&P LK CGEID

The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 11
Tree

Tongxin Li
School of Data Science

Tree

* A tree is a data structure that stores elements hierarchically

* With the exception of the top element, each element in a
tree has a parent element and zero or more children
elements

* We typically call the top element the root of the tree, but it
is drawn as the highest element

Example: The organization of a company

(Elen:tmnics R’ Us)

n:hasm@ (Manufan:tunng) ,/’ \\‘:»1 -
aaaaa)
/, ! \\
\ \
(Dnmestlc) (Internatmnal) Tuner @ @ @ Em;f @ :t_v

(Canada) (S. AmenczD (ﬂverseas)

(AfriczD (Eurcnpe) (Asia) (AustralizD

Semantic concept

Organlsm Root

Ar& Animal
Mammal Fish

Formal definition of a tree

* Formally, we define a tree T as a set of nodes storing
elements such that the nodes have a parent-child
relationship that satisfies the following properties:

v If T is nonempty, it has a special node, called the root of T,
that has no parent.

v' Each node v of T (different from the root) has a unique
parent node w; every node with parent w is a child of w.

Edge and path

* An edge of tree T is a pair of nodes (u,v) such that u is
the parent of v, or vice versa

* A path of T is a sequence of nodes such that any two
consecutive nodes in the sequence form an edge

* The depth of a node v is the length of the path
connecting root node and v

Internal and leaf nodes

* A node is called a leaf node if it has no child

|f a node has at least one child, it is an internal
node

Ordered tree

* Atreeis ordered if there is a meaningful linear order among the
children of each node; such an order is usually visualized by arranging
siblings from left to right, according to their order

@90

Example: File system

'

Local Disk (C:)
_SmsTsWinPE
boot
5Ms
SOUFCES
Windows
B4Bit
EFI
Boot
Microsoft
Intel
Perflogs
Program Files
Common Files
Dict
Google
Internet Explorer
en-Us
images
SIGMUP
zh-CM

{root diractory)

|Im:a||| bin || u::l::n|

|mk||

- tirectory
fl

gic

| hun || other |

[mystutt | | private | | nisstutt | | pubtick |

A file is a leaf node, and a folder/directory is an internal node

Binary tree

* A binary tree is an ordered tree with the following properties:
1. Every node has at most two children

2. Each child node is labelled as being either a left child or a right child
3. A left child precedes a right child in the order of children of a node

The subtree rooted at a left or right child of an internal node v is called a
left subtree or right subtree, respectively, of v

A binary tree is proper if each node has either zero or two children. Some
people also refer to such trees as being full binary trees

A wild binary tree

Example: Represent an expression with binary tree

* An arithmetic expression can be represented by a binary tree whose
leaves are associated with variables or constants, and whose internal
nodes are associated with one of the operators +, -, x, and /

Binary tree class

* We define a tree class based on a class called Node; an
element is stored as a node

* Each node contains three references, one pointing to the
parent node, two pointing to the child nodes

Implementing the binary tree

Node: find root (self) :
o self. root
__init_ (self, element, parent = , \
left = , right =) : parent (self, p) :

self. element = element
self. parent = parent
self. left = left left (self, p)

self.right = right p. left

p. parent

LBTree: right (self, p):

__init__ (self): p. right

self. root =
self. size = 0

num child(self, p) :

count = 0

__len (self): p&éiii+:1
self. s1ze !
p. right
count+=1

count

ty

y

Implementing the binary tree

add root (self, e) : def add right (self, pje)

1T self.root is not None: 1f p.right is not M 1
prlnt(Root mlrﬁmd c11¢“5.1) print (RlEﬂ cqlld already exists.’)

self. siééHZUi“L Self_;iéé+ 1 -

self. root = Node(e) p.right = }Dde(ejp)

return self. root return p.right

add left (self, pje): def replace(self, p, e):

if p.left is not None: old = p. element
prlnt(Left cqlld already exists.) p. element = e
return None return old
self. size+=1 o
p. left = Node(e, p) det delete(self, p):
return p. left 1T p.parent. left 1s p:

p. parent. left = None
1T p.parent.right 1= p:

p. parent. right = None
return p. element

Example: Use the binary tree class

def main() : >>> main ()

t = LBTree() 10

t.add root (10) 20

t.add left (t. root, 20) 30

t. add right (t. root, 30) 50

t.add left(t. root. left, 40)

t.add right (t. root. left, 50)

t.add left(t. root. right, 60)

t. add right (t. root. left. left, 70)

print (t. root. element)

print (t. root. left. element)

print (t. root. right. element)
print (t. root. left. right. element)

p = head

while(p!=None):
print(p.element)
p = p.pointer

v

Traverse a linked list

Traverse a binary tree 9

Different traversing strategies

* Pre-order (depth-first)
* Visit the node
* Traverse the left subtree in pre-order
* Traverse the right subtree in pre-order

