ai) ≤ k · E(Advi) which is equivalent to

E(Φi − Φi−1) ≤ k · E(Advi)− E(Randi)
(1)

• Case distinction: (cache is already filled with k pages)
Let P with |P | = zi−1 pages in common before σi. Let p = σi be the next
page. Note: P and p are random variables.

• We show that equation 1 holds for every choice of P and p.

1. p is in cache of RANDOM ⇒ Randi = 0

– If p is in the cache of Adv then number of pages in common stays
the same: Φi − Φi−1 = 0

√

– If p is not in the cache of Adv then Φi −Φi−1 ∈ {0, k} and Advi = 1√

2. p is not in cache of RANDOM, but in the cache of Advi ⇒ Randi = 1
and Advi = 0

(a) RANDOM removes a page ∈ P : Φi − Φi−1 = 0

(b) RANDOM removes a page /∈ P : Φi − Φi−1 = −k
Probability for choosing a page /∈ P : k−zi−1

k

(a)+(b) ⇒

E(Φi − Φi−1) =
k − zi−1

k
· (−k) = zi−1 − k ≤ −1

√

3. p is not in cache of RANDOM and not in the cache of Adv
k · E(Advi)− E(Randi) = k − 1

(a) Adv removes page /∈ P then
Φi − Φi−1 ∈ {0, · · · , k}

√

(b) Adv removes page ∈ P then
Potential only changes if RANDOM removes a different page ∈ P
Probability for this is: zi−1−1

k
which gives

E(Φi − Φi−1) = (
zi−1 − 1

k
) · k ≤ k − 1

⇒ This shows Equation 1 for all choices of P and p.

Lower Bound for RANDOM

geometric random variables:

• X : number of repetitions of experiments with probability p until first success.
Pr(X = i) = (1− p)i−1 · p; E(X) = 1

p

• Cut-off: Y = min{X,n}

10

Lemma 2.2. Let X be a geometric random variable with parameter p and n ∈ N.
For Y = min{X,n} E(Y) = 1−(1−p)n

p

Proof. Let q = 1− p

E(Y) =
n∑
i=1

i · Pr(min{X,n} = i)

=
n−1∑
i=1

i · Pr(X = i) +
∞∑
i=n

n · Pr(X = i)

=
∞∑
i=1

min{i, n} · p · qi−1

=
∞∑
i=1

i · p · qi−1 −
∞∑

i=n+1

(i− n) · p · qi−1

= E(X)− qn ·
∞∑
i=1

i · p · qi−1

= (1− qn) · E(X)

=
1− qn

p

Theorem 2.8. The competitive factor of RANDOM against an oblivious adversary
is at least k.

Proof. Consider an oblivious adversary that chooses
σ = ((a1, · · · , ak), (b1, a2, · · · ak)l, (b2, a2, · · · ak)l, · · · , (bm, a2, · · · ak)l)
OPT (σ) = k +m page faults.
RANDOM:

• consider a block (bi, a2, · · · ak)l

• At beginning at most k − 1 of these pages are in the cache

• page fault is successful if cache content is {bi, a2, · · · ak} afterwards

• otherwise removed a page ∈ {bi, a2, · · · ak} from the cache

• Probability of successful page fault is at most 1
k

• Using Lemma 2.2. the expected number of page faults per block is
k · (1− (1− 1

k
)l)

• E(wRANDOM(σ)) ≥ k +m · k · (1− (1− 1
k
)l) ≥ m · k · (1− (1− 1

k
)l)

• For any r < k and τ ∈ R choose m and l such that

– E(wRANDOM(σ)) > r ·OPT (σ) + τ

– m · k · (1− (1− 1
k
)l) > r · (k +m) + τ

11

– since lim
l→∞

(1− (1− 1
k
)l) = 0 and r < k, there is a l such that

r′ = k((1− (1− 1
k
)l) > r

– For this l: m · r′ > r(k +m) + τ holds with m = 1 + r·k+τ
r′−r

2.2.4 Analysis of MARK

Theorem 2.9. MARK is 2 ·Hk-competitive against oblivious adversary.

(Hk =
k∑
i=1

1
i

= Θ(log k))

Proof. Let σ be input chosen by adversary. Consider phases as in the proof of the
deterministic case.

• phase 1: MARK and adversary each have k page faults

• phase i ≥ 2:

– old page: page accessed in phase i− 1

– new page: no access in phase i− 1

– Let mi be the number of these new pages in phase i

– new pages cause exactly one page fault

– old pages: probability that page is still in cache when first accessed de-
creases with the number of new pages accessed before

– worst case: each of the mi new pages is accessed (at least once) before
the k −mi old pages are accessed

– sort old pages j ∈ {1, · · · , k −mi} by their first access in phase i

– Pj probability of j still in cache at first access

– P1 = k−mi

k
, Pj = k−mi−(j−1)

k−(j−1)

k −mi − (j − 1)← number of marked old pages in the cache
k− (j − 1)← total number of unmarked old pages (including) those not
in cache.

– Expected number of page faults caused by page j:
Pj · 0 + (1− Pj) · 1 = 1− Pj

– Total number of page faults in phase i:

mi +

k−mi∑
j=1

(1− Pj) =

k−mi∑
j=1

mi

k − (j − 1)
+mi

≤ mi ·
k∑
j=1

1

k − (j − 1)

= mi ·Hk

12

• Let n be the number of phases and m1 = k then

E(wMARK(σ)) ≤ Hk ·
n∑
i=1

mi

optimal offline solution

• Consider 2 phases i − 1 and i. There are k − mi different pages accessed in
the sequence consisting of both phases.

• at most k of these pages in the cache at beginning ⇒ at least mi page faults

• Consider 1st phase and every sequence of two consecutive phases and add page

faults:
n∑
i=1

mi

• OPT (σ) ≥ 1
2

n∑
i=1

mi thus E(wMARK(σ)) ≤ 2 ·Hk ·OPT (σ)

2.2.5 Lower Bounds for Randomized Online Algorithms

Theorem 2.10. There is no randomized online algorithm against oblivious adver-
saries with competitive factor smaller than Hk.

Proof. Let A be an arbitrary randomized online algorithm for paging.

• The oblivious adversary constructs an input sequence σ consisting of k + 1
different pages.

• The adversary can compute for a given sequence (σ1, · · · , σq) a probability

distribution (p1, · · · , pk+1) with pi ∈ [0, 1] and
k+1∑
i=1

pi = 1.

