l P XK ¥ ORI

,M, The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 9
Recursion, Stack and Queue

Tongxin Li
School of Data Science

Linear Recursion

* If a recursive function is designed so that each invocation of
the body makes at most one new recursive call, this is known
as linear recursion

* Finding the smallest number and binary search are both
linear recursive algorithms

Practice: Sum of a list

* Given a list of numbers, write a program to calculate
the sum of this list using recursion

Solution:

def linearSum(L, n) :
17 n==0:
return 0
else:
return linearSum(L, n—1)+L[n—1]

def main() :
L =1[1,23,4,5,9, 100, 46, 7]
print C The sum is: , linearSum(L, len(L)))

The recursive trace for recursive sum

\

C linear_sum(S, 5)

return 15 + S[4] = 15 + 8 = 23
‘\‘-\‘—_

—
——

—~——

\ return 13 + S[3] = 13 + 2=15
(linear_sum(S, 4) ‘\““\-\x__
\ return 7 + S[2] =7 + 6 = 13
(linear_sum(S, 3) *‘\“\—\-\‘_\
\ return 4 + S[1] =4 + 3=7
(linear_sum(S, 2) R —
\‘ return 0 + S[0] = 0 + 4=4
(linear_sum(S, 1) ‘\
\ return 0

(linear_sum(S, 0)

Practice: Power function

* Write a program to calculate the power function f(x,n) =

x™ using Recursion. The time complexity of the program
should be O(logn)

A better recursive definition of power
function

l iftn=0
power(x,n) =< Xx- (powc’r (x, L%J))2 if n > 01s odd
(pmrc’r (\ {%J))z if n > 01seven

Solution:

def myPower (x,n) :

1T n==0:
return 1

else:
partial = myPower (x, n//2)
result = partial * partial
1T n%2==1:

result = result * x

return result

Multiple recursion

* When a function makes two or more recursive calls,
we say that it uses multiple recursion

* Drawing the English ruler is a multiple recursion
program

Practice: Binary sum

* Write a function binarySum() to calculate the sum of a
list of numbers. Inside binarySum() two recursive calls
should be made

Solution:

def binaryvSum(L, start, stop):
if start>=stop:
return O
eli1f start==stop — 1:
return L[start]
else:
mid = (start+stop)//2
return binarvSum(L, start, mid) +binarvSum (L, mid, stop)

def main() :
L=1[1223456,7]
print (binaryvSum(L, 0, 1en(L)))

Exercise

* Print reversed numbers of an array using Recursion
*[1,2,3] ->3,2,1

Exercise

* Merge sort

* Sort an array using Recursion

* Worst-case time complexity?

Exercise

* Merge sort

* Sort an array using Recursion
* Worst-case time complexity? O(n*logn)

e Space complexity?

Exercise

* Merge sort

* Sort an array using Recursion
* Worst-case time complexity? O(n*logn)

* Space complexity? O(n)!

def merge_sort(arr):
Base case: arrays with less than 2 elements are already "sorted"
if len(arr) <= 1:
return arr

Divide the array into two halves
mid = len(arr) // 2

left_half = arr[:mid]

right_half = arr([mid:]

Recursively sort both halves
sorted_left = merge_sort(left_half)
sorted_right = merge_sort(right_half)

Merge the sorted halves
return merge(sorted_left, sorted_right)

def merge(left, right):
merged = []
i=j=0

Merge the two arrays while comparing their elements
while i < len(left) and j < len(right):
if left[i] <= right[j]:
merged.append(left([i])

i+=1

else:
merged.append(right[j])
j +=1

Append any remaining elements from the left or right subarray
merged.extend(left[i:])
merged.extend(right[j:])

return merged

Stack

* A stack is a collection of objects that are
inserted and removed according to the
last-in, first-out (LIFO) principle

* A user may insert objects into a stack at
any time, but may only access or remove
the most recently inserted object that
remains (at the so-called “top” of the
stack)

Example: Web Browser

* Internet Web browsers store the addresses of recently
visited sites in a stack. Each time a user visits a new site, that

site’s address is “pushed” onto the stack of addresses. The

browser then allows the user to “pop” back to previously
visited sites using the “back” button.

