
Introduction to Computer Science:
Programming Methodology

Lecture 11
Tree

Tongxin Li

School of Data Science

Tree

• A tree is a data structure that stores elements hierarchically

• With the exception of the top element, each element in a
tree has a parent element and zero or more children
elements

• We typically call the top element the root of the tree, but it
is drawn as the highest element

Example: The organization of a company

Semantic concept

Organism

Plant Animal

Mammal Fish

Root

Formal definition of a tree

• Formally, we define a tree T as a set of nodes storing
elements such that the nodes have a parent-child
relationship that satisfies the following properties:

✓ If T is nonempty, it has a special node, called the root of T,
that has no parent.

✓ Each node v of T (different from the root) has a unique
parent node w; every node with parent w is a child of w.

Edge and path

•An edge of tree T is a pair of nodes (u,v) such that u is
the parent of v, or vice versa

•A path of T is a sequence of nodes such that any two
consecutive nodes in the sequence form an edge

• The depth of a node v is the length of the path
connecting root node and v

Internal and leaf nodes

•A node is called a leaf node if it has no child

• If a node has at least one child, it is an internal
node

Ordered tree

• A tree is ordered if there is a meaningful linear order among the
children of each node; such an order is usually visualized by arranging
siblings from left to right, according to their order

Example: File system

A file is a leaf node, and a folder/directory is an internal node

Binary tree

• A binary tree is an ordered tree with the following properties:

1. Every node has at most two children

2. Each child node is labelled as being either a left child or a right child

3. A left child precedes a right child in the order of children of a node

The subtree rooted at a left or right child of an internal node v is called a
left subtree or right subtree, respectively, of v

A binary tree is proper if each node has either zero or two children. Some
people also refer to such trees as being full binary trees

A wild binary tree

Example: Represent an expression with binary tree
• An arithmetic expression can be represented by a binary tree whose

leaves are associated with variables or constants, and whose internal
nodes are associated with one of the operators +, −, ×, and /

Binary tree class

• We define a tree class based on a class called Node; an
element is stored as a node

• Each node contains three references, one pointing to the
parent node, two pointing to the child nodes

Implementing the binary tree

Implementing the binary tree

Example: Use the binary tree class

Traverse a linked list

17

Traverse a binary tree

p = head
while(p!=None):
 print(p.element)
 p = p.pointer

• Pre-order (depth-first)
• Visit the node
• Traverse the left subtree in pre-order
• Traverse the right subtree in pre-order

• In-order
• Traverse the left subtree in in-order
• Visit the node
• Traverse the right subtree in in-order

• Post-order
• Traverse the left subtree in post-order
• Traverse the right subtree in post-order
• Visit the node

18

Different traversing strategies

Result:
= A (A’s left) (A’s right)
= A B (B’s left) (B’s right = NULL) (A’s right)
= A B (B’s left) (A’s right)
= A B D (D’s left=NULL) (D’s right = NULL) (A’s right)
= A B D (A’s right)
= A B D C (C’s left) (C’s right)
= A B D C E (E’s left=NULL) (E’s right) (C’s right)
= A B D C E (E’s right) (C’s right)
= A B D C E G (G’s left=NULL) (G’s right = NULL) (C’s right)
= A B D C E G (C’s right)
= A B D C E G F (F’s left) (F’s right)
= A B D C E G F H (H’s left=NULL) (H’s right =NULL) (F’s right)
= A B D C E G F H I (I’s left=NULL) (I’s right =NULL)
= A B D C E G F H I

A

B C

E FD

G H I

Example:preorder traversal

Visit the root

Traverse the
left subtree

Traverse the
right subtree

A B D C E G F H I

19

Pre-order traversal

+

- H

/ *

+
* E -

A B C D F G

(A+B)/(C*D)-E*(F-G)+H

20

Example: Represent an expression

+

- H

/ *

+
* E -

A B C D F G

Preorder:
 +-/+AB*CD*E-FGH

Inorder :
A+B/C*D-E*F-G+H

Postorder:
AB+CD*/EFG-*-H+

21

(A+B)/(C*D)-E*(F-G)+H

Example: Represent an expression

Preorder:
 +-/+AB*CD*E-FGH

Inorder :
A+B/C*D-E*F-G+H

Postorder:
AB+CD*/EFG-*-H+

22

(A+B)/(C*D)-E*(F-G)+H

Example: Represent an expression

Question: Given an expression, what is the relationship between its postfix and post-order?

