hinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 3 Flow Control

Tongxin Li
School of Data Science

Conditional flow

x=h - smaller

1t x<10: //////////////i finished

>>> |

print ("bizger”)
print ("finished”)

Comparison operators

« Boolean expressions ask a question and
produce a Yes/No result, which we use to

control program flow x < vy | Isxlessthan y?
x <= vy | Is x less than or equal to y?
 Boolean expressions use comparison x == vy | Isxequal toy?
cF)g)li;ators to evaluate Yes/No or True/ x >= vy | Is x greater than or equal to y?
x > vy | Is x greater than y?
x !'= y | Is x notequal to y?

« Comparison operators check variables bu
do not change the values of variables

| “—u

o Careful! is used for assignment

Comparison operators

%=h
11 x==h:
print ("Equals §57)
if x>4:
print (“Greater than 47) Equals 5
Greater than 4
if w>=5- — Greater than or equal to 5
print(”Greater than or equal to 5”) LESS than or equal 5

Not equal 6
if x<=h:

if xl=6:
print(”Not equal 6”)

Examples of comparison

>>> 5 > 7
False
>>> x, y = 45, -3.0
>>>x>y
True
>>> result = x > y + 50
>>> result
False
>>> 1if 1 + 1 > 1:
print ("I think this should print.")

I think this should print.
>>> "hello" > "Bye"

True

>>> "AAB" > "AAC"

False

Examples of comparison

>>> 7T == 7.0

True

>>> x = 0.1

>>> 1 == 10 % X

True

>>> 1 == X + X + X + X + X+ X+ X +X + X + X
False

>>> X + X + X + X+ X+ X +X +X+ X + X
0.9999999999999999

>>> 7 1= """

True

>>> "A’' == 65

False

Boolean type

 Python contains a built-in Boolean type, which takes two
values True/False

« Number O can also be used to represent False. All other
numbers represent True

George Boole (1815 - 1864): Mathematician, inventor of mathematical logic,
significant contributions to differential and difference equations

Bool()

>>> x=0; y=0.0;, z =0+ 03

>>> bool(x), bool(y), bool(z)
(False, False, False)

>>> x = -1; y=1.e-10; z = 0 + 13
>>> bool(x), bool(y), bool(z)
(True, True, True)

>>> x = [1; y = [0]; z="0"

>>> bool (x), bool(y), bool(z)
(False, True, True)

One way decisions

x=h
print Before 5°)
1f x==h:

print C Is 5)
print (Is still §°)
print Third &)

print C Afterwards 5§)

print Before 6)

if x==6:
print (Is 6")
print C Is still 6")
print ¢ Third 6)

print C Afterwards 6)

Before b5

Is b

Is sti1ll b5
Third 5
Afterwards 5
Before 6
Afterwards 6

Indentation

 Increase indent: indent after an if or for statement (after :)

e Maintain indent: to indicate the scope of the block (which lines are
affected by the if/for)

e Decrease indent: to back to the level of the if statement or for
statement to indicate the end of the block

« Blank lines are ignored — they do not affect indentation

« Comments on a line by themselves are ignored w.r.t. indentation

Increase/maintain/decrease

 Increase/maintain after

if/for statements

e Decrease to indicate the

end of a block

« Blank lines and
comments are ignored

RLentil

X=H

print C Before 5)

1f x==h:
print(Is 5°)
print C Is still 5)
print ¢ Third 5)

print Afterwards 5)

print Before 6)

1T x=—b"
print Is 6)
print Is still &)
print C Third €")

print Afterwards 6)

Nested decisions

Example
L oxrl:
print More than 17)
yes
x < 100
x<100:
print C Less then 100) no

print "Less than 100’

print(’Finished’)
e e

print "All Done'

Mental begin/end

x=10

1t x»h:
print (Greater than 5)

if x>8:
print C Greater than &)

1t x210:
print Greater than 10°)

[

print C Finished’)

Too many nested decisions will be a disaster...

