Introduction to Computer Science:
Programming Methodology

Lecture 2 Python Basics

Tongxin Li
School of Data Science

Last week

Computer Systems
Data Representation and Conversion

This week: Python Basics

Question

Is Von Neumann architecture the only one possible?

Two paradigms for intelligence

- 9
The logic-inspired approach H ! ntOn S
The essence of intelligence is reasoning. Sl |d es

This is done by using symbolic rules to manipulate
symbolic expressions.

— Learning can wait. Understanding how knowledge is
represented must come first.

The biologically-inspired approach

The essence of intelligence is learning the strengths of the
connections in a neural network.

— Reasoning can wait. Understanding how learning
works must come first.

Example

A new type of computer

« Computers were designed to faithfully implement
instructions because it was assumed that the only
way to get a general purpose computer to solve a
specific task was to tell it exactly what to do.

« This is no longer true, but the research community
has been slow to realize the implications of deep
learning for how computers are built.

— We will see a completely new type of computer.
— It will not replace digital computers.

Example

Mortal computation

+ |If we abandon immortality and accept that the knowledge is
inextricable from the precise physical details of a specific
piece of hardware, we get two big benefits:

- We can use very low power analog computation.

- We can grow hardware whose precise connectivity and
analog behavior are unknown.

* The learning procedure running in a particular piece of
hardware must learn to make use of the specific properties
of that particular piece of hardware, without knowing what
all those properties are.

— FF is a promising candidate for the learning procedure.

is a promising candidate for what that learning

Session Assistant

Jielong Xujun
222043010@link.cuhk.edu.cn

Schedule an appointment

Parseltongue is the language of
serpents and those who can
converse with them. An individual Hooty Prfor
who can speak Parseltongue is
known as a Parselmouth. It is very
uncommon skill, and may be
hereditary. Nearly all known
Parselmouths are descended from
Salazar Slytherin.

Http://harrypotter.wikia.com/wiki/
Parseltongue

Python is the language of
Python interpreter and those
who can converse with them. An
iIndividual who can speak
Python is known as a Pythonista.
It is very uncommon skill, and
may be hereditary. Nearly all
known Pythonistas use software
Initially developed by Guido van
Rossum

Most popular programming languages

Most in-demand programming languages of 2024
Based on LinkedIn job postings in the US

Python
Java

C++
JavaScript
C

C#

.Net
TypeScript
Android

Perl
Number of Jobs O 50,000 100,000 150,000 200,000 250,000 300,000 350,000

Interpreter v.s. compiler

* Interpreter (#2%2s) is a computer program that directly executes, i.e.
performs, instructions written in a programming or scripting
language, without previously compiling them into a machine language
program

* A compiler (4712 5%) is a computer program (or a set of programs)
that transforms source code written in a programming language (the
source language) into another computer language (the target
language), with the latter often having a binary form known as object
code

Interpreter v.s. compiler

High-Level Source File
kg _//

area = 5 * 5 * 3, 1415 ; ——|Interpreter ——>
(a)
wevel Sour—ci-l-:l—li/ &hine-Code_l?E/
- - -1 ! . 0101100011011100

w

(b)

—- Executor

Early learner: syntax error

* We need to learn the Python language so we can communicate our
instructions to Python. In the beginning we will make lots of mistakes and
speak gibberish like small children

* When you make a mistake, the computer does not think you are “cute”. It
says “syntax error” — given that it “knows” the language and you are just
learning it. It seems like Python is cruel and unfeeling

* You must remember that you are intelligent and can learn, while the
computer is simple and very fast — but cannot learn

* |t is easier for you to learn Python than for the computer to learn human
language

Integrated development environment

Python Editors

Sublime Text Intelli) IDEA
ann ®

PyCharm Visual Studio Code _

Python Versions

Feel free to use any python version in your

assignments/exams as long as it compiles

= Python 3.13.0rc2, documentation released on 6 September 2024. [pre-release candidate]
= Python 3.12.6, documentation released on 6 September 2024.
= Python 3.12.5, documentation released on 6 August 2024.