Implementation (Pseudocode)

INORDER-TREE-WALK(x)

1. if x is not None:

2. then INORDER-TREE-WALK (left [x])

3. print key [x]

4. INORDER-TREE-WALK (right [x])

E.g.:

 Running time:

◦ (n), where n is the size of the tree rooted at x

2

3

5

5

7

9

Output: 2 3 5 5 7 9

23

• Given a binary tree, show its pre-order, in-order, and post-
order

• Pre-order=[3, 9, 20, 15, 7]

• In-order=[9, 3, 15, 20, 7]

• Post-order=[9, 15, 7, 20, 3]

Exercise

24

Reconstruction of
Binary Tree from
its preorder and
In-order sequences

Example: Given the following sequences, find the
corresponding binary tree:

 in-order : DCEBAUZTXY

 pre-order : ABCDEXZUTY

Looking at the whole tree:

• “pre-order : ABCDEXZUTY”
=> A is the root

• Then, “in-order : DCEBAUZTXY”

 =>

A

DCEB (inorder)

BCDE (preorder)

Looking at the left subtree of A:

• “pre-order : BCDE”
=> B is the root

• Then, “in-order: DCEB”

 =>
A

UZTXY (inorder)

XZUTY (preorder)

B

DCE (inorder)

CDE (preorder)

DCEB (inorder)

BCDE (preorder)

UZTXY (inorder)

XZUTY (preorder)

DCE (inorder)

CDE (preorder) 25

Example: Reconstruct a binary tree

Looking at the left subtree of B:

• “preorder : CDE”
=> C is the root

• Then, “inorder: DCE”

 =>

A

UZTXY (inorder)

XZUTY (preorder)

B

C

D E

Looking at the right subtree of A:

• “preorder : XZUTY”
=> X is the root

• Then, “inorder: UZTXY”

 =>

A

B

C

D E

X

UZT (inorder)
ZUT (preorder)

Y

26

Reconstruct a binary tree

Looking at the left subtree of X:

• “pre-order : ZUT”
=> Z is the root

• Then, “in-order: UZT”

 =>

A

B

C

D E

X

YZ

U T

27

Reconstruct a binary tree

Warning: A binary tree may not be uniquely defined by its pre-order and post-order sequences.

 Example: Pre-order sequence: ABC

 Post-order sequence: CBA

 We can construct 2 different binary trees:

A

B

C

A

B

C

28

Reconstruct a binary tree

• Construct a binary tree such that
• Pre-order=[3,9,20,15,7]

• In-order=[9,3,15,20,7]

Exercise

29

• Construct a binary tree such that
• Pre-order=[A, B , C , D , E , X , Z , U , T , Y]

• Post-order=[D , E , C , B , U , T , Z , Y , X , A]

Exercise

30

A

B

C

D E

X

YZ

U T

Practice

• Find the maximal element of a binary tree

Example: Find the max number
class Node:

def __init__(self, key=None, left=None, right=None):

self.key = key

self.left = left

self.right = right

def findMax(root):

 if (root == None):

 return float('-inf’)

 res = root.data

 lres = findMax(root.left)

 rres = findMax(root.right)

 return max(res, lres, rres)

Practice

• Check if two binary trees are identical or not

def isIdentical(x, y):

if x is None and y is None:

return True

return (x is not None and y is not None) and (x.key == y.key) and \

isIdentical(x.left, y.left) and isIdentical(x.right, y.right)

Example: Check Identity

Practice

• Swap a tree (Convert a binary tree to its mirror)

Example: Convert a binary tree to its mirror

def swap(root):

if root is None:

return

temp = root.left

root.left = root.right

root.right = temp

def convertToMirror(root):

if root is None:

return

convertToMirror(root.left)

convertToMirror(root.right)

swap(root)

