&P LK CGEID

The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 1 Introduction

Tongxin Li
School of Data Science

Who | am (Tongxin Li)

3

Background

Education: CUHK, Caltech
Working Experience:

e Amazon Web Services (2020,
2021), Applied Scientist Intern

e Assistant Professor (2022-present):

SDS, CUHK-SZ

Contact

Email: litongxin@cuhk.edu.cn

Research

General areas: Machine Learning,
Control, Sustainability

Topics: control & optimization,
online algorithms, reinforcement
learning

mailto:litongxin@cuhk.edu.cn

About this course

* This course is a required course for all SDS students.

* Need to sync between other 5 sessions (Lecture slides,
assignments, exams are the same)

Learning Objectives

* This course introduces the basics of computer programming
using Python

 Students will learn the basic elements of modern computer
systems, key programming concepts, problem solving and
basic algorithm design

* University courses are very different from what you might
have been familiar with in your high schools.

* Languages
* Assignments
* Exams

A Message for

* In your future university life, there are no more ¥ F {E

Fre5h men: (head teachers)

* No one is watching you to finish the assignments

* |tisthe right time to start being mature/independent
* Make best use of tutorials (starting next week)

* Check your e-mails often (say, once per day)

* Assignments and important course announcements
will be sent out via emails

Key Topics

* Introduction to modern computers

* Preliminary knowledge for computer programming
* Basic introduction to Python language

e Data types and operators in Python language
* Input/output

* Flow control and loop

* Function

* List

* Basic data structure

* Introduction to algorithm design

* Introduction to object oriented programming

Assessment

Course Materials

* All lecture notes and sample code used in classes will
be provided to students via Blackboard (bb.cuhk.edu
cn). They can also be found in the course web.

e Recommended readings

» Online resources: https://www.python.org/doc/

» Learning Python, 5th Edition, by Mark Lutz, Publisher: O’Reilly
media

Course Components

Indicative Teaching Plans

Week Content/ topic/ activity
Introduction to modern computers;

Preliminary knowledge for computer programming;
Basic introduction to Python language;

1

2 Data types and operators in Python language;
Input/output;

3 Flow control and loop;

4 Function;

5 List;

6 Introduction to object oriented programming, part |

7 Review for mid-term quiz;

8 Introduction to object oriented programming, part Il

9 Data Structure, part |;

10 Data Structure, part ll;

11 Introduction to algorithm design, part |;

12 Introduction to algorithm design, part Ii;

13 Introduction to algorithm design, part lli;

14 Review for final exam;

Course Web:

www.tongxin.me/CSC1001-2025fall/

Personal Web: www.tongxin.me

Why learn programming?

* Computer is built to help people solve
problems

* Computer does not understand what we
say

* We need to communicate with computers
using their languages (computer
programming language)

e Assembly, C, C++, Java and Python

User | ' ‘ Interface
-

Computer

Hardware + Software

Data Information Networks
Programmer

* Programmers solve problems like data, information, networks on
behalf of users

Programmer

* Professional programmer writes computer
programs and develops software

* A junior programmer gets a salary of 10-30k
RMB in an INTERNET company like Tencent

e A programmer can earn up to 500k —1m
USD in Google!!

* Software and INTERNET are huge industries.

Alibaba.com

PLANET o

Programmer

* Professional programmer writes computer
programs and develops software

I
A 1"”“|9I IIIpEIFngIIEaI“““eI getsl.al Saq:'a' o+ 10-30lcRMB

+ Apregrammercanearnupte-500k—ImUSbn
GoogleH

e Software and INTERNET are still huge industries?

XFH Essen

82, THANFTULESHFRUNORSZE, TEFRARARNE. A, W
SEBARHBMALE, \NFAREKZ N, BEHATESESE, HiE, &
HATRNE 2 ROTEN T WBEGR OB,

Programmer SECSAUBH! 500050

Offer, BREEN00FHELTS

The Computer-Science Bubble Is

Bursting
PHEA R AR IR PR 2

Atrtificial intelligence is ideally suited to replacing the very type of

* Professional programmer writes computer
programs and develops software

person who built it.