function register()
{
if (lempty($ POBT)) {
$meg =~ '';
if (5 POST(['veor namo')) {
i€ (8 POST{'user password new']) {
Af ($_POST['user password new')] === § POST[‘user password repeat')) {
if (strlen($ POST('user password new']) > 5) {
if (strlen($ _POST(['user nanme’]) < 65 &6 strlen($ POST| 'wesor_ name']) > 1) {
Af (prog_mateh(/“[a-2\d){2,64)}8/1"', § POST| 'user_nama'})) (
$user = read_usor($_POST['user_name']);
if (lisset(Suser[vaer _name'))) {
if (6 _POST['user email'}) ¢
if (etrlien($ POST[‘user email’')) < 65) {
Af (filter_wvar($ POST['weor omail’'), FILTER_VALIDATE _EMAIL)) (
ereate_user();
§ SESSION['mag’) = 'You areo now registeored so ploase log
hoader(Location: « § SERVER['THP SELT))
exit();

.
g1

}) else $mag ~ 'You must provide a valid email address’;
} else $nsg = "Emall must be less than 64 eharacters’)
} olse Snag = Eoalil cannot bo empty '

} else Smag = 'Usorname alroady exista';

} olse $mag = 'Usornane nust be only a-z2, A-Z2, 0-9";
} else Smag » 'Username must be betwoen 2 and 64 charactora')
} else S$mag = "'Password must be at least 6 characteors'

} else S$mag » 'Passwords do not match';

:

} else S$mog = 'Empty Password’;
} else $msg = 'Bepty Username';
$ SESSION['maeg') = Smag;

}

o oo s CHiglx

www. 1bcibc. com

Two way decisions

e Sometimes we want to do one
thing when the logical expression is
true, and another thing when it is
false

X > 2

e |t is like a fork in the road, we need print 'Not bigger'
to choose one or the other path,
but not both

Two way decision using else

x=1

x>2:
print (Bigzer’)

print C Smaller’) print 'Not bigger'

print 'All Done'

print (Finished)

Tips on if - else

x=1 -1

-

if x>2: -
prlnt(Bizzer’ if x>2:

s prlnt(Biggzer’) y
prlnt (Smaller’) J print C Smaller’) -

print (Finished) print Finished)

e Else must come after if

e Use indentation to match if and else

Example

%=1
if x>2:

if x>5:
print Bizger than 5)

ls

(D
[
(D

érint(’Smaller than 5)

print (Finished)

Multi-way decisions

x=2
Small’)

pr int (
x<10

prlnt(Large’)

. , g . , . ' R '
print (Finished')|

print 'All Done'

Multi-way decision

#lo else

X=2
1 x<2:

print ¢ Small’)
=11f x<10:

print (Medium)

print (Finished’)

Multi-way decision

x=h6

print ¢ Small’)
elif x<10:

print Medium)
elif x<20:

print Larze’)
=11if x<40:

print ¢ Huge’)

— =

print ¢ Ginormous’)

print (Finished’)

Which will never print?

x=4 x=8

if x<=2: if x<2:

print Below 27) print C Below 2°)
=1if %>72- elif x<20:

print Above 27) print C Below 20°)
=1if =x<10:

print Something else’) . ~I?rint(’E'ElC'W 107)

rint (Finished’) . ,
- print C Something else’)

print (Finished’)

else:

Logical operators

»Logical operators can be used to combine several
logical expressions into a single expression

e Python has three logical operators: not, and, or

Example

>>> not True

False

>>> False and True

False

>>> not False and True
True

>>> (not False) and True
True

>>> True or False

True

Example

H-

>>> not False or True

True

>>> not (False or True)

False

>>> False and False or True
True

>>> False and (False or True)
False

HH-

Try/except structure

 You surround a dangerous part of code with try/except
o If the code in try block works, the except block is skipped

o If the code in try block fails, the except block will be executed

Example

astr = Hello bob’
istr = int (astr)
print C First’, istr)

astr = 123
istr = int {(astr)
print Second’, istr)

Generic
Computer

Input

: Central
Devices

Processing
Unit

Secondary
Memory

Output
Devices

Use try/except to capture errors

astr = Hello bob’ « When the first conversion fails, it just
i tr = int (astr) stops into the.except block, and the
nt - program continues
istr = —1

print (First’, istr)
« When the second conversion

— succeeds, it just skips the except
istr = int (astr) block

astr = 123

istr = -1

print Second’, istr)

Try/except

astr = Bob’

print (Hello')
istr = int (astr)
print C There)

1str = —1
print C Done’, istr)

print 'Hello'

istr = int(astr)

print '‘Done’, istr

istr = -|

Safety net

Example

rawstr = input C Enter a number:’)
trv:

ival = int (rawstr)
except:

ival = -1

1t ival>O:
print Nice work)
1'- .