Practice

• Check if a binary tree is symmetric or not

Example: Check if a binary tree is symmetric

def isSymmetric(X, Y):

if X is None and Y is None:

return True

return (X is not None and Y is not None) and \

isSymmetric(X.left, Y.right) and \

isSymmetric(X.right, Y.left)

•Pre-order

• In-order

•Post-order

• Level-order (Breadth First)

Summary: Tree Traversal

(Depth First)

Depth first search over a tree

• Depth-first search (DFS) is a
fundamental algorithm for
traversing or searching tree
data structures

• One starts at the root and
explores as deep as possible
along each branch before
backtracking

Example: search a path in a maze

The code of DFS over a binary tree

The code of DFS over a binary tree

Question: Is this pre-order, in-order, or post-order DFS?

Breadth first search over a tree

• Breadth-first search (BFS) is
another very important
algorithm for traversing or
searching tree data structures

• Starts at the root and we visit
all the positions at depth d
before we visit the positions at
depth d +1

• Intuition of BFS
• Given a source root 𝑠, always visit nodes that are closer to the

source 𝑠 first before visiting the others

• The result may not be unique, if we do not define an order
among out-going edges from a node
• Possible results

• 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7
• 𝑣1, 𝑣3, 𝑣2, 𝑣7, 𝑣6, 𝑣5, 𝑣4

• we could impose an order for children (from left to right)

• 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7 (now become unique)

51

𝑣4

𝑣3𝑣2

𝑣1

𝑣5 𝑣6 𝑣7

Breadth first search (BFS)

Example: finding the best move in a game

The code of BFS over a binary tree

• At the beginning, color all nodes to be white

• Create a queue 𝑄, enqueue the root

• Repeat the following until queue 𝑄 is empty
• Dequeue from 𝑄, let the node be 𝑣

• Enqueue children of 𝑣 into 𝑄

• Visit 𝑣

• Example:
• Assume the source is 𝑣1

54

𝑄 = (𝑣1)

𝑄 = (𝑣2, 𝑣3)

After dequeuing 𝑣1
𝑣4

𝑣3𝑣2

𝑣1

𝑣5 𝑣6 𝑣7

𝑣1

𝑣2 𝑣3

𝑣1

BFS procedure

• Walk through BST for this given tree

Practice

55

𝑣4

𝑣3𝑣2

𝑣1

𝑣5 𝑣6 𝑣7

𝑣8 𝑣9

Think about a tree “with a circle”

𝐺

𝑣4

𝑣3𝑣2

𝑣1

𝑣5 𝑣6 𝑣7

𝑣8

𝑣4

𝑣3𝑣2

𝑣1

𝑣5 𝑣6 𝑣7

Tree Graph

DFS and BFS work for general graphs

• BST is a tree such that for each node T,
• the key values in its left subtree are

smaller than the key value of T

• the key values in its right subtree are
larger than the key value of T

Left child Right child

L R
parent

element

57

Binary search tree (optional)

• Support many dynamic set operations
• searchKey, findMin, findMax, successor, insert,

• Running time of basic operations on BST

• On average: (logn)

• The expected height of the tree is log n

• In the worst case: (n)

• The tree is a linear chain of n nodes

BST (Optional)

58

• Given a pointer to the root of a tree and a key k:
• Return a pointer to a node with key k if one exists, otherwise

return None

• Example

59

Example: Searching for a Key

 Search for key 13:
◦ 15 → 6 → 7 → 13

3

2 4

6

7

13

15

18

17 20

9

Example: Searching for a Key

find(x, k):

1. if x is None or k is key [x]

2. then return x

3. if k < key [x]

4. then return find(left [x], k)

5. else return find(right [x], k)

Running Time: O (h),
h is the height of the tree

2

3

4

5

7

9

60

Example: Finding the Minimum
 Goal: find the minimum value in a BST

◦ Following left child pointers from the root, until a None
is encountered

findMin(x)

1. while left [x] is not None

2. do x ← left [x]