Example: Text editor

 Text editors usually provide an “undo” mechanism that
cancels recent editing operations and reverts to former
states of a document. This undo operation can be
accomplished by keeping text changes in a stack.

The stack class

* Generally, a stack may contain the following methods:

S.push(e): Add element e to the top of stack S.
S.pop(): Remove and return the top element from the stack S:
an error occurs 1f the stack is empty.
S.top(): Return a reference to the top element of stack S, without
removing it; an error occurs if the stack 1s empty.
S.is_empty(): Return True if stack S does not contain any elements.

len(S): Return the number of elements in stack S; in Python, we
implement this with the special method __len__.

|

ListStack:

The Code of

def __init__ (self):

StaCk CIaSS self. data = list()

def len_ (self):
return len(self. data)

def is_empty (self):
return len(self. data) ==

def push(self, e):

self. data. append(e)
Top
def top(self):
4 if self.is emptv():
print (The stack is emptyv.)

1 else.
3 return self. datalself. len_ ()-1]
7 def pop(self):

if self.is _emptyv():
print C The stack is empty.)

return self. data. pop()

The code to use stack class

lef main() :

s = ListStack()

print (The stack is emptv? ', s.is_empty())
s. push (100)

s. push (200)

s. push (300)

print (s. top())

print (s. pop())

print (s. top())

Practice: Reverse a list using stack

* Write a program to reverse the order of a list of
numbers using the stack class

Solution:

from stack import ListStack

def reverse data(oldList):

s = ListStack()
newList = list ()

for 1 in oldList:
s. push (i)

while (not s.is emptv()):
mid = s.pop()
newList. append (mid)

return newlList

def main() :
oldList = [1, 2, 3, 4, 5]
newList = reverse data(oldList)
print (newList)

Practice: Brackets match checking

* In correct arithmetic expressions, the opening brackets must
match the corresponding closing brackets. Write a program
to check whether all the opening brackets have matched
closing brackets.

Brackets match checking

* In programing languages, there are many instances when
symbols must be balanced

*Eg.,{},[1,()

e Stack can be used for checking if the symbols are balanced
e Balanced

« ({[I}
* ({{}})
* ({(1})

e Unbalanced
* (]
* ({(ID1
* (O[K}

26

Balanced symbol checking

* Observation
* If the next symbol is the opening symbol, e.g., (, [, {

* Wait to see it matches closing symbols

* If the next symbol is the closing symbol, e.g.,),], }

* It needs to match previous symbols

e E.g., if the next symbol is “)”, for a balanced expression,

there must exist some “(“ in the prefix to match it

27

Balanced symbol checking algorithm

e Step 1: Create an empty stack

e Step 2: Read the symbols from the input text
* If the symbol is an opening symbol, push it to the stack
* Ifitis a closing symbol
* If the stack is empty: return FALSE

* Otherwise, pop from the stack. If the symbol popped does
not match the closing symbol, return FALSE

e Step 3: At the end, if the stack is not empty, return FALSE

(unbalanced), else return TRUE (balanced)

28

A running example

» Given an input symbol list: ({[]}),

» check if the symbols are balanced: show the status of the
stack after each symbol checking

({1 ({[1}) ({[1})

Open (Open { Open [

Push *(Push { Push [

A running example

» Given an input symbol list: ({[]}),

» check if the symbols are balanced: Show the status of the
stack after each symbol checking

({[1})

» After checking all symbols, the stack is empty: return TRUE

({[11)

match
closing]

Pop from
the stack

/[

—>

({[1})

match
closing }

Pop from
the stack

A

>

(

closing)

Pop from
the stack

—>

30

Practice

e Given an input symbol list: {(][]) },
* Check if the symbols are balanced
* Show the status of the stack after each symbol checking

e Given an input symbol list: () [[]{},
* Check if the symbols are balanced
* Show the status of the stack after each symbol checking

Practice
e Check if the symbollist {(][]) }is balanced

e Show the status of the stack after each symbol checking

Does not match. Return
FALSE immediately

{C1L)} {(101)} {C101)} (
closing]
O
Open{ pen Pop from
push { push '(’ the stack

—) — —)

