
Introduction to Computer Science:
Programming Methodology

Lecture 9
Recursion, Stack and Queue

Tongxin	Li
School	of	Data	Science

Linear Recursion

• If a recursive function is designed so that each invocation of
the body makes at most one new recursive call, this is known
as linear recursion

• Finding the smallest number and binary search are both
linear recursive algorithms

Practice: Sum of a list

•Given a list of numbers, write a program to calculate
the sum of this list using recursion

Solution:

The recursive trace for recursive sum

Practice: Power function

•Write a program to calculate the power function 𝑓 𝑥, 𝑛 =
𝑥! using Recursion. The time complexity of the program
should be O(logn)

A better recursive definition of power
function

Solution:

Multiple recursion

•When a function makes two or more recursive calls,
we say that it uses multiple recursion

•Drawing the English ruler is a multiple recursion
program

Practice: Binary sum

•Write a function binarySum() to calculate the sum of a
list of numbers. Inside binarySum() two recursive calls
should be made

Solution:

Exercise

• Print reversed numbers of an array using Recursion
• [1,2,3] - > 3, 2, 1

Exercise

•Merge sort
• Sort an array using Recursion

• Worst-case time complexity?

Exercise

•Merge sort
• Sort an array using Recursion

• Worst-case time complexity? O(n*logn)

• Space complexity?

Exercise

•Merge sort
• Sort an array using Recursion

• Worst-case time complexity? O(n*logn)

• Space complexity? O(n)!

Stack

• A stack is a collection of objects that are
inserted and removed according to the
last-in, first-out (LIFO) principle

• A user may insert objects into a stack at
any time, but may only access or remove
the most recently inserted object that
remains (at the so-called “top” of the
stack)

Example: Web Browser

• Internet Web browsers store the addresses of recently
visited sites in a stack. Each time a user visits a new site, that
site’s address is “pushed” onto the stack of addresses. The
browser then allows the user to “pop” back to previously
visited sites using the “back” button.

Example: Text editor

• Text editors usually provide an “undo” mechanism that
cancels recent editing operations and reverts to former
states of a document. This undo operation can be
accomplished by keeping text changes in a stack.

The stack class

• Generally, a stack may contain the following methods:

The Code of
Stack Class

The code to use stack class

Practice: Reverse a list using stack

•Write a program to reverse the order of a list of
numbers using the stack class

Solution:

Practice: Brackets match checking

• In correct arithmetic expressions, the opening brackets must
match the corresponding closing brackets. Write a program
to check whether all the opening brackets have matched
closing brackets.

Brackets match checking

26

• In programing languages, there are many instances when
symbols must be balanced

• E.g., { } , [] , ()
• Stack can be used for checking if the symbols are balanced

• Balanced
• (){[]}
• ({{}})
• ({[]})

• Unbalanced
• (]
• (){([])}]
• ()[[]{}

Balanced symbol checking

27

• Observation

• If the next symbol is the opening symbol, e.g., (, [, {

• Wait to see it matches closing symbols

• If the next symbol is the closing symbol, e.g.,),], }

• It needs to match previous symbols

• E.g., if the next symbol is “)”, for a balanced expression,

there must exist some “(“ in the prefix to match it

Balanced symbol checking algorithm

28

• Step 1: Create an empty stack

• Step 2: Read the symbols from the input text
• If the symbol is an opening symbol, push it to the stack
• If it is a closing symbol
• If the stack is empty: return FALSE
• Otherwise, pop from the stack. If the symbol popped does

not match the closing symbol, return FALSE

• Step 3: At the end, if the stack is not empty, return FALSE
(unbalanced), else return TRUE (balanced)

A running example

29

} Given an input symbol list: ({ [] }),
} check if the symbols are balanced: show the status of the

stack after each symbol checking

(

Push ‘(’

{
(

Push ‘{’
[
{
(

Push ‘[’

Open (Open { Open [

({ [] }) ({ [] })({ [] })

30

} Given an input symbol list: ({[]}),
} check if the symbols are balanced: Show the status of the

stack after each symbol checking

} After checking all symbols, the stack is empty: return TRUE

[
{
(

Pop from
the stack

closing]

{
(

[match

Pop from
the stack

closing }

(

{match

Pop from
the stack

closing)
(match

({ [] }) ({ [] }) ({ [] })

A running example

• Given an input symbol list: { (] []) },
• Check if the symbols are balanced
• Show the status of the stack after each symbol checking

• Given an input symbol list: () [[] { },
• Check if the symbols are balanced
• Show the status of the stack after each symbol checking

31

Practice

Practice

32

Check if the symbol list { (] []) } is balanced
Show the status of the stack after each symbol checking

{ (] []) }

{

Push ‘{’

Open {

{ (] []) }

(
{

Push ‘(’

Open (

{ (] []) }

Pop from
the stack

closing]
(

Does not match. Return
FALSE immediately

{

Practice

33

Check if the symbol list () [[] { } is balanced
Show the status of the stack after each symbol checking

() [[] { }

Push ‘(’

Open (

(

() [[] { }

Pop from
the stack

closing)
(

match
() [[] { }

Push ‘[’

Open [

[

Practice

34

Check if the symbol list () [[] { } is balanced
Show the status of the stack after each symbol checking

• Finally, the stack is not empty, so return FALSE

[

() [[] { }

Push ‘[’

Open [

[
[

() [[] { }

Pop from
the stack

closing]

[

[
match

() [[] { }

Push ‘{’

Open {

{
[

() [[] { }

Pop from
the stack

closing }

[

{
match

Solution:

Practice: Matching Tags in HTML Language

• HTML is the standard format for hyperlinked documents on the
Internet

• In an HTML document, portions of text are delimited by HTML tags. A
simple opening HTML tag has the form “<name>” and the
corresponding closing tag has the form “</name>”

HTML Tags

• Commonly used HTML tags that are used in this example include

An example of HTML document

Solution:
Recall: find() method for a string in Lecture 4

Solution: smaller-than sign

greater-than sign

opening tag

closing tag

Queue

• Queue is another fundamental data structure

• A queue is a collection of objects that are inserted and
removed according to the first-in, first-out (FIFO) principle

• Elements can be inserted at any time, but only the element
that has been in the queue the longest can be next removed

Applications of Queue

A long queue for covid19 test

The queue class

• The queue class may contain the following methods:

The code of queue class

Practice: Simulating a web service
• An online video website handles service requests in the following

way:
1) It maintains a service queue which stores all the unprocessed

service requests.
2) When a new service request arrives, it will be saved at the end of

the service queue.
3) The server of the website will process each service request on a

“first-come-first-serve” basis.

• Write a program to simulate this process. The processing time of each
service request should be randomly generated.

Solution

Solution

• Stack
• The insertion and deletion operation can be

performed from one side
• The stack follows the LIFO rule in which both the

insertion and deletion can be performed only
from one end

• Queue
• The insertion can be performed on one end, and

the deletion can be done on another end
• The queue follows the FIFO rule in which the

element is inserted on one end and deleted from
another end

49

Stack vs. Queue

Practice: Simulating a stack using double queues
How to use double queues to implement a stack?

• idea?

• implementation?

Solution

