

Introduction to Computer Science: Programming Methodology

Lecture 11 Tree

Tongxin Li School of Data Science

Tree

• A tree is a data structure that stores elements hierarchically

• With the exception of the top element, each element in a tree has a parent element and zero or more children elements

• We typically call the top element the root of the tree, but it is drawn as the highest element

Example: The organization of a company

Semantic concept

Formal definition of a tree

• Formally, we define a tree T as a set of nodes storing elements such that the nodes have a parent-child relationship that satisfies the following properties:

- \checkmark If T is nonempty, it has a special node, called the root of T, that has no parent.
- \checkmark Each node **v** of **T** (different from the root) has a unique parent node w; every node with parent w is a child of w.

Edge and path

- An edge of tree \overline{T} is a pair of nodes (u,v) such that u is the parent of v, or vice versa
- A path of T is a sequence of nodes such that any two consecutive nodes in the sequence form an edge
- The depth of a node v is the length of the path connecting root node and v

Internal and leaf nodes

•A node is called a leaf node if it has no child

• If a node has at least one child, it is an internal node

Ordered tree

• A tree is ordered if there is a meaningful linear order among the children of each node; such an order is usually visualized by arranging siblings from left to right, according to their order

Example: File system

A file is a leaf node, and a folder/directory is an internal node

Binary tree

- A binary tree is an ordered tree with the following properties:
	- 1. Every node has at most two children
	- 2. Each child node is labelled as being either a left child or a right child
	- 3. A left child precedes a right child in the order of children of a node
- The subtree rooted at a left or right child of an internal node v is called a left subtree or right subtree, respectively, of v
- A binary tree is proper if each node has either zero or two children. Some people also refer to such trees as being full binary trees

A wild binary tree

Example: Represent an expression with binary tree

• An arithmetic expression can be represented by a binary tree whose leaves are associated with variables or constants, and whose internal nodes are associated with one of the operators +, −, ×, and /

Binary tree class

• We define a tree class based on a class called Node; an element is stored as a node

• Each node contains three references, one pointing to the parent node, two pointing to the child nodes

Implementing the binary tree

class Node:

```
def __init_(self, element, parent = None, \
    left = None, right = None:
    self. element = elementself. parent = parent
    self. left = leftself.right = right
```
class LBTree:

```
def init (self):
   self.root = Noneself. size = 0def len (self):return self. size
```
 def find root $(self)$: return self root

 def parent (self, p): return p. parent

 def left $(self, p)$: return p. left

 $def right(self, p)$: return p. right

 $def num_cchild(self, p)$: $count = 0$ if p. left is not None: $count+=1$ if p.right is not None: $count+=1$ return count

Implementing the binary tree

```
def addroot(self, e):
    if self. root is not None:
        print ('Root already exists.')
        return None
    self. size = 1self. root = Node(e)return self.root
```

```
def addlet(self, p, e):
    if p. left is not None:
        print ('Left child already exists.')
        return None
    self.size += 1p. left = Node(e, p)return p. left
```

```
def add\_right(self, p, e):
    if p.right is not None:
        print ('Right child already exists.')
        return None
    self.size += 1p. right = Node(e, p)return p.right
```

```
def replace (self, p, e) :
    old = p. element
    p. element = e
    return old
```

```
def delete(self, p):
    if p. parent. left is p:
        p. parent. left = Noneif p. parent. right is p:
        p. parent. right = None
    return p. element
```
Example: Use the binary tree class

 \gg main()

10

20

30

50


```
print(t, root, element)print (t. root. left. element)
print (t. root. right. element)
print (t. root. left. right. element)
```
Traverse a linked list

p = head while(p!=None): print(p.element) p = p.pointer

Traverse a binary tree

Different traversing strategies

• **Pre-order (depth-first)**

- Visit the node
- Traverse the left subtree in pre-order
- Traverse the right subtree in pre-order

• **In-order**

- Traverse the left subtree in in-order
- Visit the node
- Traverse the right subtree in in-order

• **Post-order**

- Traverse the left subtree in post-order
- Traverse the right subtree in post-order
- Visit the node

Pre-order traversal

= A B D C **E G** F H I

Example: Represent an expression

Example: Represent an expression

Example: Represent an expression

 $(A+B)/(C^*D)-E^*(F-G)+H$

Question: Given an expression, what is the relationship between its postfix and post-order?