• pi : probability that page i is not in the cache after step σq

• The adversary constructs σ in phases (like marking algorithm)

• m phases and each phase consists of k different pages. Pages are marked after
first access + last page of previous phase

• each phase σ′ is divided into k subphases σ′1, · · · , σ′k

σ = (
︷ ︸︸ ︷
σ1 · · ·

σ′︷ ︸︸ ︷
· · ·︸︷︷︸
σ′1

· · ·︸︷︷︸
σ′2

· · · · · ·︸︷︷︸
σ′4

· · · · · ·)

Each subphase

– exactly one page becomes marked
→ after σ′j exactly j + 1 marked pages

– consists of first zero or more requests of already marked pages, followed
by exactly one request of an unmarked page

• Aim: Expected costs for A for σ′j : 1
k−j+1

13

• construct σ′j:

– Let M set of marked pages at start σ′j

– |M | = j and number of unmarked pages U = k + 1− j
– Let γ =

∑
i∈M

pi

– If γ = 0 then there is an unmarked page a with pa ≥ 1
U

, request a and
subphase ends

– otherwise γ > 0 then there is a marked page m with pm > 0

– Let ε = pm and request m. Request more marked pages as follows:

∗ while the total expected cost of A for this subphase is less than 1
U

and while γ > ε request page l ∈M with l = argmax
i∈M

pi

∗ Finally pick unmarked page b with b = argmax
i/∈M

pi

• Remarks:

– Expected cost of A = sum of pi of requested pages.

– p1, · · · , pk + 1 and γ have to be recomputed each iteration

– while loop terminates if γ > ε then pl ≥ γ
|M | ≥

ε
|M |

• Expected cost of A in σ′j

– case γ = 0 : pa ≥ 1
U

. Expected cost ≥ 1
U

√

– while loop terminates with expected cost ≥ 1
U

√

– while loop terminates with γ ≤ ε :
b = argmax

i/∈M
pi; pb ≥ 1−γ

U

– Cost of A in σ′j : ε+ pb ≥ ε+ 1−γ
U
≥ ε+ 1−ε

U
≥ 1

U

√

– Expected cost of A in phase σ′ is
k∑
j=1

1
k+1−j = Hk. Thus

E(wA(σ)) ≥ k + (m− 1) ·Hk

and

OPT = k +m− 1

• By choosing m large enough the Theorem follows

14

3 The k-Server-Problem

3.1 Introduction

Let k ≥ 2 and M = (M,d) a metric space where |M | > k and M is a set of points
(arbitrary set) and d : M ×M → R≥0 is a metric distance function with

1. d(x, y) = 0⇔ x = y

2. d(x, y) = d(y, x) Symmetry

3. d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

Example (R2, d) with d euclidean distance function.
If M is finite, representation by complete weighted graph.

k-Server-Problem

• Algorithm controls k mobile servers which are located on points of M .

• Input σ = (σ1, · · ·σn) is a sequence of points σi ∈M (request).

• A request σi is served if a server is on position σi.

• Algorithm may move servers at cost of distance.

3.1.1 Greedy Algorithm

on request σi move the server that is closest to σi.
Example: k = 2, |M | = 3., σ = (c, (a, b)l)

a b c d(a, b) < d(b, c)

• after request c: one server at c

• after request a: one server at c and a each

• following request: greedy moves server between a and b

• OPT: one server at a and b each

3.1.2 The k-Server Conjecture

Any metric space allows for a deterministic k-competitive k-server algorithm

• lower bound of k (later in lecture)

• upper bound: (2k − 1)-competitive algorithm (Koutsoupias and Papadim-
itriou)

15

Lazy algorithms

• Only moves servers if no server on requested point

• Only moves one server and only to requested point

• Paging as k-server problem

– M = set of pages, distance =1

– position of k- servers ≈ k pages in cache

• k-headed disk-problem

– M = [0, 1]

– d(x, y) = |x− y| line metric

3.1.3 Optimal Offline Algorithm

• Dynamic programming: O(|σ| |M |k)

• Reduction to Min-Cost-Flow-Problem

– input: directed graph G = (V,E) with

∗ source s ∈ V
∗ target t ∈ V
∗ capacity function u : E → R≥0

∗ cost function c : E → R
∗ no negative cycles

– output: maximal flow f : E → R≥0 with minimal costs
c(f) =

∑
l∈E

f(l) · c(l)

• flow conservation
∑

l=(u,v)∈E
f(l) =

∑
l=(v,u)∈E

f(l) ∀v ∈ V \ {s, t}

• capacities:

– ∀e ∈ E : 0 ≤ f(e) ≤ u(e)

– value of flow: |f | =
∑

l=(s,v)

f(l) =
∑

l=(v,t)

f(l)

Successive-Shortest-Path-Algorithm

• integer capacities u : E → N
⇒ ∃ min-cost-flow with integers that is computed by this algorithm

• O(n3F) running time, (only pseudo polynomial, F is value of maximal flow)

16

Given a k-server problem by a metric M = (M,d) and input sequence σ =
(σ1 · · ·σn). w.l.o.g (without loss of generality)are all servers at the same point σ ∈M
at beginning and n ≥ k.

Construct instance of min-cost-flow as follows:

s

s1

sk

σ1

σn

σ2

σ′1

σ′n

σ′2

t

1

1

1

1

1

d(o, σ1)

d(
o,
σ 1

)

d(o, σ
n)

−z

−z

−z

d(
σ 1
, σ
n
)

• G = (V,E) with

– V = {s, t} ∪ {s1, · · · sk} ∪ {σ1, · · · , σn} ∪ {σ′1, · · · , σ′n}
– E = {(s, si) | i ∈ {1 · · · k}}∪
{(si, t) | i ∈ {1 · · · k}}∪
{(si, σj) | i ∈ {1 · · · k}, j ∈ {1 · · ·n}}∪
{(σj, σ′j) | j ∈ {1 · · ·n}}∪
{(σ′j, σl) | j ∈ {1 · · ·n}, l ∈ {1 · · ·n}, l > k}∪
{(σ′j, t)|j ∈ {1 · · ·n}}

– u(l) = 1 ∀l ∈ E
– Cost function:

∗ c(s, si) = 0

∗ c(si, σj) = d(o, σj)

∗ c(si, t) = 0

∗ c(σj, σ′j) = −z with z > 2 · max
x,y∈M,x6=y

(d(x, y))

∗ c(σ′j, σl) = d(σj, σl)

