) Xk % GE)

@ME’ The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 10
Linked List

Tongxin Li
School of Data Science

Why we need another list data type

* Python’s list class is highly optimized, and often a
great choice for storage

* However, many programming languages do not
support this kind of optimized list data type

More about linked lists

WHEN YOU FRILTO
BUILD YOUR LINKED LIST

-
) -
S =

Common Questions

When are linked lists preferred
over lists?

Asked 2 years, 11 months ago

Modified 2 years, 11 months ago Viewed 1k times

I'm learning data structures and

algorithms using Python. I've learnt

a that the advantage of linked list is that
it does not have a maximum number of

v nodes, unlike arrays in other languages.

1. Since Python automatically resizes
our lists for us, the advantage has
been abstracted away for us.

2. Therefore, I've always thought that
the only advantage linked lists have
was that adding a node at the front
or back of the linked list was O(1),
whereas adding an element to a list
could end up being O(n) from
Python having to resize the array
and copvina everv element over.

Why do we need to build linked lists in Python?

R4 ERpythonEM §ER?

RIEFRES "pythonREHEIEEN", ¥5
pythonZHERERRTEIZE AN, TER
B, PERRIINEEApythonH SHlistT 2 #PEESSI
132

Wi «

Python IR Python AI]

12 %3F - 09Fig - 2.4 BRIK

BN =i

A REe

RIERZHXI TR, EERBILRMNZIBIRS
1, FIWRZEMBIBSHNRBIETRT2
BEXH, MEILMIERE, RETBEBLIstEE...
3 2018-10-15

& =in

pythonfE ¥y $IELEH XEB AR SE E1BE
R, FEMTHROMEE, MREFBERS, AEY—
=, BHITAEEEEC,

18[E 2018-10-16

Common Questions

* Linked list is a classic data structure as a good example.
* Rarely used in high level programming languages like Python. As
a practitioner, you may never use it in Python.

* We use Python to demonstrate the concept, so you know what it

is when using non-Python languages.

List in Python is a referential structure

>>> a=[1,2,3,4,5] >>> a.insert (2, 10)
>>> for 1 in ranbe(O 5) : >)) a
print (id(ali])) (1, 2, 10, 3, 4, 5]
>>> for 1 in ranbe(O 6) :
print (id(ali]))
1546964720
1546964752
1546964784 1546964720
1546964816 1546964752
1546964848 1546965008
1546964784
1546964816

1546964848

List in Python is a referential structure

temp: ‘\ Q ;\\ temp: i Q i—
EDIEDIED]ENITNITN TS EDIED[EDIEDITIDI DI TBIEEY

DL NAV UL

*——P

—

primes:

List in Python is a referential structure

counters. ./ ‘/ J * \ \.

counters. / ./ x { ‘ \ \. \0

Compact array

* A collection of numbers are usually stored as a compact array in
languages such as C/C++ and Java

* A compact array is storing the bits that represent the primary data
(not reference)

* The overall memory usage will be much lower for a compact structure
because there is no overhead devoted to the explicit storage of the
sequence of memory references (in addition to the primary data)

Linked List

* A singly linked list, in its simplest form, is a collection of nodes that
collectively form a linear sequence

* Each node stores a reference to an object that is an element of the
sequence, as well as a reference to the next node of the list

MSP

*

f___T___| F___T___|
I | o - l ® .I | o -

element next

Linked List

 The first and last nodes of a linked list are known as the head and tail
of the list, respectively

* By starting at the head, and moving from one node to another by
following each node’s next reference, we can reach the tail of the list

* We can identify the tail as the node having None as its next reference.
This process is commonly known as traversing the linked list.

* Because the next reference of a node can be viewed as a link or
pointer to another node, the process of traversing a list is also known

as link hopping or pointer hopping

LAX ATL

MSP BOS
A A
. ¢

A
¢ | o »

head tail

head ——> Node ——> Node —>

class Node:
def _init_ (self,element,pointer=None):
self.element = element
self.pointer = pointer

tail —— null

head = Node(0)
nodel = Node(1)
node2 = Node(2)
tail = Node(3)

head.pointer = nodel
nodel.pointer = node2
node2.pointer = tail

p = head

while(p!=None):
print(p.element)
p = p.pointer

Inserting an Element at the Head of a
Singly Linked List

head

N\

MSP| e&——» ATL| &——» BOS| o&——» QZj

newest head

NN

LAX| e——»|MSP| e&——»|ATL| &——»|BOS| &———» (}

(b)

newest head

B

LAX

MSP| e——» ATL| e&——»(BOS| e—1——» (J

Pseudo code for inserting a node at the
head

Algorithm add_first(L,e):
newest = Node(e) {create new node instance storing reference to element e}
newest.next = L.head {set new node’s next to reference the old head node}
L.head = newest {set variable head to reference the new node}
L.size = L.size+ 1 {increment the node count}