Implementation (Pseudocode)

INORDER-TREE-WALK(x)

1. **if** x is not None:

E.g.:

- 2. **then** INORDER-TREE-WALK (left [x])
- 3. print key [x]
- 4. INORDER-TREE-WALK (right [x])

Output: 2 3 5 5 7 9

- **Running time:**
	- \circ $\Theta(n)$, where n is the size of the tree rooted at x

Exercise

• Given a binary tree, show its pre-order, in-order, and postorder

- Pre-order=[3, 9, 20, 15, 7]
- In-order=[9, 3, 15, 20, 7]
- Post-order=[9, 15, 7, 20, 3]

Example: Reconstruct a binary tree

Reconstruct a binary tree

Looking at the left subtree of B:

- "preorder : CDE" => C is the root
- Then, "inorder: D**C**E"

Looking at the right subtree of A:

- "preorder : XZUTY" \Rightarrow X is the root
- Then, "inorder: UZT**X**Y"

 (Y)

Reconstruct a binary tree

Looking at the left subtree of X:

- "pre-order : ZUT" => Z is the root
- Then, "in-order: U**Z**T"

Reconstruct a binary tree

Example: Pre-order sequence: ABC

Post-order sequence: CBA

We can construct 2 different binary trees:

Exercise

- Construct a binary tree such that
	- Pre-order=[3,9,20,15,7]
	- In-order=[9,3,15,20,7]

Exercise

- Construct a binary tree such that
	- Pre-order=[A, B, C, D, E, X, Z, U, T, Y]
	- Post-order= $[D, E, C, B, U, T, Z, Y, X, A]$

Practice

• **Find the maximal element of a binary tree**

Example: Find the max number

class Node:

```
def __init__(self, key=None, left=None, right=None):
    self(key = keyself.left = left
    self.right = right
def findMax(root):
   if (root == None):
```
return float('-inf')

res = root.data

lres = findMax(root.left)

rres = findMax(root.right)

return max(res, lres, rres)

Practice

• **Check if two binary trees are identical or not**

Example: Check Identity

def isIdentical(x, y):

if x is None and y is None:

return True

return (x is not None and y is not None) and **(x.key == y.key) and **

isIdentical(x.left, y.left) and isIdentical(x.right, y.right)

Practice

• Swap a tree (**Convert a binary tree to its mirror**)

Example: Convert a binary tree to its mirror

def swap(root):

if root is None:

return

```
temp = root.left
root.left = root.right
root.right = temp
```
def convertToMirror(root):

if root is None:

return

convertToMirror(root.left) convertToMirror(root.right) swap(root)

Practice

• **Check if a binary tree is symmetric or not**

Example: Check if a binary tree is symmetric

def isSymmetric(X, Y):

if X is None and Y is None:

return True

return (X is not None and Y is not None) and \setminus isSymmetric(X.left, Y.right) and \setminus isSymmetric(X.right, Y.left)

Summary: Tree Traversal

• Level-order **(Breadth First)**

Depth first search over a tree

- Depth-first search (DFS) is a fundamental algorithm for traversing or searching tree data structures
- One starts at the root and explores as deep as possible along each branch before backtracking

Example: search a path in a maze

The code of DFS over a binary tree

```
def DFSearch(t):
    if t:
        print(t. element)if (t. left is None) and (t. right is None):
        return
    else:
        if t. left is not None:
            DFSearch(t, left)if t. right is not None:
            DFSearch(t, right)
```
The code of DFS over a binary tree

Question: Is this pre-order, in-order, or post-order DFS?

```
def DFSearch(t):
    if t:
        print(t. element)if (t. left is None) and (t. right is None):
        return
    else:
        if t. left is not None:
            DFSearch(t, left)if t. right is not None:
            DFSearch(t, right)
```
Breadth first search over a tree

- Breadth-first search (BFS) is another very important algorithm for traversing or searching tree data structures
- Starts at the root and we visit all the positions at depth d before we visit the positions at depth $d + 1$

Breadth first search (BFS)