By Rose Horowitch

Goodbye, $165,000 Tech
'HS'D"‘H‘G‘GG‘g'l'e'u [FABxSE] HFEIARITENZALIAEE JObS. Student COders

Wi, BT —EBTOSERREE, :
MR GEERFENAER. HiEEk Seek Work at Chipotle.
VI 0 SRE AR AI T TR &

- = e As companies like Amazon and Microsoft lay off workers
w IRRITE B E D .

and embrace AL coding tools, computer science graduates
say they're struggling to land tech jobs.

* Software and INTERNET are still huge

industries?
Es\VENSRM, 1S, EIR A T CSHY Mk,

: CEO Says Al Could Write '90% Of Code'
Months'—Warns 'Every Industry' Will Be

on write 90% of software code in as few as three to six
Anthropic CEO Dario Amodei said at a Council on Foreign
event on March 10. He added that within 12 months, nearly all
Th e N eW Tre n d 1sks might be handled by Al. Human developers, however, will
eded to provide design inputs and set operational parameters
nodels.

lla says as much as 30% of
ode is written by Al

DT | UPDATED TUE, APR 29 2025.9:58 PM EDT

siare X

IAN-B704432/

adella on Tuesday said that as much as 30% of the
written by artificial intelligence.

What
Should
We Do?

The Al Revolution: Our Generation's 'Dot-Com' Moment

Just like the internet boom of the early 2000s, Al is creating a new frontier of

opportunity. The landscape is changing, but the core skills for success are more
important than ever.

Why Coding is Still Your Key in the Age of Al?

Aim Higher: Al develops code. You develop the Al.
Get Hired: Prove your problem-solving skills in technical interviews.

Work Smarter: Need knowledge to prompt and debug for more effective vibe coding.

What is Code? Software? Program?

* A sequence of instructions
* Computers take the instructions and execute them

* It is a little piece of our intelligence in the computer
* Intelligence which is re-usable

Computers are good at following instructions

* Humans can easily make mistakes when following a set of
instructions

* On the contrary, computers (usually) won’t make mistakes,
regardless of they are given 10 or 10 billion instructions !!

Computers

Are they computers ?

router

Smart TV Smart glasses
smartwatch

Computer Hardware

= Output Devices
(“ CPU
Input Devices —— J
S y r
Main Memory - Secondary
i Memaory

Program

Von Neumann Architecture

* The modern computer
architecture is proposed by John
Von Neumann

Central Processing Unit

Control Unit

Input

Arithmetic/Logic Unit Output
Device

Device

Memeory Unit

The theoretical foundatlon of
computer science

* The theoretical foundation of
computer science are built by Alan
Turing

* Father of theoretical computer science
and artificial intelligence

* Computability theory and Turing test

A movie about Turing

&k

The Imitation Game

Also another similar movie about John Nash: A beautiful mind (ERJ/I(>R)

Key components in a computer

* Central processing unit (CPU): execute your program. Similar to human
brain, very fast but not that smart

* Input device: take inputs from users or other devices
* Output device: output information to users or other devices
* Main memory: store data, fast and temporary storage

e Secondary memory: slower but large size, permanent storage

Central Processing Unit

e A processor contains two units, a control unit (CU) and an
arithmetic/logic unit (ALU)

* CU is used to fetch commands from the memory

 ALU contains the electric circuits which can execute
commands

Central Processing Unit

* Processor manufacturer: Intel, AMD, ARM, etc

Memory/Storage

* High speed cache

* ROM

* RAM

* Flash

e Hard disk

Memory/Storage

Types of computer memory
Memory

Primary Secondary Cache

ROM OPTICALDISKS MAGNETIC DISKS MAGNETIC TAPES

MROM CD-ROM
PROM WROM

EPROM DVD
EEPROM DVD-ROM
DDR1 DVD-R

DDR2
DDR3
DDR4
DDR5

DVDR
DVDRW

Memory/Storage

Faster Access,
Lower capaci

/cPu
. Level O

/,/ Regiiters
\\
£ perands, \\

£

J NN el
LIAITRL (R YivirN)

CPUCache ' Level 1
(L1,)2.) |

Qpprnnd(, :
Instructions in Blocks Non-

Main MerTLrV (RAM) ""'-\.Le"e' 2 Volatile
!Qata_,zcogzamm_e«zaes! \

T
Secondary Storage (Hard disk,

SSI?..)
Files

Tertiary storage (/Backup devices)

Slower Retriev_al
Higher capacit

o @E@ED s ¢ oS mm -~
i “““‘0 \

Input/output devices

* Input devices: mouse,
keyboard, panel, touch screen,
audio input, mind reading, etc

* OQutput devices: screen, audio
output, etc

Human-Machine Interaction

Any other input devices?