∗ c(σ′j, t) = 0

– Observe: no negative cycles

17

• capacities of 1, integer flow ⇒ f(l) = 0 or f(l) = 1 ∀l ∈ E

• max flow has value k

• flow corresponds to edge disjoint paths

• let pi be the path that contains si, then there is l ≥ 0 and j1 · · · jl such that
pi = (s, si, σj1 , σ

′
j1
, · · · , σjl , σ′jl , t)

with cost: d(σ, σj1) + d(σj1 , σj2) + · · ·+ d(σjl−1
, σjl)− lz

which corresponds to cost of a server answering this sequence plus additional
lz term

• Every edge e = (rj, σ
′
j) is contained in exactly one path pi

• obtain a solution L for k-server: Let server i answer requests σj if e = (σj, σ
′
j)

is contained in pi

• cost of L = cost of flow f + nz

Correctness: If there was a solution L′ with cost less than L (L is obtained form f)
we could construct a flow with less cost than f .
Running time: O(n3k)

3.2 Lower Bound for Deterministic Online Algorithm

Theorem 3.1. LetM = (M,d) be an arbitrary metric space with |M | ≥ k+1. There
is no r-competitive online algorithm for the k-server-problem on M for average
r < k.

Proof. Let A be an arbitrary lazy online algorithm for k-server-problem. Let B =
{b1, · · · , bk+1} ⊆M an arbitrary subset of M with k + 1 elements. We assume that
A starts with k different points of B.
⇒ A always has at most one server on each point. Input σ : always request the

point in B on which A has no server.

Lemma 3.1. wA(σ) ≥
n−1∑
i=1

d(σi, σi+1)

Proof. (Lemma 3.1.)

• After request σi we request σi+1 the point that was covered by the server that
answered request σi

• cost for answering σi ≥ d(σi, σi+1) for all i ≤ n− 1

Lemma 3.2. OPT (σ) ≤ 1
k

n−1∑
i=1

d(σi, σi+1)

Proof. (Lemma 3.2.) Indirect proof: Define a class C of algorithms.

• For each S ⊆ B with σ1 ∈ S and |S| = k there is an algorithm CS. CS works
as follows:

18

– Initially CS places servers on S

– for request σ1: nothing to do

– for σi (i ≥ 2) and no server on σi it moves server on σi−1 to σi

• There are k different sets S. Thus |C| = k.

• Let Si be the set of points on which servers of CS are located after σi

• We show that for all different sets S1 6= S2 and all i ≥ 0 : Si1 6= Si2 holds:
i = 0: obvious
I.S.: Case distinction by σi+1

– σi+1 ∈ Si1 and σi+1 ∈ Si2: no movement of either algorithm
Si+1

1 = Si1 6= Si2 = Si+1
2

– σi+1 ∈ Si1 and σi+1 /∈ Si2: observe σi ∈ Si1 and σi ∈ Si2
After σi+1 : σi ∈ Si+1

1 but CS2 moves server from σi to σi+1

Thus: σi /∈ Si+1
2

– σi+1 /∈ Si1 and σn+1 ∈ Si2: symmetric to case above

– σi+1 /∈ Si1 and σi+1 /∈ si2: Cannot happen, would imply Si1 = Si2. Thus
two algorithms never have their servers on exactly the same positions.

• there are k algorithms CS

• Each has a server on σi after request σi

⇒ for every b ∈ B \ {σi} there is exactly one algorithm CS with b /∈ Si

• For b = σi+1 only one algorithm has cost of d(σi, σi+1)

• sum of costs of all algorithms:

∑
S

wCS
(σ) =

n−1∑
i=1

d(σi, σi+1) Average cost: 1
k

n−1∑
i=1

d(σi, σi+1)

There has to be an algorithm with cost no higher than average cost

Combination of Lemma 3.1. and Lemma 3.2. proofs the Theorem.

3.3 k-Server Problem on a Line

Is motivated by k-headed disk problem. M = ([0, 1], d) with d(x, y) = |x− y|
Algorithm is called Double Coverage (DC)

• If request σi is left (or right) of all servers DC-algorithm move leftmost (right-
most) server to σi

19

• otherwise the DC-algorithm moves the two servers left and right of σi with the
same velocity towards σi. It stops both servers as one arrives at σi

a b c

a

b

a

b

a

b

a

b

Theorem 3.2. The DC-algorithm is k-competitive for the k-server-problem on the
line

Proof. Potential function Φ

• configuration of DC: s1, · · · , sk ∈ [0, 1]

• configuration of OPT: o1, · · · , ok ∈ [0, 1]

• Φ = k ·Mmin + ΣDC with Mmin = min
π∈Sk
{
k∑
i=1

d(si, oπ(i))}

• minimum cost matching between OPT’s and DC’s servers.

– Sk: Set of permutations of {1 · · · k} and

– ΣDC =
k−1∑
i=1

k∑
j=i+1

d(si, sj) sum of pairwise distances of DC’s servers

• DCi and OPTi the cost of DC and OPT serving request σi

• Φ0 potential before σ1 and Φi potential after step σi (i ≥ 1)

• amortized cost after step i: ai = DCi + Φi−Φi−1 need to show (see lecture 3)

1. For every i ≥ 1 : ai ≤ k ·OPTi(σ) and

2. for every i ≥ 1 : Φi ∈ [−b, b]

• Note that (2) holds for b = 2k2 since d() is bounded by 1.

0 ≤ Φi ≤ k2 +
(
k
2

)
≤ 2k2

• for property (1) we show that Φi − Φi−1 ≤ k ·OPTi(σ)−DCi(σ)

• Note: In step i DC and OPT may move and change the potential. Therefore
let Φ′i−1 be the potential after OPT answered request σi but before DC’s
movement.