Inserting an Element at the Tail of a
Singly Linked List

MSP

ATL

MSP

ATL

MSP

ATL

tail

newest

N\

MIA| e——»

newest

—» BOS — ()
(a)
tail
- »BOS — ()
(b)
tail
— BOS — MIA

4

@

Pseudo code for inserting at the talil

Algorithm add_last(L.e):
newest = Node(e) {create new node instance storing reference to element e}

newest.next = None {set new node’s next to reference the None object}
L.tail.next = newest ! make old tail node point to new node }
L.tail = newest {set variable tail to reference the new node}

L.size = L.size+ 1 {increment the node count}

Linked list :: insert

e Add a new element to the list

head —> Node —_— Node —_— Node —> null

head

e Node Node —_— Node —> null
newNode

head

] Node \ Node — Node —> null

17

Removing an Element from the head of
a Singly Linked List

head

N\

LAX| e——(MSP| e—— ATL| e——»BOS| e&—+——»

head

LAX| e——|MSP| e——»ATL| e—+—»BOS| &+ (J

(b)
head

MSP| e——»| ATL| e——»{ROS 0——>@

Pseudo code for removing a node from
the head

Algorithm remove_first(L):

if L.head 1s None then

Indicate an error: the list 1s empty.
L.head = L.head.next I make head point to next node (or None)}
L.size = L.size — | {decrement the node count]}

Linked list :: delete

e Delete a node from the list

head ——> Node —>—> Node ——> Node —— null

head —— Node 5 Node ——> Node — null

head ——> Node —> Node ——> Node —— null

Practice: Implement stack with a singly linked list

class Node: . def top(self):
def __init__ (self, element, pointer): it self.is_emptv():

self. element z element print C Stack is empty.’)

self. pointer pointer ol se
clace LinkedStack: return self. head. element
def __init_ (self): def pop(self):
Self.hgad = None if self.is empty():
self. size = 0 print(’Stack 1S empty.’)
else:

def len_ (self):

— : answer = self. head. element
return self. size

self. head = self. head. pointer

def is_empty (self) : self. size —=1
return self.size == 0 return answer

def push(self,e):
self. head = Node (e, self. head)
self. size += 1

Practice: Implement queue with a singly linked list

class LinkedQueue: def dequeue (Self) :
) o if self.is emptv():
def __1n1t__(self)i print Queue is empty.’)
self. head = None else:
self. tail = None answer = self. head. element
self. size = 0 self. head = self. head. pointer
self.size =1
def __len_ (self): if self.is_empty():
return self. size self. tail = None
return answer
def is_empty(self):
return self.size == def enqueue (self,e):

def first(self):
if self.is_emptyv():
print C Queue is emptyv.’)
else:
return self. head. element

newest = Node (e, None)

if self.is emptv():
self. head = newest
else:
self. tail. pointer = newest
self. tail = newest
self.size += 1

Practice: how to find the middle node (Optional)

head Node Node Node > taill —— null

AN

middle

\ 4

\ 4

\ 2

Practice: how to find the middle node (Optional)

def findMiddleByLength(head):
First loop to calculate the length of the linked list
length = 0
current = head
while current:
length += 1
current = current.next

Calculate the middle index for the first middle node
middle_index = (length - 1) // 2

Second loop to traverse to the middle node
current = head
index = 0
while index < middle_index:
current = current.next
index += 1

print("The middle node's data is:", current.data)
return current

Practice: how to find the middle node (Optional)

Define the Node class
class Node:
def __init__ (self, data):
self.data = data # Store data
self.next = None # Pointer to the next node

Function to find the middle node of the linked list
def findMiddle(head):
slow = head # Slow pointer moves one step at a time
fast = head # Fast pointer moves two steps at a time
while fast and fast.next:
slow = slow.next # Move slow pointer by one
fast = fast.next.next # Move fast pointer by two
print("The middle node's data is:", slow.data)
return slow

How to reverse a linked list (Optional)

head ——> Node ——> Node ——> tail —— null

null < head <— Node <— Node <— tail

New head

How to reverse a linked list (Optional)

class Node:
def __init__ (self, data):
self.data = data # Store data
self.next None # Pointer to the next node

Function to reverse the linked list
def reverselLinkedList(head):

prev = None

current = head

while current:

next_node = current.next # Save the next node

current.next = prev
prev = current
current = next_node

Reverse the link
Move prev to current
Move to next node

return prev # New head of the reversed list

How to reverse a linked list - recursion

Define the Node class
class Node:
def __init__ (self, data):
self.data = data # Store data
self.next None # Pointer to the next node