Any other input devices?

FEMDZ=h

Any other input devices?

Any other output devices?

VR Holographic projection

How the hard disk works

http://v.youku.com/v_show/id_XNjA4NzMxNDk2.htm|?from=s
1.8-1-1.2

What can a computer actually understand?

* The computers used nowadays can
understand only binary number (i.e. 0
and 1)

 Computers use voltage levels to
represent O and 1

* NRZL and NRZI coding

* The instructions expressed in binary
code is called machine language

o001l
o010
0100
1 000

numerical
numerical
numerical

numerical

walue
walue
walue

walue

AR
BRI

|

HF T—tk
yol bode 1 2 S

|

FPRE
=

Programing Language

Flow of Compilati
Scripting/Interpreted Languages S Dl

Perl, Python, Shell, Java

Compiling High/Middle Level Languages

C, C++
(What Most Malware Is Written In)

Assembly Language

Intel X86, etc. A
(First Layer of Human Readable Code)
Machine Code

Hexadecimal representations of Binary Code Read
By The Operating System

Binary code

Not Human Readable

v Binary code read by hardware

Dissasemble

https://www.quora.com/l-am-an-11th-grader-I-find-it-quite-difficult-to-write-C++-code-especially-when-the-only-way-to-practice-is-to-solve-maths-problems-Should-1-
keep-learning-C++-or-drop-it-for-C

Review of last lecture

* Von Neumann Architecture
* CPU and memory
* Input devices and output devices

Low level language — Assembly Language

* An assembly language is a low-level ¢ meor: none ©© T
programming language, in which there is a } s %
Very Strong (genera”y One_to_one) * Returns to monitor if not HEX input
O1lE 8D FO INHEX BSR INCH ET A CHAR
correspondence between the language and o0 a1 20 oA #o o
machine code instructions. co24 81 39 QA #9 e
c028 81 41 CMP A #'A
C02A 2B 09 BMI HEXERR NOT HEX
c02C 81 46 CMP A #'F
. . CO2E 2E 05 BGT HEXERR
* Each assembly language is specific to a G tioh mooos AR fhr e Eascw womims
particular computer architecture o
C035 7E CO AF HEXERR JMP CTRL RETURN TO CONTROL LOOP

Assembly Source File

add 2, .3-,. result

Machine-Code File

1101101010011010

* Assembly language is converted into
executable machine code by a utility
program referred to as an assembler

|

Assembler

C Language (1969 - 1973)

* Cwas developed by Dennis Ritchie between 1969 and 1973 at AT&T Bell Labs

One of the early high-level programming language

Somewhere between assembly and other high level languages

Provide powerful functionalities for low level memory manipulations

Have the highest efficiency within high level languages

Very widely used in low level applications, such as operating systems, embedded
programming, super computers, etc

C++ Language (1979)

e C++ was developed by Bjarne Stroustrup at Bell Labs since 1979

* Inherent major features of C

* An object oriented programming language, supporting code reuse
* High efficiency and powerful in low level memory manipulation

* Still could be platform dependent

Java Language (1995)

 Java was developed by James Gosling at Sun Microsystems (which has
since been acquired by Oracle Corporation) and released in 1995

* A new generation of general-purpose object oriented programming
language

* Platform independent, “write once, run anywhere” (WORA)

* Java is one of the most popular programming languages currently in
use

Popular Java Software?

Popular Java Software?

—
INELRAEY

i
I'I

aN>=k0I1D

Most games use C++

Python (1991)

* Developed by Guido van Rossum in 1989, and formally released in 1991
* An open source, object oriented programming language
e Powerful libraries

» Powerful interfaces to integrate other programming languages (C/C++,
Java, and many other languages)

* |In Al research, people mainly use Python.