20

Lemma 3.3. Φ′i−1 ≤ Φi−1 + k ·OPTi(σ)

Proof. (Lemma 3.3)

• OPT moves one server and the distance is OPTi(σ)

• k ·Mmin changes by at most k ·OPT (σ)
(Consider the same assignment or permutation, distance of one pair increases
by at most OPTi(σ))

• ΣDC does not chance

Lemma 3.4. Φi ≤ Φ′i−1 −DCi(σ)

Proof. (Lemma 3.4.)
Two cases: DC moves one or two servers

1. one server

• σi is left of all servers (right case is analogue). Let Sleft be the leftmost
server of DC

• Let o′1, · · · , o′k ∈ [0, 1] be the positions of the servers of OPT after request
σi

• M ′
min = min

π∈Sk

k∑
i=1

d(si, oπ(i))

• there is a server o′j = σi (j answered the request σi) and o′j is left of Sleft

(a) There is an optimal assignment π which assigns Sleft to o′j
DC moves Sleft by distance DCi towards o′j
First term of potential decreases by k ·DCi(σ)

(b) Pairwise distance between DC’s server change:
Sleft moves away from all k−1 remaining servers by distance DCi(σ)
second term increases by (k − 1)DCi(σ)

• combining (a) and (b) we get the new potential

Φi ≤ Φ′i−1 − k ·DCi(σ) + (k − 1)DCi

= Φ′i−1 −DCi(σ)

2. two servers

• Let s1, s2 be two servers

• each moves by distance DCi(σ)
2

(a) OPT has a server j on σi and there is an optimal assignment π which

assigns s1 or s2 to j. That server moves by distance DCi(σ)
2

towards j.

The other server moves at most DCi(σ)
2

away from its assigned server.
→Mmin-term of Φ does not increase

(b) Second term
∑

DC i
For every server s′ 6= s1, s2: exactly one of s1, s2 moves towards S ′,
the other moves away by the dame distance
The distance between s1 and s2 decreases by DCi(σ)

21

• combining (a) and (b) we get

Φi ≤ Φ′i−1 −DCi(σ)

Combining both lemmas we get

Φi ≤ Φ′i−1 ≤ Φi−1 + k ·OPT −DCi(σ)

which proofs that the DC-algorithm is k-competitive on the line

3.4 The DC-Algorithm on Trees

M = (M,d) is a tree-metric if there exists a tree G = (V,E) with V = M and edge
weights w : E → R≥0 s.t. that distance d(x, y) is exactly the weight of the path
between x and y in G. (Because of the tree-structure, paths are always unique)

• same algorithm. We redefine ”neighbour” and movement

• neighbour:

– Consider any configuration of k servers and a request r

– We say a server s is neighbour of r if there is no other server on the path
from s to r

1

1

2

3 1

2 11

r
neighbouring servers

– if two servers are on the same point, only one of them is a neighbour

• movement

– edge weight are distances

– all neighbouring servers move with the same speed towards the request

After two timestepsAfter one timestep

22

– servers might stop being neighbours, stop movement

– servers that stop on edges between two points: Simulate DC by a lazy
algorithm. Then servers always on points of the metric

Theorem 3.3. DC-algorithm is k-competitive on arbitrary tree-metrics

Proof. Same potential function as for the line.

Φ = k ·min
π∈Sk
{

k∑
i=1

d(si, oπ(i))}+
k−1∑
i=1

k∑
j=i+1

d(si, sj)

Lemma 3.5. Φ′i+1 ≤ Φi + k ·OPTi(σ)

Lemma 3.6. Φi ≤ Φ′i−1 −DCi(σ)

Proof. (Lemma 3.6)
We divide the movement of servers into phases. A phase ends when a server reaches
request σi or when the number of moving servers decreases. Consider a phase in
which m servers move, each by distance d.

1. Term Mmin : There is an optimal assignment π which assigns a neighbouring
server of DC to the server of OPT that moved to σi. That server moves by
distance d towards the assigned server. The remaining m − 1 active servers
increase their distance by at most d
k ·Mmin increases by at most k(m− 2)d

2. Term ΣDC :

• Consider the (k−m) servers that are not neighbours of σi. For each there
is exactly one server moving away from it and m − 1 active servers are
moving towards it. For these pairs ΣDC decreases in total by
(k −m)(m− 2)d

• Every pair of active servers move towards each other and reduces the
distance by 2d. ΣDC decreases by

(
m
2

)
2d = dm(m− 1).

Combining all three values shows that the potential decreases by at least md. This
corresponds to the cost of moving servers, summing over all phases implies the
lemma.

3.5 Applying DC-Algorithm

• For a general finite metric M = (M,d) with |M | = N , let G = (V,E) be a
weighted graph representing M.

• Compute a MST (Minimal Spanning Tree) T = (V,ET) and solve the k-server-
problem on the tree-metric given by T .

• Note: Distance might increase in MT compared to M.

23

• Using DC-algorithm we get wDC(σ) = k ·OPTT (σ)+τ where OPTT is optimal
offline solution for MT

• For MST we know, that for each edge e = {x, y} ∈ E the cost of the path
from x to y in T is at most (N − 1)we.
⇒ Thus OPTT (σ) ≤ (N − 1)OPT (σ)

Corollary 3.1. The DC-algorithm is (N − 1)k-competitive for arbitrary metrics
with N points.

3.6 The 2-Server-Problem in Euclidean Spaces

Here only consider unit square M = [0, 1]2 in two dimension.

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

Definition 3.1. (Slack)

For three points x, y, r ∈M we define

slack(x, y, r) = d(x, y) + d(x, r)− d(y, r)

Note: Slack is non-negative due to the triangle inequality.

0,0 0,1

1,0 1,1

x

r

y

For each γ ∈ [0, 1] we consider the following algorithm:
SlackCoverγ(SCγ):

• Let x, y be the current positions of servers of SCγ

• Let r be the position of the current request

• w.l.o.g. assume d(x, r) ≤ d(y, r)

• SCγ moves y by y · slack(x, y, r) towards x

• SCγ moves x to r

Note:

• SC 1
2

on the line corresponds to the DC-algorithm

• Since d(x, y) ≤ d(y, r) we do not move y beyond x

• After movement of y, the server y is not further away from r than before

24

Theorem 3.4. The algorithm SC 1
2

is 3-competitive for the 2-server-problem on the
euclidean unit square.

Proof. dummy
Notes:

• x, y positions of SCγ’s servers

• o1, o2 positions of OPT’s servers

Potential function
Φ = aMmin + b · d(x, y)

where Mmin is defined as in the proof for DC and a, b ∈ R are parameters to be
chosen later. As usual:

• input sequence σ = (σ1, · · · , σn)

• potential values Φ0,Φ1, · · · ,Φn

• Φ is bounded by 0 and
√

2(2a+ b).