Function to reverse the linked list recursively
def reverselLinkedListRec(head):
Base case: if head is empty or only one node, it's already reversed
if head is None or head.next is None:
return head

Recursively reverse the rest of the list
rest = reverseLinkedListRec(head.next)

Adjust the pointers
head.next.next = head
head.next = None

Return the new head of the reversed list
return rest

Practice: check if there exists a cycle in a
inked list (Optional)

) --—.—m

read ==t I — Tl

Practice: check if there exists a cycle in a
inked list (Optional)

Define the Node class
class Node:
def __init__ (self, data):
self.data = data # Store data
self.next = None # Pointer to the next node

Function to check if the linked list has a cycle
def hasCycle(head):
slow = head # Tortoise moves one step at a time
fast = head # Hare moves two steps at a time
while fast and fast.next:

slow = slow.next # Move slow pointer by one
fast = fast.next.next # Move fast pointer by two
if slow == fast:

print("Cycle detected at node with data:", slow.data)
return True

print("No cycle detected.")

return False

Circularly Linked List

 The tail of a linked list can use its next reference to point

back to the head of the list

* Such a structure is usually called a circularly linked list

T

—

LAX

head

MSP

ATL

tail

LAX

?

'/_,_,_/

MSP

?

BOS

.

.

ATL

-/

current

Example: Round-robin scheduler

* A round-robin scheduler iterates through a collection of
elements in a circular fashion and “serves” each element by

performing a given action on it

* Such a scheduler is used, for example, to fairly allocate a
resource that must be shared by a collection of clients

* For instance, round-robin scheduling is often used to allocate
slices of CPU time to various applications running concurrently
on a computer

Implementing round-robin scheduler
using standard queue

* A round-robin scheduler could be implemented with the standard
gueue, by repeatedly performing the following steps on queue Q:

1) e =Q.dequeue()
2) Service element e

The Queue

3) Q.enqueue(e)

- J

1. Deque the 2. Service the 3. Enqueue the
next element next element serviced element

Implement a Queue with a Circularly
Linked List Vode

__init_ (self, element, pointer):
self. element = element
self. pointer = pointer

CQueue:
init (self):

self. __tail =
self. size

0

__len__ (self):
self. size

is empty (self):
self. size == 0

first (self):

self.is emptv():
print C Queue is empty.’)

Bead = self. tail.pointer
head. element

def dequeue (self) :
if self.is empty():
print C Queue is empty.’)

clLse.
oldhead = self. tail.pointer
1T self. size == 1:
self. tail = None
else.
self. tail.pointer = oldhead. pointer Skip the old head
self. size —=1

return oldhead. element

£ enqueue (self, e) :
newest = Node (e, None)
if self.is emptyv():
newest. pointer = newest
else:
newest. pointer = self. tail.pointer
self. tail.pointer = newest Insert after the tail!
self. tail = newest

self. size +=1

de

A single self-pointed node

Exercise: The Josephus Problem

* The Josephus Problem

* There are n people standing in a circle waiting to be executed. After the first
man is executed, k - 1 people are skipped and the k-th man is executed. Then
again, k-1 people are skipped and the k-th man is executed. The elimination
proceeds around the circle (which is becoming smaller and smaller as the
executed people are removed), until only the last man remains, who is given

freedom.

* The task is to choose the place in the initial circle so that you survive,
given n and k.

Doubly linked list

* For a singly linked list, we can efficiently insert a node at either end of
a singly linked list, and can delete a node at the head of a list

* But we cannot efficiently delete a node at the tail of the list

* We can define a linked list in which each node keeps an explicit
reference to the node before it and a reference to the node after it

* This kind of data structure is called doubly linked list

Head and tail sentinels

* In order to avoid some special cases when operating near the
boundaries of a doubly linked list, it helps to add special nodes at
both ends of the list: a header node at the beginning of the list, and a
trailer node at the end of the list

* These “dummy” nodes are known as sentinels (or guards), and they
do not store elements of the primary sequence

header trailer

next next next next

i n A s
oI | JFK | &1 "o |PVD el e SFO|e ™

prev prev prev prev

Inserting in the middle of a doubly
linked list

header

[4

.
S

BWI

=
]

header

()

BWI

JFK

L
S

()

header

[4

JFK

()

BWI

()

JFK

SFO

trailer

s
S

o

PVD

SFO

trailer

()

PVD

()

SFO

trailer

()

L

Inserting at the head of the doubly
linked list

header

()

header

L4

header

[4

BWI

()

JFK

()

PVD

BWI

()

PVD

()

BWI

(a)

SFO

trailer

()

JFK

()

SFO

trailer

f)

JFK

.