Popular Python Software?

Popular Python Software?

<2 Dropbox r@

O oty

Do they use Python 100%?

Popular Python Software?

BEST PYTHON LIBRARIES
FOR MACHINE LEARNING

T BiPiiondt
TensorFlow
matpl‘% ifie K{:f: NumPy

@‘ SciPy . learnn

[l pandas theano

Python (1991)

* Python is evolving ...

* The best way to keep track of the
updates is to learn by really using
Python (not by taking lectures)

From https://www.python.org/doc/versions/

Python Documentation by Version

Some previous versions of the documentation remain available online. Use the list below to

select a version to view.

For unreleased (in development) documentation, see In Development Versions.

= Python 3.12.5, documentation released on 6 August 2024.

= Python 3.12.4, documentation released on 6 June 2024.

= Python 3.12.3, documentation released on 9 April 2024.

= Python 3.12.2, documentation released on 6 February 2024.
= Python 3.12.1, documentation released on 8 December 2023.
= Python 3.12.0, documentation released on 2 October 2023.

= Python 3.11.9, documentation released on 2 April 2024.

= Python 3.11.8, documentation released on 6 February 2024.
= Python 3.11.7, documentation released on 4 December 2023.
= Python 3.11.6, documentation released on 2 October 2023.

= Python 3.11.5, documentation released on 24 August 2023.

= Python 3.11.4, documentation released on 6 June 2023.

= Python 3.11.3, documentation released on 5 April 2023.

= Python 3.11.2, documentation released on 8 February 2023.
= Python 3.11.1, documentation released on 6 December 2022.
= Python 3.11.0, documentation released on 24 October 2022.
= Python 3.10.14, documentation released on 19 March 2024.

= Python 3.10.13, documentation released on 24 August 2023.
= Python 3.10.12, documentation released on 6 June 2023.

= Python 3.10.11, documentation released on 5 April 2023.

= Python 3.10.10, documentation released on 8 February 2023.
= Python 3.10.9, documentation released on 6 December 2022.

= Python 3.10.8, documentation released on 8 October 2022.

Python (1991)

Python release cycle

Python 2.6 end-of-life
Python 2.7 end-of-life
. Python 3.0
* The goal of this course: python 3.1
Python 3.2
Python 3.3
K ’ | F | | | Python 3.4
x Python 3.5
. . Python 3.6
* Provide you a comprehensive Python 3.7

. . Python 3.8 [security .
knowledge base of programming via Python 3.9 s)

Python 3.10 [sec mn_.;
Python \/ Python 3.11
. Python 3.12
* Our students have very diverse Python 3.3

* Python is evolving ...

end-of-life

‘ogleg 10 M IiM21i13 "4 IM51016 M7 1M8 19 200271122 23 1124 1'25 '26 1'27 1'28 '29

backgrounds ...

Language efficiency v.s. development efficiency
* High level languages cannot be executed directly
* High level languages must be converted into low level languages first

* Lower level languages have higher language efficiency (they are faster
to run on a computer)

* Higher level languages have higher development efficiency (it is easier
to write programs in these languages)

Operating Systems

* The operating system (OS) is a low level program,
which |orOV|des all basic services for managing and
controlling a computer’s activities

. Ap;())liscations are programs which are built based upon
an

 Main functions of an OS:

v’ Controlling and monitoring system activities
v" Allocating and assigning system resources
v’ Scheduling operations

e Popular OS: Windows, Mac OS, Linux, iOS, Android...