It remains to show that

Φi − Φi−1 ≤ a ·OPTi(σ)︸ ︷︷ ︸
1

−SCi(σ)︸ ︷︷ ︸
2

Let o′1, o
′
2 be OPT’s server positions after request r := σi and Φ′i−1 the potential

value before the step of SCγ

1. a ·OPTi(σ)

• w.l.o.g. OPT is lazy, thus it moves one server by distance OPTi(σ)

• d(x, y) does not change

• Φ′i−1 − Φi−1 ≤ a ·OPTi(σ)

2. SCi(σ)
Influence of SCγ’s movement: cost of SCi(σ) = d(x, r) + γ · slack(x, y, r). We
have to show that potential decreases by at least this amount. Let x′, y′ be
the positions after serving r := σi

0,0 0,1

1,0 1,1

x

r

y

x‘

y‘

We first consider the change of the second term of Φ

∆d(x, y) := d(x′, y′)− d(x, y) = d(r, y′)− d(x, y) ≤ d(r, y)− d(x, y)

Change of first term:

25

• depends on optimal assignment π before movement

• w.l.o.g. o′1 is on request r

• Case 1:

– x is assigned to o′1. Mmin decreases due to movement of the server
on x towards r by d(x, r) and increases by movement of server on y
is at most γ · slack(x, y, r). Thus in total

Φi − Φi−1 ≤ a · [γ · slack(x, y, r)− d(x, r)] + b · [d(r, y)− d(x, y)]

• Case 2:

– y is assigned to o′1
– After moving x to r there is an optimal matching which assigns x′ to
o′1 (on r) and y′ to o′2

∆Mmin = [d(x′, o′1)︸ ︷︷ ︸
=0

+d(y′, o′2)]− [d(x, o′2) + d(y, o′1)]

= d(y′, o′2)]− d(x, o′2)︸ ︷︷ ︸
triangle inequality

−d(y, r)

≤ d(y′, x)− d(y, r)

= d(y, x)− γ · slack(x, y, r)

– Thus using first term we get:

Φi − Φ′i−1 ≤ a · [d(y, x)− γ · slack(x, y, r) + b · [d(r, y)− d(x, y)]

• For both cases we have to show that

Φi − Φ′i−1 ≤ −SCi(σ) = −[d(x, r) + γ · slack(x, y, r)]

• for case 1 we get:

a·[γ·slack(x, y, r)−d(x, r)]+b·[d(r, y)−d(x, y)] ≤ −[d(x, r)+γ·slack(x, y, r)]

equivalent to:

d(x, y)[γ(a+ 1)− b)] + d(x, r)[γ(a+ 1) + 1− a] + d(y, r)[b− γ(a+ 1)] ≤ 0

• for case 2:

d(x, y)[γ(1− a) + a− b] + d(x, r)[γ(1− a) + 1] + d(y, r)[baγ(1− a)] ≤ 0

If we find parameters a, b, γ that satisfy both inequalities, we have shown that
SCγ is a-competitive. For a = 3, b = 2, γ = 1

2
this is the case.

For an arbitrary metric space with N points, we can find N corresponding points
in a high dimensional euclidean space. The distance between two points in the
euclidean space is not smaller and at most O(log(n)) larger than the distance inM.

Corollary 3.2. We can solve the 2-server problem in arbitrary metrics with N
points with a competitive factor of O(log(N))

26

4 Approximation of Metric Spaces

Example: arbitrary metric by tree metric, distances stretched by almost (N − 1).
With DC-algorithm k(N − 1) comp. algorithm.

Definition 4.1. Let M = (M,d) be an arbitrary metric. We say a metric M′ =
(M ′, d′) with M ≤M ′ dominates M if d(x, y) ≤ d′(x, y) ∀x, y ∈M . Let S be a set
of metrics, that dominate M and D a probability distribution over S. We say that
(S,D) is an α-approximation of M if ∀x, y ∈M

E
(M ′,d′)∼D

[d′(x, y)] ≤ α · d(x, y)

We also say that M is embedded in S and call α the stretch.

4.1 Approximations with Tree Metrics

In the deterministic way there can not be an embedding better than Ω(N). An em-
bedding with the MST is asymptotically optimal. An example, where no asymptotic
embedding is possible is a circle with edge-costs of 1.

1

1

1

1

1
1

Removing one edge gives a stretch of N − 1. However in
general one may add additional point.

Theorem 4.1. For a metric M with N points, there is a set S of tree metrics
that dominate M and probability distribution D over S, s.t. (S,D) is a O(log(N))
approximation of M. (S,D) can be computed efficiently.

Proof. Let M = (V, d) an arbitrary metric with N = |V | points. We assume that
the minimal distance between two different points is greater than 1. Furthermore
with ∆ we denote the maximal distance between two points of V . Let δ such that
2δ−1 < ∆ ≤ 2δ

Proof in two parts:

1. Recursive partitioning of V to generate tree metric

2. How to do it randomized to achieve stretch of O(log(N))

1. Recursive Partitioning

Definition 4.2. A partition of a metric M = (M,d) with radius r ≥ 1 is a
partition of V in classes V1, · · · , Vl such that for all sets Vi there exists a center
ci ∈ V with d(ci, v) ≤ r, ∀v ∈ Vi. Note:

1. ci does not need to be in Vi

2. diameter max
x,y∈Vi

d(x, y) ≤ 2r

27

Definition 4.3. A hierarchical partitioning ofM = (V, d) is a sequenceD0, D1, · · ·Dδ

of δ + 1 partitions of V with the following properties:

1. Dδ = {V } : trivial partition with radius of 2δ

2. for all i < δ, Di is a partition of V with radius 2i that refines Di+1. That is,
each class of Di is a subset of a class of Di+1

For such a partitioning D0, · · ·Dδ we construct a tree metric:

• tree T , set of nodes are the classes of the partitions Di

• root of T is class V (class of Dδ)

• nodes of level 1 are partitions of Dδ−1

• nodes of level 2 are partitions of Dδ−2

· · ·

• leaves of T are partitions of D0 which consists of N classes
(Note: minimal distance > 1)

• edges of T : for every i < δ and every class X of Di there is a class Y of Di+1

with X ≤ Y . There is an edge between the two nodes representing X and Y
with weight 2i+1