= Python 3.12.4, documentation released on 6 June 2024.

= Python 3.12.3, documentation released on 9 April 2024.

= Python 3.12.2, documentation released on 6 February 2024.

= Python 3.12.1, documentation released on 8 December 2023.

= Python 3.12.0, documentation released on 2 October 2023.

= Python 3.11.10, documentation released on 6 September 2024.
= Python 3.11.9, documentation released on 2 April 2024.

= Python 3.11.8, documentation released on 6 February 2024.

= Python 3.11.7, documentation released on 4 December 2023.

= Python 3.11.6, documentation released on 2 October 2023.

Installing Python

Python

& python’ o I B .

About Downloads Documentation Community Success Stories News Events

Functions Defined

The core of extensible programming is defining functions.
Python allows mandatory and optional arguments,
keyword arguments, and even arbitrary argument lists.

More about defining functions in Python 3

0112358 13 21 34 55 89 144 233 377 610 987

Python is a programming language that lets you work quickly
and integrate systems more effectively. »>> Learn More

https://www.python.org

Sign In

Installing Python

Python

& python’ . .

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows

Download Python 3.5.1 | Download Python 2.7.11

Wondering which version to use? Here’s more about the difference

between Python 2 and 3.

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, Mac OS X, Other

Want to help test development versions of Python? Pre-releases

Looking for a specific release?

Python releases by version number:

PYTHON 2 PYTHON 3

Future

Library [3~
‘ Range function

Unicode .. .,

Unicode support

Integer division

print “hello” e print (“hello”)
The new print() function

Python Shell

['?"_prthon 3.5.0 Shel
File Edit Shell Debug Options Window Help

Python 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, 02:27:37) [MSC v. 1900 64 bit (AMDE4)] on win32
Type “copyright”, “credits” or “license()” for more information.
>

What is next?

Syntax Error

File Edit Shell Debug Options Window Help

Python 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, 02:27:37) [MSC v. 1900 64 bit (AMDE4)] on win32
Type “copyright”, “credits” or “license()” for more information.

>>> tell who wou are?

syntaxBrror: invalid syntax

>>> |

Hello, world!

File Edit Shell Debug Options Window Help
Python 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, 02:27:37) [MSC wv. 1900 64 bit (AM -
DE4)] on win3Z2

Type “copyrizht”, “credits” or “license()” for more information.
>>> print ("Hello, world!”)

Hello, world!

>

* You must say something that Python interpreter can understand!!

* Print() is a function in Python

Exit()

A *Python350Shell*

.

L=

File Edit Shell Debug Options Window Help

D64)] on win3Z2

>>> print ("Hello, world!”)
Hello, world!
b3

>>> exit O

Type “copyrizht”, “credits” or “license()” for more information.

Python 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, 02:27:37) [MSC v. 1900 6

The program is still running!
Do you want to kill it?

Cancel

Elements of Python Language

* Vocabulary/words — Variables and Reserved words
* Sentence structure — valid syntax patterns

e Story structure — constructing a meaningful program for some
purposes

Use Python as a calculator

3, ' ==
aé Python 3E.O Shell ..
File Edit Shell Debug Options Window Help

Python 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, 02:27:37) [MSC wv. 1900 64 bit (
D64)] on win32

Type “copyrizht”, “credits” or “license()” for more information.
>2>2 10*15

150

>>> 2.7+5. 9999

8. 6999

> T/2

3.5

>>> |

Variables
& pyvon 350 svi i

File Edit Shell Debug Options Window Help

Python 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, 02:27:37) [MSC v. 1900 64 bit (Ab
D64)] on win32