User |-'l—

t

Application Programs |

#

Operating System |--I—

;

Hardware |

Slogan for Python

AESE
M @ python

LIFE IS SHORT, USE PYTHON

Life is short, use Python

Data Representation and Conversion

* We use positional notation ({712 40%) to represent or encode
numbers in a computer

e Data are stored essentially as binary numbers in a computer

* In practice, we usually represent data using either binary (—i#),
decimal (-+3#), octal (/\3#*) or hexadecimal (-+753# Fl]) number
systems

 We may need to convert data between different number systems

The basic idea of positional notation

* Each positional number system contains two elements, a base (E%%)
and a set of symbols

* Using the decimal system (3 %l Z& %) as an example, its base is 10,
and the symbols are {0, 1, 2, 3,4, 5,6, 7, 8, 9}

e When a number “hits” 9, the next number will not be a different
symbol, but a “1” followed by a “0” (31 1#—)

Decimal number system

* |In the decimal number system, the base is 10, the symbols include 0, 1, 2,
3,45,6,7,8,9

* Every number can be decomposed into the sum of a series of numbers,
each is represented by a positional value times a weight

*N=a,x10"+a,_; x10" 1 +qa,_, x 102 ... + ay X 10° + a_; X
101 +a_, x 1072 ...

° a, .isr’]che positional value (ranging from 0 to 9), while 10" represents the
welgnt

Binary number system

* In the binary system, the base is 2, we use only two symbols 0 and 1
* “10” is used when we hit 2 (3 — ##—)

*N=qa,Xx2"+a,_ {x2" 1 +aq, ,x2"2 . . +ag x 2%+
a_ X2 +a_,x27% ..

* a, is the positional value (ranging from 0 to 1), while 2" represents
the weight

Why use binary number?

* Easy to implement physically
* Simple calculation rules
* Easy to combine arithmetic and logic operations

e Against noise (for analog signal)

Hexadecimal number system

* |In the hexadecimal system, the base is 16, we use 16 symbols {0, 1, 2, 3, 4,
5) 6) 7) 8) 9) a) b) CI d) el f}

« “10” is used when we hit 16 (3E+75H—)

eN=a,x16"+a,_; x16" 1 +qa,_, x 16" % ... +ay X 16° + a_; X
161 +a_, x 1672 ...

* a, is the positional value (ranging from 0 to 15), while 16™ represents the
weight

Octal number system

Converting binary number into decimal number

Example (1101.01) ,
=(1 X BFLXPHOR2F L XOFOX2ZTFLK2E)0
=(13.25),

Practice (10110.11),= (?)10

Converting binary number into decimal number

Answer

(10110.11)

=(1X2%44+0 X 2341 X 22+1 X 214+0 X 2941 X 2-141 X 2-
Yoo =(22.75)i

Converting octal number into decimal number

Example (24.67)g=(2 x8'+ 4 x8%+6 x81+7 x82),,

Practice (35.7)g= (?)10

Converting octal number into decimal number

Answer (35.7),=(3 X 81+ 5 X8%+7 X81),,
=(29.875),,

Converting hexadecimal number into decimal
humber

Example (2AB.C),

=(2x162+10x161+11x16°+12x161),
=(683.75)10

PraCtice (A7DE)16: (?)10

Converting hexadecimal number into decimal
humber

Answer

(ATD.E),=(10 X 162+7 X 16'+13 X 16°+14 X 16),
=(2685.875),,

Converting other number system into decimal
system

e Other number system can also be converted into
decimal system in a similar way

* We just need to change the corresponding base

Some tests: converting into decimal system

- (110110)_2 = (?)_10

- (101011.11)_2 = (?)_10
- (120)_8 = (?)_10

. (34.01)_8 = (?)_10

- (BCA)_16 = (?)_10

- (E05.C)_8 = (?)_10

Some tests: converting into decimal system

- (110110)_2 = (118)_10

- (101011.11)_2 = (43.75)_10
- (120)_8 = (80)_10

. (34.01)_8 = (28.015625)_10
- (BCA)_16 = (3018)_10

- (E05.C)_8 = (3589.75)_10

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Converting decimal integer into binary integer

Example: (57)10= (?),

2—5/f 1 Lower position

2| 28.. .0]

2 14 el (57),,=(111001),
2| 7 ..]

2l 3 ..]

4 1. sl Higher position

Converting decimal fraction into binary fraction

How to convert fractions to binary?

STEP 1: Take a decimal fraction and start multiplying by two the decimal part.

STEP 2: Every time the result is smaller than 1, add a O to the binary representation. If the result
is greater or equal to 1, add a 1 to the binary representation and subtract 1 from the

multiplication result.