Example: ∆ = 16, δ = 4
D4 = {V } = {V0, V1, · · · , V9}

V5

V7

V1 V6 V8

V2 V4 V3

V9 V0

2 3

3 8

2

2

8

8

8
8

4 3

8

2

V1
1

V3
1

V2
1

V4
1

V5

V7

V1 V6 V8

V2 V4 V3

V9 V0

2 3

3 8

2

2

8

8

8
8

4 3

8

2

V1
2

V3
2

V2
2

V4
2

V5
2

Level 1 of Partition Level 2 of Partition
D3 = {{V 1

1 }, {V 1
2 }, {V 1

3 }, {V 1
4 }} D2 = {{V 2

1 }, {V 2
2 }, {V 2

3 }, {V 2
4 }, {V 2

5 }}

V5

V7

V1 V6 V8

V2 V4 V3

V9 V0

2 3

3 8

2

2

8

8

8
8

4 3

8

2

V1
3

V4
3

V3
3

V5
3

V6
3

V2
3

V5

V7

V1 V6 V8

V2 V4 V3

V9 V0

2 3

3 8

2

2

8

8

8
8

4 3

8

2

Level 3 of Partition Level 4 of Partition
D1 = {{V 3

1 }, {V 3
2 }, {V 3

3 }, {V 3
4 }, {V 3

5 }, {V 3
6 }} D0 = {{V0}, {V1}, · · · , {V9}}

28

There is a bisection between the leaves of T and V . We use T for a tree metric
(VT , dT) over the set VT ≥ V where dT (x, y) is defined as the path length in the tree
T .

V

V6
3

V1V4 V9 V0

V5
3

V6 V8

V4
3V3

3

V7V3V5V2

V5
2V4

2V3
2V2

2V1
2

V2
3V1

3

V4
1V3

1V2
1V1

1

16 16 16 16

8 8 8 8 8

4 4 4 4 4 4

22222222 2 2

Lemma 4.1. For every hierarchical partitioning of a metric M the resulting tree
metric dominates M.

Proof. Let x, y ∈ V be arbitrary points. The diameter of the classes of a partition
Di is at most 2i+1. In all partitions Di with 2i+1 < d(x, y) the points x, y are in
different classes. In particular in partition Dj with

j = dlog2 d(x, y)e − 2 since 2j+1 = 2dlog2 d(x,y)e−1 < 2log2 d(x,y) = d(x, y)

On the path from the two leaves of T there must be two edges between classes of
partitions Dj and Dj+1. Thus

dT (x, y) ≥ 2 · 2j+1 = 2j+2 = 2dlog2 d(x,y)e ≥ d(x, y)

2. Randomised Partitioning

A randomized algorithm to compute a hierarchical partitioning. For a set X ≤ V
and a point v ∈ V and a radius r ≥ 1, we denote by B = (X, v, r) the sphere in X
with radius r and center v. That is B(X, v, r) = {x ∈ X | d(x, v) ≤ r}

29

Algorithm 1 HierPart (M = (V, d))

1: choose β uniformly at random from [1, 2]
2: choose a permutation π of the set {1, · · ·N} uniformly at random
3: Dδ = {V }
4: for i = δ − 1, i ≥ 0, i−− do
5: if Di+1 has a class with more than one element then
6: βi = 2i−1 · β
7: Di =PARTITION(M, Di+1, βi, π)
8: else
9: Di = Di+1

10:

11: end for
12: return (D0, D1, · · · , dδ)

Algorithm 2 PARTITION (M, D, α, π)

1: D′ = {}
2: for each class X in partition D do
3: for i = 1, 1 ≤ N, i+ + do
4: Bπ(i) := B(X, Vπ(i), α)
5: X := x \Bπ(i)

6: if Bπ(i) 6= ∅ then
7: add Bπ(i) to D′

8:

9: end for
10: end for
11: return D′

• PARTITION considers class one after the other and partitions each class further

• For this it considers spheres with radius α around points of V chosen by the
random ordery π

• Points of current class within such a sphere are new classes

Lemma 4.2. Let dT be the tree metric constructed by algorithm
HierPart(M = (V, d)). For every x, y ∈ V it holds that

E[dT (x, y)] ≤ 64 ·HN · d(x, y)

Proof. Let x, y ∈ V be arbitrary points. Consider the tree T generated by hier.
part., D0, D1, . . . , Dδ of the algorithm HierPart.
Consider the path from x to y in T up to which level? If this level corresponds to
Di

• x and y are in different classes in D0, . . . , Di−1

• x and y are in the same class in Di, . . . , Dδ

30

• Let zx and zy be the centres around which PARTITION constructed the classes
of Di−1 which contain x and y respectively

Dδ

Dδ−1

Di

D1

D0

x y

If zx is before zy in permutation π, we say that that point zx separates {x, y}
on level i− 1, otherwise we say that that point zy separates {x, y}. For point z ∈ V
and every j ∈ {0, 1, . . . , δ − 1} we denote by A(z, j) the event that point z sepa-
rates the pair {x, y} on level j. There is exactly one point z ∈ V and one level
j ∈ {0, 1, . . . , δ − 1} for which event A(z, j) occurs. If event A(z, j) occurs than

dT (x, y) = 2 ·
j+1∑
i=1

2i ≤ 2j+3

Thus

E[dT (x, y)] ≤
∑
z∈V

δ−1∑
j=0

2j+3 · Pr[A(z, j)]

• Sort the points of V .

• For any z ∈ V define d(z, {x, y}) := min{d(z, x), d(z, y)}

• Let V = {v1, . . . , vN} with d(v1, {z, x}) ≤ d(v2, {z, x}) ≤ · · · ≤ d(vN , {z, x})

Lemma 4.3. For every point vl ∈ V and every level j ∈ {0, 1, · · · , δ − 1} it holds

Pr[A(vl, j)] ≤
d(x, y)

l · 2j−1

Proof. w.l.o.g. d(vl, x) ≤ d(vl, y). If vl separates {x, y} on level j, the following two
conditions must be true:

1. when constructing partition Dj, the sphere around vl (line 4, PARTITION) is
the first sphere containing x or y

2. The radius βj = 2j−1β is in the interval [d(vl, x), d(vl, y)] otherwise the sphere
would contain neither or both points

x

y

vl
βj

31

Probability for 2:

Pr[βj ∈ [d(vl, x), d(vl, y)]]

= Pr[βj ∈
[

(vl, x)

2j−1
,
d(vl, y)

2j−1

]
]

≤ d(vl, y)

2j−1
− (vl, x)

2j−1

≤ d(x, y)

2j−1

Note:
β ∈ [1, 2] probability:
β ∈ I ≤ |I ∩ [1, 2]| ≤ |I|

If βj is in the interval such that condition 2. is fulfilled, then 1. can only occur
if vl is before v1, · · · , vl−1 in permutation π, otherwise a sphere around on of those
points with radius βj would contain at least one of {x, y}. Probability for vl of being
in front in π is 1

l
.