* In-order
e Traverse the left subtree in in-order
 Visit the node
* Traverse the right subtree in in-order

* Post-order
* Traverse the left subtree in post-order
* Traverse the right subtree in post-order
* Visit the node

Pre-order traversal

preorder traversal

Visit the root

Traverse the
left subtree

Traverse the
right subtree

ABDCEGFHI

Example:

Result:

= A (A’s left) (A’s right)
= A B (B’s left) (B’s right = NULL) (A’s right)

= A B (B’s left) (A’s right)

= AB D (D’s left=NULL) (D’s right = NULL) (A’s right)

= AB D (A’s right)

= AB D C(C’s left) (C’s right)

= AB D CE (E’s left=NULL) (E’s right) (C’s right)

= AB D CE (E’s right) (C’s right)

= ABDCEG(G’s left=NULL) (G’s right = NULL) (C’s right)
=ABDCEG (C’s right)

=ABDCEGF (Fs left) (F's right)

=ABDCEGFH (H’s left=NULL) (H’s right =NULL) (F’s right)
=ABDCEGFHI(I'sleft=NULL) (I's right =NULL)
=ABDCEGFHI

19

Example: Represent an expression

\

(A+B)/(C*D)-E*(F-6)+H

@ﬁ.? ' \f@\

Example: Represent an expression

(A+B)/(C*D)-E*(F-6)+H

Preorder:
+-/+AB*CD*E-FGH

Inorder :
A+B/C*D-E*F-G+H

Postorder:
AB+CD*/EFG-*-H+

/@\

@ﬁ{? '

)
\

e

21

Example: Represent an expression

(A+B)/(C*D)-E*(F-6)+H

Preorder:
+-/+AB*CD*E-FGH

Inorder :
A+B/C*D-E*F-G+H

Postorder:
AB+CD*/EFG-*-H+

Postlix Expression

4572 +-x
34+2x7/)
57+62-x
42351 -4+x4+x
42+351-x+
5379++

Infix Equivalent
4x(5-(7+2)
((3+4)x2)/7
(5+7)x(6-2)
7x(4+(2x(3+(5-1)))
(4+2)+(3x(5-1))
(3+(7+9))..57

Resull

-16

2

48

not enough operands
18

too many operands

Question: Given an expression, what is the relationship between its postfix and post-order?

22

Implementation (Pseudocode)

INORDER-TREE-WALK(x)
if x is not None:
then INORDER-TREE-WALK (left [x])
print key [x]
INORDER-TREE-WALK (right [x])

Output: 235579

Running time:
®(n), where n is the size of the tree rooted at x

Exercise

* Given a binary tree, show its pre-order, in-order, and post-

order
(3)
OO
OO

* Pre-order=[3, 9, 20, 15, 7]
* |[n-order=[9, 3, 15, 20, 7]
e Post-order=[9, 15, 7, 20, 3]

Example: Reconstruct a binary tree

Binary Tree from
its preorder and
In-order sequences

Reconstruction of Example:

Given the following sequences, find the
corresponding binary tree:

in-order : DCEBAUZTXY
pre-order : ABCDEXZUTY

Looking at the whole tree:

e “pre-order : ABCDEXZUTY”
=> Ais the root

* Then, “in-order : DCEBAUZTXY”

A

T

DCEB (inorder) UZTXY (inorder)
BCDE (preorder) XZUTy (preorder)

Looking at the left subtree of A:

e “pre-order : BCDE”
=> B is the root

e Then, “in-order: DCEB”
A
B UZTXY (inorder)
XZUTY (preorder)

DCE (inorder)
CDE (preorder)

25

Reconstruct a binary tree

Looking at the left subtree of B: Looking at the right subtree of A:
e “preorder: CDE” e “preorder : XZUTY”

=> Cis the root => X is the root
e Then, “inorder: DCE” e Then, “inorder: UZTXY”

A A
s B/ \ s B/ \
/ UZTXY (inorder) e X
C XZUTY (preorder) C / \
/N /N
D E D E UZT (inorder) Y

ZUT (preorder)

Reconstruct a binary tree

Looking at the left subtree of X:

e “pre-order :ZUT”
=>Zis the root

e Then, “in-order: UZT”

_ B/\X
/ Z/\
/N / N\

Reconstruct a binary tree

Warning: A binary tree may not be uniquely defined by its pre-order and post-order sequences.