Practice

e Check if the symbollist ()[[]{}is balanced

e Show the status of the stack after each symbol checking

OO0l

Open (

Push ‘('
—>

()C01{} OL0)
match (
closing) Open |
Pop from
the stack Push T

>

—>

33

Practice

e Check if the symbollist()[[]{}is balanced

e Show the status of the stack after each symbol checking

()LL)

Open [

Push T’

()LL)

SIINES;

match
— [
closing]

Pop from
the stack

—>

Open {

Push '{’

SIRNRY:

* Finally, the stack is not empty, so return FALSE

match

/{

closing }

Pop from
the stack

—>

34

SO‘Utlon- from stack import ListStack

def is matched (expr) :
lefty = " ([
righty = 7)1}’

s = ListStack()
for ¢ in expr:

1T ¢ in lefty:
s. push (c)
elif ¢ in righty:
if s.is_empty():
return False
if righty. index(c) !=lefty. index (s. pop()) :
return False
return s.is_empty ()

def main() :
expr = 1+2%(3+4)-[5-6]’
print (is_matched (expr))
expr = ((O)!]
print (is_matched (expr))

Practice: Matching Tags in HTML Language

e HTML is the standard format for hyperlinked documents on the
Internet

* In an HTML document, portions of text are delimited by HTML tags. A
simple opening HTML tag has the form “<name>" and the
corresponding closing tag has the form “</name>"

HTML Tags

* Commonly used HTML tags that are used in this example include

e body: document body

e hl: section header

e center: center justify

e p: paragraph

e ol: numbered (ordered) list
e li: list item

<body>

<center>

<h1> The Little Boat </hi1>
</center>

<p> The storm tossed the little
boat like a cheap sneaker in an
old washing machine. The three
drunken fishermen were used to
such treatment, of course, but

not the tree salesman, who even as
a stowaway now felt that he

had overpaid for the voyage. </p>

<1i> Will the salesman die? </1i>
<1i> What color is the boat? </1i>
<1i> And what about Naomi? </1i>

</body>
y (a)

An example of HTML document

The Little Boat

The storm tossed the little boat
like a cheap sneaker in an
old washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as
a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?

2. What color 1s the boat?

3. And what about Naomi?

(b)

Solution:

Recall: find() method for a string in Lecture 4

Example

n 5 09:14:16 2016’

o

>>> data = 'From stephen. marquard@®uct. ac. za Sat J:
>>> atpos = data. find(@)

>>> print (atpos)

21

>>> sppos = data.find(7, atpos)

>>> print (sppos)

31

>>> host = datalatpostl:sppos]

>>> print (thost)

gpt.ac.za

Solution:

from stack import ListStack

def is matched html (raw) :

ListStack ()
raw. find (C <)

s
J

while j!=-1:

return False
tag = rawl j+1:k]
if not tag. startswith(C /):
s. push (tag)
if s.is_emptyv () :
return False
if tagll:]!=s.pop():
return False

j = raw. find(C <, k+1)

return s.is_empty ()

def main() :

fhand = open(’ sampleHTML. txt’, 1)
raw = fhand. read()

print (raw)

print (is_matched html (raw))

smaller-than sign

greater-than sign

opening tag

closing tag

Queue

* Queue is another fundamental data structure

* A queue is a collection of objects that are inserted and
removed according to the first-in, first-out (FIFO) principle

* Elements can be inserted at any time, but only the element
that has been in the queue the longest can be next removed

Applications of Queue

T

ELRTIEES

ey %

x

A long queue for covid19 test

The queue class
* The queue class may contain the following methods:

Q.enqueue(e): Add element e to the back of queue Q.
Q.dequeue(): Remove and return the first element from queue Q:
an error occurs if the queue is empty.
Q.first(): Return a reference to the element at the front of queue Q,
without removing it; an error occurs if the queue 1s empty.
Q.is_empty(): Return True if queue Q does not contain any elements.

len(Q): Return the number of elements in queue Q; in Python,
we implement this with the special method __len__.