Converting decimal fraction into binary fraction

Example: (0.875)10= (?),

Higher position
0.875 X2 =1.75 Integer part: 1
0.75 x2=1.5 Integer part: 1
05 x2=1 Integer part: 1

Lower position

Answer: (0.875)10= (0.111),
Practice: (0.6875)19= (?),

Converting decimal fraction into binary fraction

Answer:

0.6875 X 2 =1.375 Integer part: 1 Higher position
0.375 X2 =0.75 Integer part: 0
0.75 X2 =1.5 Integer part: 1

05 x2=1 Integer part: 1

Lower position

So, (0.6875)1,= (0.1011),

Converting decimal number into binary number

* For a decimal number that has both integer and fractional
parts

* Convert the integer and fractional parts separately

* Example: (215.3125)10= (?),

Converting decimal number into binary number

Answer:

(215),, = (11010111),
(215.3125)19 = (11010111.0101),

The one-to-one relationship between binary and
octal numbers

There is a “one-to-one” (——XJ7) relationship between three digits
binary number and one digit octal number

(0)g = (000),
(1)g = (001),
(2)g = (010),

(3)g = (011),
(4)g = (100),
(5)g = (101),
(6)g = (110),
(7)g = (111),

Converting octal number into binary number

* Convert each octal digit into binary number of three digits
* Keep the digit order unchanged

* Example: (0.754)g = (?7),

(0.754) 4= (000.111 101 100) ,
= (0.1111011) ,

* Practice: (16.327)g = (?),

Converting octal number into binary number

Answer:

(16.327)
= (001 110. 011 010 111) ,
= (1110.011010111) ,

Converting hexadecimal number into binary
number

* Convert each hexadecimal digit into binary number of four digits

» Keep the digit order unchanged

* Example: (4C.2E)1 = (?)>

(4C.2E)
= (0100 1100.0010 1110) ,
= (1001100.0010111) ,

* Practice: (AD.7F)1¢= (?)5

Converting hexadecimal number into binary
number

Answer:

(AD.7F)

= (1010 1101.0111 1111) ,
= (10101101.01111111) ,

Converting binary number into octal number

* Starting from lower positions, convert every three digits of the integer part
into an octal digit

* When there is not enough higher positions in the integer part, fill with 0

* Starting from higher positions, convert every three digits of the fractional
part into an octal digit

* When there is not enough lower positions in the fractional part, fill with O

* Keep the digit order unchanged

Converting binary number into octal number

Example:

(0.10111) ,= (000. 101 110) ,= (0.56) ,
(11101.01) ,= (011 101. 010) ,= (35.2) 4

Practice:
(1101101.011)

Converting binary number into octal number

Answer:

(1101101.011) ,= (001 101 101.011) ,
= (155.3) ,

Converting binary number into hexadecimal
humber

e Starting from lower positions, convert every four digits of the integer part into
an octal digit

* When there is not enough higher positions in the integer part, fill with O

e Starting from higher positions, convert every four digits of the fractional part
into an octal digit

 When there is not enough lower positions in the fractional part, fill with O

* Keep the digit order unchanged

Converting binary number into hexadecimal
humber

Example:

(11101.01) ,= (0001 1101. 0100) ,
= (1D.4) .,

The units of information (data)

* Bit (Et4%//L): a binary digit which takes either 0 or 1
* Bit is the smallest information unit in computer programming

. IIgyte (5235): 1 byte = 8 bits, every English character is represented by 1
yte

« KB (F%3): 1KB=2710B=1024B

« MB (Jk=35): 1MB=2/20B = 1024 KB
 GB (FJk=5): 1GB=2~30B=1024 MB
 TB (JkJk==5): 1TB =2240B = 1024 GB

Memory and addressing

° , I
A computer > MEMory consists Memory address Memory content
of an ordered sequence of
bytes for storing data ’ y

* Every location in the memory
has a unique address

2000 01000011 | Encoding for character °

2001 01110010 | Encoding for character

* The key difference between 2002 | 01100101 | Encoding for character *

high and low level , 2003 |01110111 | Encoding for character
programming languages is 2004 | 00000