3. return x
3

2 4

6

7

13

15

18

17 20

9

Minimum = 2

Running time: O(h)

h is the height of tree

61

Successor
Def: successor (x) = y, such that key [y] is the

 smallest key > key [x]
 E.g.: successor (15) =
 successor (13) =
 successor (9) =

 Case 1: right (x) is non-empty
◦ successor (x) = the minimum in right (x)

 Case 2: right (x) is empty
◦ go up the tree until the current node is a left child: successor (x) is

the parent of the current node
◦ if you cannot go further (and you reached the root): x is the largest

element

3

2 4

6

7

13

15

18

17 20

9

17
15

13
x

y

62

Example: Finding the Successor
successor(x)

1. if right [x] is not None

2. then return findMin(right [x])

3. y ← p[x]

4. while y is not None and x = right [y]

5. do x ← y

6. y ← p[y]

7. return y 3

2 4

6

7

13

15

18

17 20

9

y

x

Running time: O (h)

h is the height of the tree

63

Example: Insertion

 Goal: Insert value v into a binary search tree

 Find the position and insert as a leaf:

◦ If key [x] < v move to the right child of x,

 else move to the left child of x

◦ When x is None, we found the correct position

◦ If v < key [y] insert the new node as y’s left child

 else insert it as y’s right child

◦ Begin at the root, go down the tree and maintain:

 Pointer x : traces the downward path (current node)

 Pointer y : parent of x (“trailing pointer”)

64

Example

2

1 3

5

9

12

18

15 19

17

x=root[T], y=NIL
Insert 13:

2

1 3

5

9

12

18

15 19

17

x

2

1 3

5

9

12

18

15 19

17

x

x = None
y = 15

13

2

1 3

5

9

12

18

15 19

17

y

y

65

• Build a binary search tree for the following sequence

 15, 6, 18, 3, 7, 17, 20, 2, 4

Exercise 1

66

	Slide 1: Introduction to Computer Science: Programming Methodology
	Slide 2: Tree
	Slide 3: Example: The organization of a company
	Slide 4: Semantic concept
	Slide 5: Formal definition of a tree
	Slide 6: Edge and path
	Slide 7: Internal and leaf nodes
	Slide 8: Ordered tree
	Slide 9: Example: File system
	Slide 10: Binary tree
	Slide 11: A wild binary tree
	Slide 12: Example: Represent an expression with binary tree
	Slide 13: Binary tree class
	Slide 14: Implementing the binary tree
	Slide 15: Implementing the binary tree
	Slide 16: Example: Use the binary tree class
	Slide 17: Traverse a linked list
	Slide 18
	Slide 19
	Slide 20: Example: Represent an expression
	Slide 21: Example: Represent an expression
	Slide 22: Example: Represent an expression
	Slide 23: Implementation (Pseudocode)
	Slide 24: Exercise
	Slide 25: Example: Reconstruct a binary tree
	Slide 26: Reconstruct a binary tree
	Slide 27: Reconstruct a binary tree
	Slide 28: Reconstruct a binary tree
	Slide 29: Exercise
	Slide 30: Exercise
	Slide 31: Practice
	Slide 32: Example: Find the max number
	Slide 33: Practice
	Slide 34
	Slide 35: Practice
	Slide 36: Example: Convert a binary tree to its mirror
	Slide 37: Practice
	Slide 38: Example: Check if a binary tree is symmetric
	Slide 39
	Slide 40: Depth first search over a tree
	Slide 41: Example: search a path in a maze
	Slide 42: The code of DFS over a binary tree
	Slide 43: The code of DFS over a binary tree
	Slide 50: Breadth first search over a tree
	Slide 51
	Slide 52: Example: finding the best move in a game
	Slide 53: The code of BFS over a binary tree
	Slide 54
	Slide 55: Practice
	Slide 56: Think about a tree “with a circle”
	Slide 57
	Slide 58: BST (Optional)
	Slide 59: Example: Searching for a Key
	Slide 60: Example: Searching for a Key
	Slide 61: Example: Finding the Minimum
	Slide 62: Successor
	Slide 63: Example: Finding the Successor
	Slide 64: Example: Insertion
	Slide 65: Example
	Slide 66: Exercise 1