Combining both probabilities we can bound the probability for the event
A(vl, j) by 1

l
· d(x,y)

2j−1

Using Lemma 4.3. we can bound

E[dT (x, y)] ≤
N∑
l=1

δ−1∑
j=0

2j+3 · Pr[A(vl, j)]

≤
N∑
l=1

δ−1∑
j=0

2j+3 · d(x, y)

l · 2j−1

≤ 16 · δ ·HN · d(x, y)

(2)

Lemma 4.4. For every vertex vl there are at most four levels j ∈ {0, 1, . . . δ − 1}
for which event A(vl, j) can occur.

Proof. w.l.o.g. let d(vl, x) ≤ d(vl, y)

1. Case: d(x, y) ≤ d(vl, x)

• Then d(vl, x) ≥ d(vl, y)− d(x, y) ≥ d(vl, y)− d(vl, x)

• Thus d(vl, x) ≥ d(vl,y)
2

• now let j be the largest value from {0, 1, . . . δ− 1} such that the interval
[2j−1, 2j] (from which βj is chosen) has a non-empty intersection with the
interval [d(vl, x), d(vl, y)] (in which βj has to lie if A(vl, j) occurs)

• Therefore d(vl, y) > 2j−1 and d(vl, x) ≥ d(vl,y)
2

> 2j−2

• Thus in partition Dj−2 vertex vl cannot separate {x, y} and since j was
chosen to be the largest value, event A(vl, i) can only occur for
i ∈ {j − 1, j}

2. Case: d(x, y) > d(vl, x)

• Then d(x, y) ≥ d(vl, y)− d(vl, x) > d(vl, y)− d(x, y)

• This implies d(x, y) > d(vl,y)
2

• Let j be chosen as in 1. Case.

32

• Then d(vl, y) > 2j−1 and thus d(x, y) > d(vl,y)
2

> 2j−2 which means that
in partition Dj−3 x and y have to belong to different classes, since each
class has diameter at most 2j−2

• Thus vl cannot separate {x, y} on a level i ≤ j − 4

• Since we chose j to be the largest value, event A(vl, i) can only occur for
i ∈ {j − 3, j − 2, j − 1, j}

Using Lemma 4.4. we can bound equation (2) since there are at most four values
of j for which Pr[A(vl, j)] > 0 for every l.

E[dT (x, y)] ≤
N∑
l=1

δ−1∑
j=0

2j+3 · Pr[A(vl, j)]

≤
N∑
l=1

4 · 16 · d(x, y)

l

≤ 64 ·HN · d(x, y)

We have shown: Every metric can be embedded into a tree metric with stretch of
O(log(N))

Observation: For every tree metricMT = (VT , dT) generated by above algorithm
the following hold

max
x,y∈VT

dT (x, y) ≤ 8 · max
x,y∈V

d(x, y)

Proof. We define
∆ = max

x,y∈V
d(x, y) and δ ∈ N

such that
2δ−1 < ∆ ≤ 2δ

The longest path in T :

2 ·
δ∑
j=1

2j ≤ 2δ+2 < 8∆

Theorem 4.2. There is a randomised online algorithm for the k-server-problem
which is O(k · log(N))-competitive for every metric with N points.

Proof. Input σ, Metric M = (M,d).

• Construct a O(log(N))-approximation (S,D) with the algorithm above and
choose a tree metric MT from S according to D.

• Interpret σ as input for MT (Note: M≤MT) and use DC-algorithm.

• Let OPT (σ) and OPTT (σ) be optimal offline solution for metric M and MT

respectively.

• DCT (σ) is the solution of the DC-algorithm

33

• d(L) and dT (L) cost of a solution using metric d and dT respectively.

E[d(DCT (σ)] ≤ E[dT (DCT (σ))]

≤ E[k · dT (OPTT (σ)) + τ]

≤ k · E[dT (OPTT (σ))] + τ

≤ k · E[dT (OPT (σ))] + τ

≤ k · O(log(N)) · d(OPT (σ)) + τ

34

5 Scheduling

• Set of jobs J = {1, . . . n}

• Set of machines M = {1, . . .m}

• Each job j ∈ J has a size pj ∈ R>0

• Each machine i ∈M has a speed si ∈ R>0

• if a job j ∈ J is processed by machine i ∈M it takes time
pj
si

• A schedule π : J →M assigns each job to a machine

• Li(π) is the load of machine i ∈M in schedule π

Li(π) =

∑
j∈M,π(j)=i

pj

si

• Makespan C(π) is the maximal load i.e.

C(π) = max
i∈M

Li(π)

• In the following we seek to minimize the makespan.

Online Scheduling

• Set of machines and speed are unknown

• jobs arrive one after another

• job have to be assigned immediately to a machine

• number and size of future jobs are unknown

5.1 Identical Machines

• All machines have speed 1

• Greedy-strategy aka Least-Loaded-algorithm
→ assigns each job to the machine that has currently the smallest load

Theorem 5.1. The Least-Loaded-algorithm is strict 2− 1
m

-competitive

Proof. Lower bound for optimal schedule π∗ :

C(π∗) ≥ 1

m

∑
j∈J

pj and C(π∗) ≥ max
j∈J

pj

Schedule π of least-loaded: Let i ∈ M be the machine with maximal load C(π) =
Li(π). Let j ∈ J be the last job that was added to i: At that time i was the

least-loaded machine: The load is at most 1
m

j−1∑
k=1

pk

35

C(π) = Li(π) ≤ 1

m
(

j−1∑
k=1

pk) + pj

≤ 1

m
(
∑

k∈J\{j}

pk) + pi

=
1

m

∑
k∈J

pk + (1− 1

m
)pj

≤ C(π∗) + (1− 1

m
) ·max

k∈J
pk

≤ (2− 1

m
) · C(π∗)

Lower bound for Least-Loaded

Let m be the number of machines and an input instance with n = m(m − 1) + 1
jobs. The first m(m − 1) jobs have size 1 and the last job has size m. The Least-
Loaded schedules the smallest jobs equally on all machines, i.e. (m − 1) jobs on
each machine and the last job on an arbitrary machine. The load on this machine
is (m − 1) + m = 2m − 1. OPT would schedule m jobs of size 1 on each of the
machines 1 . . .m− 1 and then the job of size m on machine m. The makespan is m.

Least-Loaded

OPT
=

2m− 1

m
= 2− 1

m

Least - Loaded

..
.

..
.

……...
...

m

1 2 3 m

1

m-1

OPT

..
.