Type “copyrisght”, “credits” or “license()” for more information.
>>> x=10

>>> y=20
>>> x

10

>O> y

20

>>> xty
30

>>> |

Reserved words

* You cannot use the following words as variables

False None True and as assert break
class continue def del elif else except
finally for from global if import in

is lambda nonlocal not or pass raise

return try while with yield

Sentences or lines

>27 x=2 Assignment statement
2> x=xt2 Assignment with expressions
z> > print (%) Print statement (output statement)

>0

Programming scripts

* Interactive Python is good for experiments and programs of 3-4 lines
long

* Most programs are much longer, so we have to type them in a file and
execute them all together

* In this sense, we are giving Python a script

* As convention, “.py” is added as the suffix on the end of these files

Interactive v.s. script

* Interactive

v’ You type directly to Python one line at a time and it responds

* Script

v’ You enter a sequence of statements (lines) into a file using a text
editor and tell Python to execute the file

Program steps or program flow

* Like a recipe, a program is a sequence of steps to be done in pre-
determined order

* Some steps are conditional, i.e. they may be skipped
* Sometimes, we will repeat some steps

* Sometimes, we store a set of steps to be used over and over again in
future as needed

Sequential flow

Execute sequentially

h 4

>r>r x=2

>>> print (x)
7

>>> x=x¥10
>>> print (x)
20

>>> |

Outputs

* When a program is running, it flows from one step to the next
* We as programmers, set up “paths” for the program to follow

Conditional flow

Program Outputs

x=h smal ler

L x<10: . finighed
print ("smaller”™) >>> |

it x>20:

print ("bizzer”
print ("finished”

Repeated flow

Program Outputs

n=>o
while n»>0: /////////////////)

print (n)

n =n -1
print (“Finish®) — ——— — Finish

bb P

[l AN PN QTN |

* Loops (repeated steps) have iterative variables that change each time
through a loop

e Often these iterative variables go through a sequence of numbers

What the largest number is?

What the largest number is?

Constants

* Fixed values such as numbers and letters are called
constants, since their values won’t change

* String constants use single-quotes (‘) or double-quotes (“)

Variable

* A variable is a named space in the memory where a programmer can
store data and later retrieve the data using the variable name

* Variable names are determined by programmers

* The value of a variable can be changed later in a program

Rules for defining variables in Python

* Must start with a letter or underscore _
* Can only contain letters, numbers and underscore

e Case sensitive

Good: apple, car, myNumber123, light

Bad: 456aaa, #ab, var.12

Different: apple, Apple, APPLE

Personal tips

e Use meaningful words as variable names
e Start with a lower letter
* Capitalize the first letter of each word

* Example: myBankAccountID, numOfCards, salaryAtYear1995...

What is this code doing?

x1q3z90cd = 35.0
x1q3z9afd = 12.50

x1q3p9afd = x1q3z%90cd * x1q3z%afd
print x|q3p%afd

Reserved words

* You cannot use the following words as variables

False None True and as assert break
class continue def del elif else except
finally for from global if import in

is lambda nonlocal not or pass raise

return try while with yield

Sentences or lines

>27 x=2 Assignment statement

2> x=xt2 Assignment with expressions

c>1> > print (%) Print statement (output statement)
>>7

Variable Operator Constant Reserved words

Assignment statement

* We assign a value to a variable using the assignment operator (=)

* An assignment statement consists of an expression on the right hand
side, and a variable to store the result

Example: x =100 — 10 + x*3 — x/10

Assignment statement

 There is a location in the
memory for x

* Whenever the value of x is
needed, it can be retrieved
from the memory

» After the expression is
evaluated, the result will be
put back into x

X: 6

X =100—- 10+ x*3 —x/10

Cascaded assignment

* We can set multiple variables into the same value using a single
assignment statement

Example

>>> z =y =x=2+ 7+ 2
>>> X, Y, Z
1

(11, 11, 11)

Simultaneous assighment

* The values of two variables can be exchanged using simultaneous
assignment

Example
>>> ¢ = "deepSecret"
>>> o = "you’ll never guess"

>>> ¢, O

(" deepSecret’, "you’ll never guess")
>>> ¢, 0 = 0, C

Practice

* Write a program to exchange the values of two variables
without using simultaneous assignment

