
Introduction to Computer Science:
Programming Methodology

Lecture 1 Introduction

Tongxin	Li
School	of	Data	Science

• Background
• Education: CUHK, Caltech
• Working Experience:

1. Amazon Web Services (2020, 2021), Applied Scientist Intern
2. Assistant Professor (2022-present): SDS, CUHK-SZ

• Contact
• Email: litongxin@cuhk.edu.cn

• Research
• General areas: Machine learning, Power Systems

• Topics: control & optimization, online algorithms, reinforcement learning

Who I am (Tongxin Li)

2

mailto:litongxin@cuhk.edu.cn

About this course

• This course is a required course for all SDS students.

• Need to sync between other 5 sessions (meaning: I’d not
customize/optimize many course materials that I really wish to)

Learning Objectives

• This course introduces the basics of computer programming
using Python

• Students will learn the basic elements of modern computer
systems, key programming concepts, problem solving and
basic algorithm design

A Message for Freshmen:
• University courses are very different from what you might have been

familiar with in your high schools.
• Languages
• Assignments
• Exams

• In your future university life, there are no more 班主任 (head teachers)
• No one is watching you to finish the assignments
• It is the right time to start being mature/independent
• Make best use of tutorials (starting next week)
• Check your e-mails often (say, once per day)
• Assignments and important course announcements will be sent out via emails

Key Topics
• Introduction to modern computers
• Preliminary knowledge for computer programming
• Basic introduction to Python language
• Data types and operators in Python language
• Input/output
• Flow control and loop
• Function
• List
• Basic data structure
• Introduction to algorithm design
• Introduction to object oriented programming

Assessment

Assignments × 4 10% × 4

Mid-term quiz 20%

Final exam 40%

Course Materials

•All lecture notes and sample code used in classes will
be provided to students via Blackboard (bb.cuhk.edu
cn). They can also be found in the course web.

•Recommended readings
Ø Online resources: https://www.python.org/doc/
Ø Learning Python, 5th Edition, by Mark Lutz, Publisher: O’Reilly

media

Course Components

Activity Hours/week

Lecture 3 * 14

Tutorial 1 * 14

Indicative Teaching Plans
Week Content/ topic/ activity

1 Introduction to modern computers;
Preliminary knowledge for computer programming;

2
Basic introduction to Python language;
Data types and operators in Python language;
Input/output;

3 Flow control and loop;
4 Function;
5 List;
6 Introduction to object oriented programming, part I
7 Review for mid-term quiz;
8 Introduction to object oriented programming, part II
9 Data Structure, part I;

10 Data Structure, part II;
11 Introduction to algorithm design, part I;
12 Introduction to algorithm design, part II;
13 Introduction to algorithm design, part III;
14 Review for final exam;

Personal Web: www.tongxin.me

Course Web: www.tongxin.me/CSC1001/

Why learn programming?

• Computer is built to help people solve
problems

• Computer does not understand what we
say

• We need to communicate with computers
using their languages (computer
programming language)

• Assembly, C, C++, Java and Python

User Interface

• Programmers solve problems like data, information, networks on
behalf of users

Programmer

Programmer

• Professional programmer writes computer
programs and develops software

• A junior programmer gets a salary of 10-30k
RMB in an INTERNET company like Tencent

• A programmer can earn up to 500k – 1m
USD in Google!!

• Software and INTERNET are huge industries.

Why be a programmer?

• Even if you are NOT in the IT industry, programming is
pervasive in your life,
Ø Electrical/electronic engineer – control program
Ø Economist – mathematical modeling
Ø Salesman – analyzing sales data
Ø …

What is Code? Software? Program?

•A sequence of instructions
•Computers take the instructions and execute them
• It is a little piece of our intelligence in the computer
• Intelligence which is re-usable

Computers are good at following instructions

• Humans can easily make mistakes when following a set of
instructions

• On the contrary, computers (usually) won’t make mistakes,
regardless of they are given 10 or 10 billion instructions !!

