
Introduction to Computer Science:
Programming Methodology

Lecture 10
Linked List

Tongxin	Li
School	of	Data	Science

Why we need another list data type

•Python’s list class is highly optimized, and often a
great choice for storage

•However, many programming languages do not
support this kind of optimized list data type

More about linked lists

Common Questions
Why do we need to build linked lists in Python?

Common Questions

• Linked list is a classic data structure as a good example.

• Rarely used in high level programming languages like Python. As

a practitioner, you may never use it in Python.

• We use Python to demonstrate the concept, so you know what it

is when using non-Python languages.

List in Python is a referential structure

List in Python is a referential structure

List in Python is a referential structure

Compact array

• A collection of numbers are usually stored as a compact array in
languages such as C/C++ and Java

• A compact array is storing the bits that represent the primary data
(not reference)

• The overall memory usage will be much lower for a compact structure
because there is no overhead devoted to the explicit storage of the
sequence of memory references (in addition to the primary data)

Linked List

• A singly linked list, in its simplest form, is a collection of nodes that
collectively form a linear sequence
• Each node stores a reference to an object that is an element of the

sequence, as well as a reference to the next node of the list

Linked List
• The first and last nodes of a linked list are known as the head and tail

of the list, respectively
• By starting at the head, and moving from one node to another by

following each node’s next reference, we can reach the tail of the list
• We can identify the tail as the node having None as its next reference.

This process is commonly known as traversing the linked list.
• Because the next reference of a node can be viewed as a link or

pointer to another node, the process of traversing a list is also known
as link hopping or pointer hopping

Node Node tailhead null

head = Node(0)
node1 = Node(1)
node2 = Node(2)
tail = Node(3)

head.pointer = node1
node1.pointer = node2
node2.pointer = tail

p = head
while(p!=None):

print(p.element)
p = p.pointer

class Node:
def __init__(self,element,pointer=None):

self.element = element
self.pointer = pointer

Inserting an Element at the Head of a
Singly Linked List

Pseudo code for inserting a node at the
head

Inserting an Element at the Tail of a
Singly Linked List

Pseudo code for inserting at the tail

Linked list :: insert
• Add a new element to the list

Node Node Nodehead null

newNode

Node Node Nodehead null

newNode

Node Node Nodehead null

newNode

17

Removing an Element from the head of
a Singly Linked List

Pseudo code for removing a node from
the head

Linked list :: delete

• Delete a node from the list

Node Node Nodehead nullDiscard

Node Node Nodehead null

Discard

Node Node Nodehead null

20

Practice: Implement stack with a singly linked list

Practice: Implement queue with a singly linked list

Practice: how to find the middle node (Optional)

Node Node tailhead nullNode

middle

Practice: how to find the middle node (Optional)

Practice: how to find the middle node (Optional)

Node Node tailhead null

Node Node tailheadnull

New head

How to reverse a linked list (Optional)

How to reverse a linked list (Optional)

How to reverse a linked list - recursion

None

head

head

29

Practice: check if there exists a cycle in a
linked list (Optional)

Circularly Linked List
• The tail of a linked list can use its next reference to point

back to the head of the list

• Such a structure is usually called a circularly linked list

Example: Round-robin scheduler

• A round-robin scheduler iterates through a collection of
elements in a circular fashion and “serves” each element by
performing a given action on it

• Such a scheduler is used, for example, to fairly allocate a
resource that must be shared by a collection of clients

• For instance, round-robin scheduling is often used to allocate
slices of CPU time to various applications running concurrently
on a computer

Implementing round-robin scheduler
using standard queue
• A round-robin scheduler could be implemented with the standard

queue, by repeatedly performing the following steps on queue Q:
1) e = Q.dequeue()
2) Service element e
3) Q.enqueue(e)

Implement a Queue with a Circularly
Linked List

Skip the old head

A single self-pointed node

Insert after the tail!

• The Josephus Problem
• There are n people standing in a circle waiting to be executed. After the first

man is executed, k - 1 people are skipped and the k-th man is executed. Then
again, k-1 people are skipped and the k-th man is executed. The elimination
proceeds around the circle (which is becoming smaller and smaller as the
executed people are removed), until only the last man remains, who is given
freedom.

• The task is to choose the place in the initial circle so that you survive,
given n and k.

36

Exercise: The Josephus Problem

Doubly linked list

• For a singly linked list, we can efficiently insert a node at either end of
a singly linked list, and can delete a node at the head of a list

• But we cannot efficiently delete a node at the tail of the list

• We can define a linked list in which each node keeps an explicit
reference to the node before it and a reference to the node after it

• This kind of data structure is called doubly linked list

Head and tail sentinels

• In order to avoid some special cases when operating near the
boundaries of a doubly linked list, it helps to add special nodes at
both ends of the list: a header node at the beginning of the list, and a
trailer node at the end of the list
• These “dummy” nodes are known as sentinels (or guards), and they

do not store elements of the primary sequence

Inserting in the middle of a doubly
linked list

Inserting at the head of the doubly
linked list

Deleting from the doubly linked list

Code for the doubly linked list

Bubble sort

•Bubble sort is a simple sorting algorithm

• Its general procedure is:
1) Iterate over a list of numbers, compare every element i with the

following element i+1, and swap them if i is larger
2) Iterate over the list again and repeat the procedure in step 1, but

ignore the last element in the list
3) Continuously iterate over the list, but each time ignore one more

element at the tail of the list, until there is only one element left

A longer example

Practice: Bubble sort over a standard list

Practice: Bubble sort over a singly linked list

Solution:

Swap values

Quick sort
• Quick sort is a widely used algorithm, which is more efficient than

bubble sort

• The main procedure of quick sort algorithm is:
1) Pick an element, called a pivot, from the array
2) Partitioning: reorder the array so that all elements with values less than the

pivot come before the pivot, while all elements with values greater than the
pivot come after it (equal values can go either way). After this partitioning,
the pivot is in its final position. This is called the partition operation

3) Recursively apply the above steps to the sub-array of elements with smaller
values and separately to the sub-array of elements with greater values

A longer example

Practice: Quick sort over a standard list

Practice: Quick sort over a singly linked list