Bad use of simultaneous assignment

>>>

>>> x, y = (45 + 34) / (21 - 4), 56 » 57 x 58 x 59
>>> X, Yy

(4.647058823529412, 10923024)

>>>
>>> x = (45 + 34) / (21 - 4)
>>> y = 56 * 57 » 58 x 59

>>> X, Y
(4.647058823529412, 10923024)

Order evaluation

* When we put operators together, Python needs to know which one to
do first

* This is called “operator precedence”

* Which operator “takes precedence” over the others

Example:X=1+2*3-4/5**6

Numeric expression and operators

* We use some keys we have on T, PRy
the keyboard to denote the [2alrisel I s |

classic math operators * Addition
Subtraction
 Asterisk (*) is the multiplication ~ 'Mult.phcmoﬁ
operator | |
Division
* Double asterisk (**) is used to i) rOWE |
denote Exponentiation (raise to Remainder

a power)

Operator precedence rules
* Highest to lowest precedence rule

v’ Parenthesis are always with highest priority
v Power

v Multiplication, division and remainder

v’ Addition and subtraction

v’ Left to right v

Operator precedence

Example: x = 1+2**3/4*5

Floor division

>>> time = 257

>>> minutes = time // 60 ;

>>> print ("There are", minutes, "complete minutes in", time, "seconds.")
There are 4 complete minutes in 257 seconds.

>>> 143 // 25

5

>>> 143.4 // 25

5.0

>>> 9 // 2.5

3.0

divmod()

>>>
>>>
>>>
(4,

>>>
>>>
>>>
>>>
4
>>>
>>>
4:17
>>>
>>>

>>2>

(5,

time = 257
SEC_PER MIN = 60
divmod (time, SEC
17)

minutes, seconds

print (minutes, ":

17

print (minutes, ":

quarters, cents
quarters, cents
18)

_PER MIN)

= divmod (time, SEC_PER MIN)

", seconds)
", seconds, sep="")

= divmod (143, 25)

Augmented assignment

* The general form of augmented assignment looks like

<lvalue> <op>= <expression>

Example

>>> X = 22
>>> X +=
>>> X

29

>>2>

"
I
|

N
*

~

>>2>

15

]

Personal tips

* Use parentheses

* Keep mathematical expressions simple so that they are easy to
understand

* Break up long series of math expressions to make them easy to
understand

Integer division in Python

* |n Python 2, Integer division truncates
* Integer division produces floating point numbers in Python 3

* The conversion between integer and floating point numbers is
done automatically in Python 3

* Things change between Python 2 and Python 3

Data Type

* In Python, variables and constants have an associated “type”

* Python knows the difference between a number and a string

* Example: >>> a = 100 + 200
>>> print (a)

>>> b = “100" + “2007
>>> print (b)

Type matters

* Python knows what type everything is
* Some operations are prohibited on certain types
* You cannot “add 1” to a string

* We can check the type of something using function type()

Types of numbers

* Numbers in Python generally have two types:
v'Integers: 1, 2, 100, -20394209
v'Floating point numbers: 2.5, 3.7, 11.32309, -30.999

* There are other number types, which are variations on
float and integer

Type can change

* The type of a
variable can be
dynamically
changed

e A variable’s type is
determined by the
value that is last
assigned to the
variable

>>> X =7 » 3 % 2

>>> y = "is the answer to the ultimate question of life"
>>> print (x, y) . Wi :

42 is the answer to the ultlmate question of life

>>> X, Y , |

(42, "is the answer to the ultimate question of life’)
>>> type(x), type(y)

(<class "int’>, <class ’'str’>)

>>> . >

>>> X = X + 3.14159

>>> y = 1232121321312312312312 * 9873423789237438297
>>> print (x, V)

45.14159 12165255965071649871208683630735493412664

>>> type(x), type(y) '

(<class "float’>, <class ’"int’>)