Computers

Are they computers ？

calculator router robot

smartwatch Smart TV Smart glasses

Computer Hardware

Program

Von Neumann Architecture
• The modern computer

architecture is proposed by John
Von Neumann

The theoretical foundation of
computer science
• The theoretical foundation of

computer science are built by Alan
Turing

• Father of theoretical computer science
and artificial intelligence

• Computability theory and Turing test

A movie about Turing

Also another similar movie about John Nash： A beautiful mind (美丽心灵)

Key components in a computer

• Central processing unit (CPU): execute your program. Similar to human
brain, very fast but not that smart

• Input device: take inputs from users or other devices

• Output device: output information to users or other devices

• Main memory: store data, fast and temporary storage

• Secondary memory: slower but large size, permanent storage

Central Processing Unit

• A processor contains two units, a control unit (CU) and an
arithmetic/logic unit (ALU)

• CU is used to fetch commands from the memory

• ALU contains the electric circuits which can execute
commands

Central Processing Unit

• Processor manufacturer: Intel, AMD, ARM, etc

Memory/Storage

• High speed cache

• ROM

• RAM

• Flash

• Hard disk

Memory/Storage

Memory/Storage

Input/output devices

• Input devices: mouse,
keyboard, panel, touch screen,
audio input, mind reading, etc

• Output devices: screen, audio
output, etc

Human-Machine Interaction

Any other input devices?

Any other input devices?

Any other onput devices?

Any other output devices?

VR Holographic projection

How the hard disk works

http://v.youku.com/v_show/id_XNjA4NzMxNDk2.html?from=s
1.8-1-1.2

What can a computer actually understand?

• The computers used nowadays can
understand only binary number (i.e. 0
and 1)

• Computers use voltage levels to
represent 0 and 1

• NRZL and NRZI coding

• The instructions expressed in binary
code is called machine language

Programing Language

https://www.quora.com/I-am-an-11th-grader-I-find-it-quite-difficult-to-write-C++-code-especially-when-the-only-way-to-practice-is-to-solve-maths-problems-Should-I-
keep-learning-C++-or-drop-it-for-C

Review of last lecture

• Von Neumann Architecture
• CPU and memory
• Input devices and output devices

Low level language – Assembly Language

• An assembly language is a low-level
programming language, in which there is a
very strong (generally one-to-one)
correspondence between the language and
machine code instructions.

• Each assembly language is specific to a
particular computer architecture

• Assembly language is converted into
executable machine code by a utility
program referred to as an assembler

C Language (1969 - 1973)
• C was developed by Dennis Ritchie between 1969 and 1973 at AT&T Bell Labs

• One of the early high-level programming language

• Somewhere between assembly and other high level languages

• Provide powerful functionalities for low level memory manipulations

• Have the highest efficiency within high level languages

• Very widely used in low level applications, such as operating systems, embedded
programming, super computers, etc

C++ Language (1979)

• C++ was developed by Bjarne Stroustrup at Bell Labs since 1979

• Inherent major features of C

• An object oriented programming language, supporting code reuse

• High efficiency and powerful in low level memory manipulation

• Still could be platform dependent

Java Language (1995)

• Java was developed by James Gosling at Sun Microsystems (which has
since been acquired by Oracle Corporation) and released in 1995

• A new generation of general-purpose object oriented programming
language

• Platform independent, “write once, run anywhere” (WORA)

• Java is one of the most popular programming languages currently in
use

Popular Java Software?

Popular Java Software?

Most games use C++

Python (1991)

• Developed by Guido van Rossum in 1989, and formally released in 1991

• An open source, object oriented programming language

• Powerful libraries

• Powerful interfaces to integrate other programming languages (C/C++,
Java, and many other languages)

• In AI research, people mainly use Python.

Popular Python Software?

Popular Python Software?

Do they use Python 100%?

Popular Python Software?