J0000011 | Encoding for number 3
whether programmer needs to ,

deal with memory addressing
directly

g @ -, f"j

Practice

«(135.8125),0 = (10000111.1101) ,
«(1314.205)g = (1011001 100.010 000 101)
. (0101010000.0010110011) , = (520.1314),
. (0101010000.0010110011) , = (150.2CC) 4,

Thanks

	Slide 1: Introduction to Computer Science: Programming Methodology
	Slide 2: Who I am (Tongxin Li)
	Slide 3: About this course
	Slide 4: Learning Objectives
	Slide 5: A Message for Freshmen:
	Slide 6: Key Topics
	Slide 7: Assessment
	Slide 8: Course Materials
	Slide 9: Course Components
	Slide 10: Indicative Teaching Plans
	Slide 11
	Slide 12: Why learn programming?
	Slide 13
	Slide 14: Programmer
	Slide 15: Programmer
	Slide 16: Programmer
	Slide 17: The New Trend
	Slide 18: What Should We Do?
	Slide 19: The AI Revolution: Our Generation's 'Dot-Com' Moment
	Slide 21: What is Code? Software? Program?
	Slide 22: Computers are good at following instructions
	Slide 23: Computers
	Slide 24: Are they computers ？
	Slide 25: Computer Hardware
	Slide 26: Von Neumann Architecture
	Slide 27: The theoretical foundation of computer science
	Slide 28: A movie about Turing
	Slide 29: Key components in a computer
	Slide 30: Central Processing Unit
	Slide 31: Central Processing Unit
	Slide 32: Memory/Storage
	Slide 33: Memory/Storage
	Slide 34: Memory/Storage
	Slide 35: Input/output devices
	Slide 36: Any other input devices?
	Slide 37: Any other input devices?
	Slide 38: Any other input devices?
	Slide 39: Any other output devices?
	Slide 40: How the hard disk works
	Slide 41: What can a computer actually understand?
	Slide 42: Programing Language
	Slide 43: Review of last lecture
	Slide 44: Low level language – Assembly Language
	Slide 45: C Language (1969 - 1973)
	Slide 46: C++ Language (1979)
	Slide 47: Java Language (1995)
	Slide 48: Popular Java Software?
	Slide 49: Popular Java Software?
	Slide 50: Python (1991)
	Slide 51: Popular Python Software?
	Slide 52: Popular Python Software?
	Slide 53: Popular Python Software?
	Slide 54: Python (1991)
	Slide 55: Python (1991)
	Slide 56: Language efficiency v.s. development efficiency
	Slide 57: Operating Systems
	Slide 58: Slogan for Python
	Slide 59: Data Representation and Conversion
	Slide 60: The basic idea of positional notation
	Slide 61: Decimal number system
	Slide 62: Binary number system
	Slide 63: Why use binary number?
	Slide 64: Hexadecimal number system
	Slide 65: Octal number system
	Slide 66: Converting binary number into decimal number
	Slide 67: Converting binary number into decimal number
	Slide 68: Converting octal number into decimal number
	Slide 69: Converting octal number into decimal number
	Slide 70: Converting hexadecimal number into decimal number
	Slide 71: Converting hexadecimal number into decimal number
	Slide 72: Converting other number system into decimal system
	Slide 73: Some tests: converting into decimal system
	Slide 74: Some tests: converting into decimal system
	Slide 75: Converting decimal integer into binary integer
	Slide 76: Converting decimal fraction into binary fraction
	Slide 77: Converting decimal fraction into binary fraction
	Slide 78: Converting decimal fraction into binary fraction
	Slide 79: Converting decimal number into binary number
	Slide 80: Converting decimal number into binary number
	Slide 81: The one-to-one relationship between binary and octal numbers
	Slide 82: Converting octal number into binary number
	Slide 83: Converting octal number into binary number
	Slide 84: Converting hexadecimal number into binary number
	Slide 85: Converting hexadecimal number into binary number
	Slide 86: Converting binary number into octal number
	Slide 87: Converting binary number into octal number
	Slide 88: Converting binary number into octal number
	Slide 89: Converting binary number into hexadecimal number
	Slide 90: Converting binary number into hexadecimal number
	Slide 91: The units of information (data)
	Slide 92: Memory and addressing
	Slide 93: Practice
	Slide 94