Example: Pre-order sequence: ABC
Post-order sequence: CBA

We can construct 2 different binary trees:

Exercise

e Construct a binary tree such that
* Pre-order=[3,9,20,15,7]
* |n-order=[9,3,15,20,7]

29

Exercise

e Construct a binary tree such that
* Pre-order=[A,B,C,D,E,X,Z,U,T,Y]
e Post-order=[D,E,C,B,U,T,Z,Y, X, A]

A

B/\X
/ 7N

C Z Y

/ N\ / N\
E Ut T

D

Practice

* Find the maximal element of a binary tree

Example: Find the max number

class Node:
def __init__ (self, key=None, left=None, right=None):
self.key = key
self.left = left
self.right = right

def findMax(root):
if (root == None):
return float('-inf’)
res = root.data
Ires = findMax(root.left)
rres = findMax(root.right)

return max(res, Ires, rres)

Practice

* Check if two binary trees are identical or not

Input:
1 1 Input:

4 56 7 4

Output: True Output: False Output: False

Example: Check ldentity

def isldentical(x, y):
if x is None and y is None:
return True
return (x is not None and y is not None) and (x.key == y.key) and \

isldentical(x.left, y.left) and isldentical(x.right, y.right)

e Swap a tree (Convert a binary tree to its mirror)
(3
Ve
jf
8)

Practice

Example: Convert a binary tree to its mirror

def swap(root):
if root is None:
return
temp = root.left
root.left = root.right

root.right = temp

def convertToMirror(root):
if root is None:
return
convertToMirror(root.left)
convertToMirror(root.right)

swap(root)

Practice

* Check if a binary tree is symmetric or not

NS
—_ ...\\-.
N
-
N
.\\..
=
4 ._...|
M
.I.k.z//
P
e |
M
f;x
S .I.j,.
Y oo |
N
N
o~)
N
L
TN
™
AN T
\\\ ~ N
I Y w |
-~ A\ N
I TE—
fr.\/ P
¥ w |
~ AN/
NN
D
N AN
.,
P
= |
N
..\.l.lllfx.x..
x ™ f
N N
SN
| Y ow |
Y A
.._. - ._...- ————
AL TN
E
N N/

Example: Check if a binary tree is symmetric

def isSymmetric(X, Y):
if Xis None and Y is None:
return True
return (X is not None and Y is not None) and \
isSymmetric(X.left, Y.right) and \
isSymmetric(X.right, Y.left)

Summary: Tree Traversal

* Pre-order

* In-order (Depth First)

e Post-order

* Level-order (Breadth First)

Depth first search over a tree

e Depth-first search (DFS) is a
fundamental algorithm for

traversing or searching tree { ’
data structures g'ﬂ o
)/‘ \

* One starts at the root and

explores as deep as possible i
along each branch before a .

backtracking 6

Example: search a path in a maze

12345678

ONOOTUBL A WN R

The code of DFS over a binary tree

DFSearch(t) :
T.

print (t. element)
(t. left) (t. right) :

t. left :
DFSearch(t. left)
t. right :
DFSearch(t. right)

The code of DFS over a binary tree

Question: Is this pre-order, in-order, or post-order DFS?

DFSearch(t) :
T.

print (t. element)
(t. left) (t. right) :

t. left :
DFSearch(t. left)
t. right :
DFSearch(t. right)

Breadth first search over a tree

* Breadth-first search (BFS) is
another very important X
algorithm for traversing or ’¢ \

searching tree data structures //-T \

e Starts at the root and we visit /
all the positions at depth d

before we visit the positions at
depth d +1

Breadth first search (BFS)

e Intuition of BFS

* Given a source root s, always visit nodes that are closer to the
source s first before visiting the others

* The result may not be unique, if we do not define an order
among out-going edges from a node
* Possible results

® V1,VUp,V3,V4,Us, Vg, U7
* Vq,V3,VUy,V7,Vg, Usg, Uy

e we could impose an order for children (from left to right)
* Vq,V5, V3, V4, Vs, Vg, U7 (NnOW become unique)

Example: finding the best move in a game

i Lo X0 X 0 X X X O X X X

The code of BFS over a binary tree

BFSearch(t) :

q = ListQueue()
q. enqueue (t)

q.is emptv ()
cNode = q. dequeue()
cNode. left ;
q. enqueue (cNode. 1left)
cNode. right ;
q. enqueue (cNode. right)
print (cNode. element)

BFS procedure

e At the beginning, color all nodes to be white
* Create a queue (, enqueue the root

* Repeat the following until queue Q is empty
* Dequeue from O, let the node be v
* Enqueue children of v into Q
* Visit v
 Example:
 Assume the source is (%1

¢ :@(vﬂ @ @
After dequeuing v
0 = (v v3) 1) @) @ @

Practice
* Walk through BST for this given tree

Think about a tree “with a circle”