• **Intuition of BFS**

- Given a source root s , always visit nodes that are closer to the source *s* first before visiting the others
- The result may not be unique, if we do not define an order among out-going edges from a node
	- Possible results
		- v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7
		- v_1 , v_3 , v_2 , v_7 , v_6 , v_5 , v_4
	- we could impose an order for children (from left to right)
		- $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ (now become unique)

Example: finding the best move in a game

The code of BFS over a binary tree

 def BFSearch (t) :

 $q = ListQueue()$ q. enqueue (t)

```
while q. is empty () is False:
    cNode = q. dequeue()if cNode. left is not None:
        q. enqueue (cNode. left)
    if cNode.right is not None:
        q. enqueue (cNode. right)
    print (cNode. element)
```
- At the beginning, color all nodes to be white
- Create a queue Q , enqueue the root
- Repeat the following until queue Q is empty **BFS procedure**

• At the beginning, color all nodes to be white

• Create a queue Q , enqueue the root

• Repeat the following until queue Q is empty

• Dequeue from Q , let the node be v

• Enqueue children of v
	- Dequeue from Q , let the node be ν
	- Enqueue children of ν into Q
	- Visit ν
	- **Example**:
		- Assume the source is v_1

$$
Q = (v_1)
$$

After dequeuing v_1

$$
Q = (v_2, v_3)
$$

Practice

• Walk through BST for this given tree

Think about a tree "with a circle"

DFS and BFS work for general graphs

Tree Graph

Binary search tree (optional)

- BST is a tree such that for each node T,
	- the key values in its left subtree are *smaller* than the key value of T
	- the key values in its right subtree are *larger than* the key value of T

BST (Optional)

- Support many dynamic set operations
	- searchKey, findMin, findMax, successor, insert,
- Running time of basic operations on BST
	- On average: Θ (logn)
		- The expected height of the tree is log n
	- In the worst case: $\Theta(n)$
		- The tree is a linear chain of n nodes

Example: Searching for a Key

- Given a pointer to the root of a tree and a key k:
	- Return a pointer to a node with key k if one exists, otherwise return None
- Example

- Search for key 13:
	- 15 → 6 → 7 → 13

Example: Searching for a Key

find(x, k):

- 1. **if** x is None or k is key [x]
- 2. **then return** x
- 3. **if** k < key [x]
- 4. **then return** find(left [x], k)
- 5. **else return** find(right [x], k)

Running Time: O (h), h is the height of the tree

Example: Finding the Minimum

- Goal: find the minimum value in a BST
	- Following left child pointers from the root, until a None is encountered

findMin(x)

- 1. **while** left [x] is not None
- 2. **do** $x \leftarrow$ left $[x]$
- 3. **return** x

 $Minimum = 2$

Running time: O(h) h is the height of tree

Successor

Def: successor $(x) = y$, such that key [y] is the smallest key *>* key [x] \triangleright E.g.: successor (15) = successor (13) = 15 successor (9) = 13 17

- Case 1: right (x) is non-empty
	- successor (x) = the minimum in right (x)
- ▶ Case 2: right (x) is empty
	- go up the tree until the current node is a left child: successor (x) is the parent of the current node
	- if you cannot go further (and you reached the root): x is the largest element

Example: Finding the Successor

successor*(x)*

- 1. **if** right [x] is not None
- 2. **then return** findMin(right [x])
- 3. $y \leftarrow p[x]$
- $4.$ **while** y is not None and $x =$ right [y]
- 5. **do** $x \leftarrow y$
- 6. $y \leftarrow p[y]$
- $7.$ **return** y $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ \qquad \qquad

Running time: O (h) h is the height of the tree

Example: Insertion

- ▶ Goal: Insert value v into a binary search tree
- \triangleright Find the position and insert as a leaf:
	- If key $[x] < v$ move to the right child of x, else move to the left child of x
	- When x is None, we found the correct position
	- If v < key [y] insert the new node as y's left child else insert it as y's right child
	- Begin at the root, go down the tree and maintain:
		- Pointer x : traces the downward path (current node)
		- Pointer y : parent of x ("trailing pointer")

Exercise 1

• Build a binary search tree for the following sequence 15, 6, 18, 3, 7, 17, 20, 2, 4