Type conversion

* When an expression contains
both integer and float,
integers will be converted

into float implicitly

* You can control this using
functions int() and float()

* Example:

>

bp P
bp .y

bbb
bbb

b
b

print (float (99) /100)

1=42
type (1)

f=float (i)
print (f)

type (f)
print (1+2*float (3) /4-5)

String conversions

* You can also use int() and float() to convert strings into
numbers

* You will get an error if the string contains characters other
than numbers

Converting numbers into string

* We can convert numbers into string using function str()

>>> str(5)

15'

>>> str(l + 10 + 100)
71117

>>> str(-12.34)

r-12.34"

>>> str("Hello World!")
"Hello World!’

>>> str(divmod (14, 9))
(1, 5)7

>>> X = 42

>>> str(x)

1421

User input

* We can instruct Python to stop and take user inputs
using function input()

* The input() function returns a string

Practice

* The BMI (body mass index) of a human can be
calculated using the following equation:

BMI = weight (kg) + height * 2 (m)

e Write a program to input a user’s weight and
height, and then output his BMI

Converting user input

* If we want to read a number using input(), we must
then convert the input into a number using int() or

float()

 Later we will deal with bad input data

Comments

* Anything after a “#” is ignored by Python

* Why comment?
v'Describe what is going to happen in a sequence of code

v'Document who wrote the code and other important information
v'Turn off a line of code — usually temporarily

String operations

* Some operators apply to strings

v’ “+”: concatenation
v “*”: multiple concatenation

* Python knows whether it is dealing with a number or
a string

Practice

* Write a program to instruct the user to input two of
his friends’ names, and then output a sentence “l am
the friend of XX and XX.”

Output using Print()

>>> print (42, "42")
42 42

>>> print ('3.14")
3.14

>>> print (3.14)
3.14

More details on print()

print (...)
print (value, ..., sep= °, end= ‘\n, file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional kevword arguments:

file: a file-like object (stream): defaults to the current svs. stdout.
Sep: string inserted between values, default a space.

end: string appended after the last wvalue, default a newline.
flush: whether to forcibly flush the stream.

Examples

>>> pr int (!/I!!’ /!am!/, ’” Daniel //)

>>> print("I7, “am”,” Daniel ”, gsep="")

’” g ’”)

>>> pr int (.UI.U, llam!!, ’” Danj_el | , Sep— ,

Example

print ("Test line 17)
print (“"Test line 27)

print (“"Test line 17,end = ©)
print (“Test line 27)

i 44 i 44

print ("Test line 1", end = "——-
print ("Test line 27)

A powerful function - eval()

* The eval() function takes a string argument and evaluates that string as a

Python expression, i.e., just as if the programmer had directly entered the
expression as code

* The function returns the result of that expression

* Eval() gives the programmers the flexibility to determine what to execute at
run-time

* One should be cautious about using it in situations where users could
potentially cause problems with “inappropriate” inputs

Example

>>> string = "5 + 12" # Create a string.

>>> print (string) # Print the string.
5 + 12
>>> eval (string) # Evaluate the stri

17
>>> print (string, "=", eval(string))
5 + 12 = 17

>>> eval ("print (' Hello World!’)") # Can

Hello World!
>>> # Using eval () we can accept

>>> age = éval(input("Enter your age:

Enter your age: 57.5
>>> age
57.5

>>> age = eval (input ("Enter your age:

Enter your age: 57
>>> age
57

>>> age = eval (input ("Enter your age:

Enter your age: 40 + 17 + 0.5
>>> age
57.5

k1nds
n))

"))

H))

Example

>>> eval ("10, 32") # String with comma-ser

(10, 32)

>>> x, y = eval ("10, 20 + 12") # Use simult
>>> X, Yy

(10, 32)

>>> # Prompt for multiple values. Must separ

>>> x, y = eval (input ("Enter x and y:
Enter x and y: 5 % 2, 32

>>> X, Y

(10, 32)