DFS and BFS work for general graphs

Binary search tree (optional)

e BST is a tree such that for each node T,

* the key values in its left subtree are
smaller than the key value of T

* the key values in its right subtree are

parent |
larger than the key value of T _» | element | o

LefT child Right chlld

/\ /\

BST (Optional)

e Support many dynamic set operations
* searchKey, findMin, findMax, successor, insert,

* Running time of basic operations on BST
* On average: O(logn)
* The expected height of the tree is log n

* In the worst case: ®(n)

e The treeis alinear chain of n nodes

Example: Searching for a Key

* Given a pointer to the root of a tree and a key k:

* Return a pointer to a node with key k if one exists, otherwise
return None

* Example
(15)
Search for key 13:
(6) (18) 15—>6-—>7—13
3) Q@ @
@ @ @3

Example: Searching for a Key

find(x, k):
if x is None or k is key [x]

then return x

if k < key [x]
then return find(left [x], k)
else return find(right [x], k)

Running Time: O (h),
h is the height of the tree

Example: Finding the Minimum

Goal: find the minimum value in a BST
Following left child pointers from the root, until a None

is encountered
findMin(x) @
while left [x] is not None o @
do x & left [x]
return X 9 0 @ @
2) @ @
(9)

Minimum = 2

Running time: O(h)
h is the height of tree

Successor

Def: successor (x) =y, such that key [y] is the
smallest key > key [x]
E.g.:successor (15)= 17
successor (13)= 15
successor (9)= 13

Case 1:right (x) is non-empty
successor (x) = the minimum in right (x)
Case 2:right (x) is empty
go up the tree until the current node is a left child: successor (x) is
the parent of the current node

if you cannot go further (and you reached the root): x is the largest
element

Example: Finding the Successor

successor(x)
if right [x] is not None
then return findMin(right [x])
y < plx]
while y is not None and x = right [y]
dox <y

y <& plyl
returny

Running time: O (h)
his the height of the tree

Example: Insertion

Goal: Insert value v into a binary search tree

Find the position and insert as a leaf:
If key [x] < v move to the right child of x,
else move to the left child of x
When x is None, we found the correct position
If v < key [y] insert the new node as y’s left child

else insert it as y’s right child
Begin at the root, go down the tree and maintain:

Pointer x : traces the downward path (current node)
Pointer y : parent of x (“trailing pointer”)

Example

Insert 13:

65

Exercise 1

* Build a binary search tree for the following sequence
15, 6, 18, 3,7, 17, 20, 2, 4

	Slide 1: Introduction to Computer Science: Programming Methodology
	Slide 2: Tree
	Slide 3: Example: The organization of a company
	Slide 4: Semantic concept
	Slide 5: Formal definition of a tree
	Slide 6: Edge and path
	Slide 7: Internal and leaf nodes
	Slide 8: Ordered tree
	Slide 9: Example: File system
	Slide 10: Binary tree
	Slide 11: A wild binary tree
	Slide 12: Example: Represent an expression with binary tree
	Slide 13: Binary tree class
	Slide 14: Implementing the binary tree
	Slide 15: Implementing the binary tree
	Slide 16: Example: Use the binary tree class
	Slide 17: Traverse a linked list
	Slide 18
	Slide 19
	Slide 20: Example: Represent an expression
	Slide 21: Example: Represent an expression
	Slide 22: Example: Represent an expression
	Slide 23: Implementation (Pseudocode)
	Slide 24: Exercise
	Slide 25: Example: Reconstruct a binary tree
	Slide 26: Reconstruct a binary tree
	Slide 27: Reconstruct a binary tree
	Slide 28: Reconstruct a binary tree
	Slide 29: Exercise
	Slide 30: Exercise
	Slide 31: Practice
	Slide 32: Example: Find the max number
	Slide 33: Practice
	Slide 34
	Slide 35: Practice
	Slide 36: Example: Convert a binary tree to its mirror
	Slide 37: Practice
	Slide 38: Example: Check if a binary tree is symmetric
	Slide 39
	Slide 40: Depth first search over a tree
	Slide 41: Example: search a path in a maze
	Slide 42: The code of DFS over a binary tree
	Slide 43: The code of DFS over a binary tree
	Slide 50: Breadth first search over a tree
	Slide 51
	Slide 52: Example: finding the best move in a game
	Slide 53: The code of BFS over a binary tree
	Slide 54
	Slide 55: Practice
	Slide 56: Think about a tree “with a circle”
	Slide 57
	Slide 58: BST (Optional)
	Slide 59: Example: Searching for a Key
	Slide 60: Example: Searching for a Key
	Slide 61: Example: Finding the Minimum
	Slide 62: Successor
	Slide 63: Example: Finding the Successor
	Slide 64: Example: Insertion
	Slide 65: Example
	Slide 66: Exercise 1