Python (1991)
• Python is evolving …

• The best way to keep track of the
updates is to learn by really using
Python (not by taking lectures)

From https://www.python.org/doc/versions/

Python (1991)

• Python is evolving …

• The goal of this course:

• Keep track of recent updates

• Provide you a comprehensive
knowledge base of programming via

Python

• Our students have very diverse
backgrounds …

Language efficiency v.s. development efficiency

• High level languages cannot be executed directly

• High level languages must be converted into low level languages first

• Lower level languages have higher language efficiency (they are faster
to run on a computer)

• Higher level languages have higher development efficiency (it is easier
to write programs in these languages)

Operating Systems
• The operating system (OS) is a low level program,

which provides all basic services for managing and
controlling a computer’s activities

• Applications are programs which are built based upon
an OS

• Main functions of an OS:
ü Controlling and monitoring system activities
ü Allocating and assigning system resources
ü Scheduling operations

• Popular OS: Windows, Mac OS, Linux, iOS, Android…

• Break

Slogan for Python

Life is short, use Python

Data Representation and Conversion

• We use positional notation (进位记数法) to represent or encode
numbers in a computer

• Data are stored essentially as binary numbers in a computer

• In practice, we usually represent data using either binary (二进制),
decimal (十进制), octal (八进制) or hexadecimal (十六进制) number
systems

• We may need to convert data between different number systems

The basic idea of positional notation

• Each positional number system contains two elements, a base (基数)
and a set of symbols

• Using the decimal system (十进制系统) as an example, its base is 10,
and the symbols are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• When a number “hits” 9, the next number will not be a different
symbol, but a “1” followed by a “0” (逢十进一)

Decimal number system

• In the decimal number system, the base is 10, the symbols include 0, 1, 2,
3, 4, 5, 6, 7, 8, 9

• Every number can be decomposed into the sum of a series of numbers,
each is represented by a positional value times a weight

• 𝑁 = 𝑎!×10! + 𝑎!"#×10!"# + 𝑎!"$×10!"$ ……+ 𝑎%×10% +
𝑎"#×10"# + 𝑎"$×10"$…

• 𝑎! is the positional value (ranging from 0 to 9), while 10! represents the
weight

Binary number system

• In the binary system, the base is 2, we use only two symbols 0 and 1

• “10” is used when we hit 2 (逢二进一)

• 𝑁 = 𝑎!×2! + 𝑎!"#×2!"# + 𝑎!"$×2!"$ ……+ 𝑎%×2% +
𝑎"#×2"# + 𝑎"$×2"$…

• 𝑎! is the positional value (ranging from 0 to 1), while 2! represents
the weight

Why use binary number?

• Easy to implement physically

• Simple calculation rules

• Easy to combine arithmetic and logic operations

•Against noise (for analog signal)

Hexadecimal number system

• In the hexadecimal system, the base is 16, we use 16 symbols {0, 1, 2, 3, 4,
5, 6, 7, 8, 9, a, b, c, d, e, f}

• “10” is used when we hit 16 (逢十六进一)

• 𝑁 = 𝑎!×16! + 𝑎!"#×16!"# + 𝑎!"$×16!"$ ……+ 𝑎%×16% +
𝑎"#×16"# + 𝑎"$×16"$…

• 𝑎! is the positional value (ranging from 0 to 15), while 16! represents the
weight

Octal number system

Converting binary number into decimal number

Example

Practice (10110.11)*= (?)+,

Converting binary number into decimal number

Answer

Converting octal number into decimal number

Example

Practice (35.7)-= (?)+,

Converting octal number into decimal number

Answer

Converting hexadecimal number into decimal
number
Example

Practice (𝐴7𝐷. 𝐸)+.= (?)+,

Converting hexadecimal number into decimal
number

Answer

Converting other number system into decimal
system

•Other number system can also be converted into
decimal system in a similar way

•We just need to change the corresponding base

Some tests: converting into decimal system

• (110110)_2 = (?)_10
• (101011.11)_2 = (?)_10
• (120)_8 = (?)_10
• (34.01)_8 = (?)_10
• (BCA)_16 = (?)_10
• (E05.C)_8 = (?)_10

Some tests: converting into decimal system

• (110110)_2 = (118)_10
• (101011.11)_2 = (43.75)_10
• (120)_8 = (80)_10
• (34.01)_8 = (28.015625)_10
• (BCA)_16 = (3018)_10
• (E05.C)_8 = (3589.75)_10

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Converting decimal integer into binary integer

Example: (57)+,= (?)*

Higher position

Lower position

Converting decimal fraction into binary fraction

How to convert fractions to binary?