The code of queue class

class ListQueue:

default capacity = b

def

__init_ (self):
self. data = [Nonel*ListQueue. default capacity

self. size = 0

self. front =0

self. end = 0

__len_ (self):

return self. size
is_empty (self):

return self. size ==0

" first(self):

if self.is empty():
print (Queue is empty.’)

return self. datalself. front]

f dequeue (self) :

if self.is_emptv():
print (Queue is empty.’)
return None

answer = self. datalself. front]
self. datal[self. front] = None
self. front = (self. front+l) \
% ListQueue. default capacity
self. size —=1
return answer

f enqueue (self, e) :

1f self. size == ListQueue. default capacity:
print C The queue is full.’)
return None

self. datalself. end] = e
self. end = (self. end+l) \

% ListQueue. default capacity
self. size += 1

* outputQ(self):

print (self. data)

Practice: Simulating a web service

* An online video website handles service requests in the following
way:
1) It maintains a service queue which stores all the unprocessed
service requests.
2) When a new service request arrives, it will be saved at the end of
the service queue.

3) The server of the website will process each service request on a
“first-come-first-serve” basis.

* Write a program to simulate this process. The processing time of each
service request should be randomly generated.

Solution

from ListQueue import ListQueue
from random import random
from math import floor

class WebService():
default capacity = b
def _init__ (self):
self. nameQ = ListQueue ()
self. timeQ = ListQueue ()

def taskArrive (self, taskName, taskTime) :
if self.nameQ. len () < WebService. default capacity:
self. nameQ. enqueue (taskName)
self. timeQ. enqueue (taskTime)
print C A new task { +taskName+) has arrived and is waiting for processing...’)
else:
print C The service queue of our website is full, the new task is dropped.’)

def taskProcess(self):
if (self.nameQ. is empty() == Falze):
taskName = self. nameQ. dequeue ()
taskTime = self. timeQ. dequeue ()
print C Task { +taskName+) has been processed, it costs ' +str(taskTime)+ seconds.’)

Solution

def main() :
ws = WebService ()
taskNameList = [’ Dark knight’,’ X-man’,’ Kungfu’,’ Shaolin Soccer’,’ Matrix , Walking in the clouds’ \
, Casino Rovale’,’ Bourne Supremacy ,’ Inception’,’ The Shawshank Redemption’]

print (Simulation starts...’)
print(——m—mm——m—+-"+"-"-"-"-"-"———————————)
for i in range(l, 31):
rNum = random /()
1Y rNum<=0. 6:
taskIndex = floor (random()*10)
taskTime = floor (random()*1000) /100
ws. taskArrive (taskNameList[taskIndex], taskTime)
else:
ws. taskProcess ()
print(——————————m————"-""-""r——————————)
print (Simulation finished.’)

Stack vs. Queue

e Stack
* The insertion and deletion operation can be
performed from one side

* The stack follows the LIFO rule in which both the
insertion and deletion can be performed only
from one end

* Queue

* The insertion can be performed on one end, and

the deletion can be done on another end

* The queue follows the FIFO rule in which the
element is inserted on one end and deleted from
another end

JG

Practice: Simulating a stack using double queues

How to use double queues to implement a stack?
e jdea?

* implementation?

Solution

from collections import deque

class StackUsingQueuesAlt:

def

def

def

__init__(self):
self.ql = deque()
self.qg2 = deque()

push(self, x):
self.ql.append(x)
print(f"Pushed {x} onto ql: {list(self.ql)}")

pop(self):

if self.is_empty():
print("Stack is empty.")
return None

Move elements except the last one to g2
while len(self.ql) > 1:
item = self.ql.popleft()
self.g2.append(item)
print(f"Moved {item} from gl to g2: {list(self.qg2)}")

The last element in ql is the top of the stack
popped_item = self.ql.popleft()
print(f"Popped {popped_item} from ql1")

Swap ql and q2

self.ql, self.q2 = self.qg2, self.ql

print (f"Swapped queues. New ql: {list(self.ql)}")
return popped_item

def top(self):

def

if self.is_empty():
print("Stack is empty.")
return None

while len(self.ql) > 1:
self.qg2.append(self.ql.popleft())

Get the last element

top_item = self.ql[0]
self.g2.append(self.ql.popleft())
print(f"Top element is {top_item}")

Swap ql and q2
self.ql, self.q2 = self.q2, self.ql
return top_item

is_empty(self):
return not self.ql