..
.

……...
...

m

1 2 3 m-1

1

m-1

m

5.2 Machines with Speed

What about greedy? 2 variants

1. choose the machine that has smallest load before scheduling current job

2. choose machine that has smallest load after assigning the job

36

Example:

s1=3 s2=1

p1=3

• current loads: M1 = 1,M2 = 0

• new job p2 = 3

1. assigns job to M2 ⇒ Loads: M1 = 1,M2 = 3 � 4

2. assigns job to M1 ⇒ Loads: M1 = 2,M0 = 3 � 2

If we make s1 arbitrary large then variant (1) creates an arbitrary bad solution.
For variant (2) it can be shown that the competitive factor is Θ(log(m))

Slow Fit

Algorithm with constant competitive factor.
Assume we know the makespan of the optimal solution. Let α = OPT (σ)
SlowFit(α) computes a schedule π with C(π) ≤ 2α

• sort machines according to their speeds in increasing order,
i.e. s1 ≤ s2 ≤ . . . ≤ sm

• Let πj be the partial schedule computed by SlowFit(α) for the jobs 1 . . . j

Algorithm 3 SlowFit (α)

1: schedule a new job j ∈ J with size pj to the slowest machine i ∈ M which has
load of less than 2α after this assignment, i.e.

2: min{i ∈M | Li(πj−1 +
pj
si
≤ 2α}

3: if no such machine exists output an error-message

Lemma 5.1. Let α ∈ R≥0 be arbitrary and σ be an arbitrary input with OPT (σ) ≤ α
then SlowFit(α) produces no error and computes a schedule π with C(π) ≤ 2α

Proof. It suffices that SlowFit(α) does not output an error-message. Assume there
is an input σ = (p1, . . . , pn) and SlowFit(α) outputs error at job pn
First observe that not for all i ∈M Li(πn−1) > OPT (σ) since otherwise

n−1∑
j=1

pj =
∑
i∈M

siLi(πn−1) >
∑
i∈M

si ·OPT (σ) ≥
∑
i∈M

si · Li(π∗) =
n∑
j=1

pj

OPT(σ)

Li(πn-1)

f

Γ

machines

speed

Consider the fastest machine f ∈M with Lf (πn−1) ≤ OPT (σ). Observe that f < m

37

because otherwise the following would hold:

Lm(πn−1) +
pm
sm
≤ 2 ·OPT (σ) ≤ 2α

and there would be no error. Let Γ = {i ∈M | i > f}. All machines in Γ have load
≥ OPT and Γ 6= ∅. The total size of jobs on machines m in Γ∑

i∈Γ

si · Li(πn−1) >
∑
i∈Γ

si ·OPT (σ)

There must exist a job j ∈ J \ {n} with πn−1(j) ∈ Γ and π∗(j) = i and i /∈ Γ

pj
si
≤ OPT (σ) and i ≤ f

Due to sorting of speeds also
pj
sf
≤ OPT (σ)

Consider the event when j was scheduled by SlowFit(α). It could have been sched-
uled to machine f since:

Lf (πj−1) +
pj
sf
≤ Lf (πn−1) +

pj
sf
≤ OPT (σ) +OPT (σ) ≤ 2α

But it was scheduled to a faster machine in Γ which is a contradiction to the defi-
nition of the algorithm.

But we do not know OPT (σ) :

Algorithm 4 SlowFit

1: Set α0 = p1
sm

2: Start with phase k = 0
3: for job j do
4: Try to schedule j with SlowFit(αk) while ignoring all jobs of previous phases
5: if SlowFit(αk) produces an error then
6: increase k by 1
7: Set αk = 2k · α0 and go to step 4
8:

9: end for

Theorem 5.2. SlowFit is strict 8-competitive for online scheduling.

Proof. Let 0, 1, . . . h be the phases of SlowFit for an arbitrary input σ. By σk we
denote the subsequence of jobs of phase k. Using Lemma 5.1. we obtain a lower
bound for OPT:

• if h = 0 : OPT ≥ α0 and SlowFit is 2-competitive

38

• if h > 0 : consider the phase h − 1 and the first job j of phase h. Since we
ignored all jobs of phases before h− 1 SlowFit(αh−1) produces an error when
processing job j only if for subsequence

σh−1 : OPT (σh−1, j) > αh−1 = 2h−1α0

Upper bound of schedule π of SlowFit: Summing up over the makespan of the
phases

C(π) ≤
h∑
k=0

2αk = 2 ·
h∑
k=0

2kα0 ≤ 2h+2α0

Combining both equations:

C(π) ≤ 2h+2α0 = 8 · 2h−1α0 ≤ 8 ·OPT (σn−1j) ≤ 8 ·OPT (σ)

Remarks:

• best known online algorithm is 5,828-competitive

• lower bound is 2,438

39

6 Summary

1. Introduction

• competitive ratio; strict competitive ratio

2. Paging

• Deterministic

– marking algorithms: LRU is one (Proof this)

– marking algorithm is k-competitive

– LFD is optimal

– lower bound of k for deterministic algorithms

• Random

– 3 types of adversaries

– redefinition of competitive ratio

– RANDOM k-competitive (Proof with potential function, amortized costs)

– lower bound of k for RANDOM

– MARK: randomised version of marking algorithm, 2Hk-competitive ra-
tio (Proof)

– lower bound of Hk for MARK

3. k-Server-Problem

• greedy-algorithm bad idea

• computing optimal offline solution with reduction to Min-Cost-Flow in
polynomial time (be able to do this reduction in exam)

• lower bound for deterministic online algorithm, OPT via indirect proof,
classes of algorithms

• DC on the line algorithm, k-competitive (know potential function and
general steps of proof)

• DC on trees, same potential function f , proof only differs for movement
of DC

• 2-servers in arbitrary spaces

– Slack Cover

– SC 1
2

– potential function method

– case distinction (what do we have to show, which cases and outcome)

4. Approximation of Metric Spaces

• dominate, embedding, deterministic is not a good idea

• probabilistic embeddings

• tree embedding

1. hierarchical partitioning→ tree metric, dominates (be able to proof)

40

2. generating HierPart algorithm, subroutine PARTITION

Proof: Exp. dist(x,y), probability that they get separated
depends on level and permutation
last step: δ → 4 levels

5. Scheduling

• identical machines

• 2− 1
2
-competitive Least-Loaded (be able to write down complete proof)

• lower bound

• SlowFit

– we assume OPT

– ”guess” OPT

41