STEP 1: Take a decimal fraction and start multiplying by two the decimal part.

STEP 2: Every time the result is smaller than 1 , add a 0 to the binary representation. If the result
is greater or equal to 1 , add a 1 to the binary representation and subtract 1 from the
multiplication result.

Converting decimal fraction into binary fraction

Example: (0.875)+,= (?)*

0.875 ×2 = 𝟏. 75 Integer part: 1
0.75 ×2 = 𝟏. 5 Integer part: 1
0.5 ×2 = 𝟏 Integer part: 1

Answer: (0.875)+,= (0.111)*
Practice: (0.6875)+,= (?)*

Lower position

Higher position

Converting decimal fraction into binary fraction

Answer:

0.6875 ×2 = 𝟏. 375 Integer part: 1
0.375 ×2 = 𝟎. 75 Integer part: 0
0.75 ×2 = 𝟏.5 Integer part: 1
0.5 ×2 = 𝟏 Integer part: 1

So, (0.6875)+,= (0.1011)*

Lower position

Higher position

Converting decimal number into binary number

• For a decimal number that has both integer and fractional
parts

• Convert the integer and fractional parts separately

• Example: (215.3125)!" = (?)#

Converting decimal number into binary number

Answer:

215 +, = 11010111 *
0.3125 +, = 0.0101 *

215.3125 +, = 11010111.0101 *

The one-to-one relationship between binary and
octal numbers
There is a “one-to-one” (一一对应) relationship between three digits
binary number and one digit octal number

(0)& = (000)$
(1)& = (001)$
(2)& = (010)$
(3)& = (011)$
(4)& = (100)$
(5)& = (101)$
(6)& = (110)$
(7)& = (111)$

Converting octal number into binary number

• Convert each octal digit into binary number of three digits

• Keep the digit order unchanged

• Example: (0.754)& = (?)$

• Practice: (16.327)& = (?)$

Converting octal number into binary number

Answer:

Converting hexadecimal number into binary
number
• Convert each hexadecimal digit into binary number of four digits

• Keep the digit order unchanged

• Example: (4𝐶. 2𝐸)#' = (?)$

• Practice: (𝐴𝐷. 7𝐹)#' = (?)$

Converting hexadecimal number into binary
number

Answer:

Converting binary number into octal number

• Starting from lower positions, convert every three digits of the integer part
into an octal digit

• When there is not enough higher positions in the integer part, fill with 0

• Starting from higher positions, convert every three digits of the fractional
part into an octal digit

• When there is not enough lower positions in the fractional part, fill with 0

• Keep the digit order unchanged

Converting binary number into octal number

Example:

Practice:

Converting binary number into octal number

Answer:

Converting binary number into hexadecimal
number
• Starting from lower positions, convert every four digits of the integer part into

an octal digit

• When there is not enough higher positions in the integer part, fill with 0

• Starting from higher positions, convert every four digits of the fractional part
into an octal digit

• When there is not enough lower positions in the fractional part, fill with 0

• Keep the digit order unchanged

Converting binary number into hexadecimal
number

Example:

The units of information (data)

• Bit (比特/位): a binary digit which takes either 0 or 1

• Bit is the smallest information unit in computer programming

• Byte (字节): 1 byte = 8 bits, every English character is represented by 1
byte

• KB (千字节)：1 KB = 2^10 B = 1024 B
• MB (兆字节)：1MB = 2^20 B = 1024 KB
• GB (千兆字节)：1GB = 2^30 B = 1024 MB
• TB (兆兆字节)：1TB = 2^40 B = 1024 GB

Memory and addressing
• A computer’s memory consists

of an ordered sequence of
bytes for storing data

• Every location in the memory
has a unique address

• The key difference between
high and low level
programming languages is
whether programmer needs to
deal with memory addressing
directly

Practice

• 135.8125 !" =（10000111.1101）#
• 1314.205 $ =（1 011 001 100.010 000 101）#
•（0101010000.0010110011）# = 520.1314 $
•（0101010000.0010110011）# = 150.2𝐶𝐶 !%

Thanks