()

SFO

trailer

»

Deleting from the doubly linked list

header

header

.
‘_/’.

BWI

s N
S

JFK

.
Ils_}®

BWI

s N
S

header

L 4

JFK

()

BWI

PVD

L\
g~

PVD|e|

()

SFO

.
'/\/’.

trailer

SFO

" N
i |®

trailer

()

SFO

trailer

()

E

Code for the doubly linked list

Node:
lef _init__ (self, element, prev, nxt) :
self. element = element
self. prev = prev

self. nxt = nxt
DLList:

lef _init_ (self):
self. header = Node (None, None, None)
self. trailer = Node (None, None, None
self. header. nxt = self. trailer
self. trailer. prev = self. header
self. size = 0

__len_ (self):
»turn self. size

lef is_empty(self):
| n self.size == 0

def insert between(self, e, predecessor, successor) :

o

h

newest = Node (e, predecessor, successor)
predecessor. nxt = newest

successor. prev = newest

self. size+=1

return newest

delete node (self, node) :
predecessor = node. prev
successor = node. nxt

predecessor. nxt = successor
predecessor

successor. prev =
self. size —=1

element = node. element
node. prev = node. nxt =

return element

node. element = None

iterate (self):

pointer = self. header. nxt

print C The elements in the list:’)

while pointer != self. trailer:
print (pointer. element)

pointer = pointer. nxt

def main() :
d=DLList ()
d. len_ ()
newNode = d. insert_between (10, d. header, d. trailer)
newNode = d. insert_between (20, newNode, d. trailer)
newNode = d. insert_between (30, newNode, d. trailer)

d. iterate()
d. delete _node (d. header. nxt. nxt)
d.iterate()

Bubble sort

* Bubble sort is a simple sorting algorithm

* |lts general procedure is:
1) lterate over a list of numbers, compare every element i with the
following element i+1, and swap them if i is larger

2) Iterate over the list again and repeat the procedure in step 1, but
ignore the last element in the list

3) Continuously iterate over the list, but each time ignore one more
element at the tail of the list, until there is only one element left

A longer example

Practice: Bubble sort over a standard list

lef bubble (bubbleList):
listLength = len(bubbleList)
while llstLength > 0:
for 1 in range(listLength — 1):
if bubbleList[i] > bubbleList[i+1]:
buf = bubbleList[i]
bubbleList[i] = bubbleList[i+1]
bubbleList[i+1] = buf
listLength —= 1
return bubblelList

def main() :
bubbleList = [3, 4, 1, 2, 5, 8 0, 100, 17]
print (bubble (bubbleList))

Practice: Bubble sort over a singly linked list

Solution:

from LinkedQueue import LinkedQueue

def LinkedBubble(q) :

listLength =

g. size

while listLength > O:

index =
pointer

0

= q. head

while index < listLength—1:

if pointer. element > pointer. pointer. element:

Swap values

)
h

buf = pointer. element

pointer. element = pointer. pointer. element

pointer. pointer. element = buf

index += 1

pointer
listLength -

return q

pointer. pointer
1

outputQ(q) :

pointer = q. head

while pointer:
print (pointer. element)

pointer = poilnter. pointer

main() :
oldList = [9, 8, 6, 10, 45, 67, 21, 1]
q = LinkedQueue ()

for 1 in oldList:
q. enqueue (i)

print (Before the sorting...’)
outputQ(q)

q = LinkedBubble (q)

print ()

print (After the sorting...’)
outputQ(q)

Quick sort

* Quick sort is a widely used algorithm, which is more efficient than
bubble sort

* The main procedure of quick sort algorithm is:

1) Pick an element, called a pivot, from the array

2) Partitioning: reorder the array so that all elements with values less than the
pivot come before the pivot, while all elements with values greater than the
pivot come after it (equal values can go either way). After this partitioning,
the pivot is in its final position. This is called the partition operation

3) Recursively apply the above steps to the sub-array of elements with smaller
values and separately to the sub-array of elements with greater values

Unsorted Array

SEO0M0E0RE

A longer example

Practice: Quick sort over a standard list

def quickSort (L, low, high):

1 = low
j = high
it 1 0= 3
return L
key = L[i]
hile 1 < j:
hile i < j and L[j] >= key:
J = 371
L[i] = L[j]
while i < j and L[i] <= key:
1 = 1+1
L[] = L[i]
L[i] = key

quickSort (L, j+1, high)
return L

Practice: Quick sort over a singly linked list