(D
[N
(D

érint(’lnvalid number’)

Practice

« Write a program to instruct the user to input the working
hours and hourly rate, and then output the salary. If the
working hours exceed 40 hours, then the extra hours received
1.5 times pay.

Practice

« Write a program to instruct a user to input a date (both
month and day), and then output the new month and day
when the inputted date is advanced by one day (leap years
are ignored)

Answer

#Add a day to a given date

month = int (input C Enter a month (1-12):))
day = int (input C Enter a day (1-31):7))

daysInMonth = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

1 day<{davsInMonth[month-1]:

print (month, day+l)

lse:
month = month%1lZ + 1
print (month, 1)

(D

Repeated flow

n=>5s '
while n»>0: //////////////////
print (n)
=6 = 1\\\\\\\\\\\\\\\\\\
- Finish

bb P

[l AN PN QTN |

print ("Finish”)

« Loops (repeated steps) have iterative variables that change each time
through a loop

« Often these iterative variables go through a sequence of numbers

An infinite loop

n=5
print (Lather
print (Rinse’)
n=n-1
pr int C Dry off!’)

")

« What is wrong with this program?

Another loop

n=0

while n»>0:
print C Lather
print (Rinse’)
n=n-1

print (Dry off!”)

)

« What is wrong with this program?

Breaking out of a loop

e The break statement ends the current loop, and jumps to the
statement which directly follows the loop

()

line = input C Enter a word:)

line == " done :

print (line)
print (Finished)

Finishing an iteration with continue

].1rle = 111Ln1t.(111p11t a W 111 ")
1 1linel[0] = # : ntinue
| l;ne == d ne :

print (line)
print (Done’)

e The continue statement ends the current iteration, and start
the next iteration immediately

Indefinite loop

« While loops are called “indefinite loops”, since they keep going until a
logical condition becomes false

e Till now, the loops we have seen are relatively easy to check whether
they will terminate

« Sometimes it can be hard to determine whether a loop will terminate

Definite loop

e Quite often we have a finite set of items

« We can use a loop, each iteration of which will be executed for each
item in the set, using the for statement

e These loops are called “definite loops” because they execute an exact
number of times

e It is said that “definite loops iterate through the members of a set”

A simple for loop

Example

i in [5,4,3,2,1]:
print (l)
print (Finished)

e o I o R TNy |

inished

Another example

Example

friends = [Tom',’ Jerry , Bat’] Happy new year Tom

for friend in friends: Happy new year Jerry
print (Happy new vear , friend) Happy new year Bat

print(’Done’) Done

For loop

Example

for 1 in [5,4,3,2,1]:
print (i)
print Finished)

e s IS N I N RN

inished

In

e The iteration variable “iterates”
through a sequence (ordered set)

e The block (body) of the code is
executed once for each value in the
sequence

e The iteration variable moves through
all of the values in the sequence

i in [5,4,3,2,1]:
print (i)

Loop samples

« Note: though these examples are simple, the patterns apply
to all kinds of loops

Making “smart” loops

e The trick is “knowing” something
about the whole loop when you
are stuck writing code that only
sees one entry at a time

Set some variables to initial
values

for thing in data:

Look for something or
do something to each
entry separately,
updating a variable.

Look at the variables.

Looping through a set

Example
print Before’) Before
for thing in [3, 5, 100, 34, 6, 87] : 5
print (thing) ?00

irint C After’)
prin T 24

3]

87

After

Finding the largest number

largest_so_far = -1 Before -1
print (Before’, largest_so_far) 9 9
39 39
or num in [9, 39,21, 98,4, 5, 100, 65] : 39 21
1 num’largest _so far: 98 93
largest _so _far = num gg g‘
print (larzest _so_far, num) 100 100
print After’, largsest_so_far) 1}323855100

« Use a variable to store the largest number we have seen so far
e If the current number is larger, we assign it to the store variable

Counting in a loop

count = 0

. :) , Before O
print " Before’, count) 1 3
‘or thing in [3, 4, 98, 38, 9, 10, 199, 78] : 7 4
count = count t+ 1 3 98
print (count, thing) 4 38
print After’, count) 5 9
6 10
7 199
8 78
After 8

« To count how many times we have executed a loop, we can introduce a counting variable, which
increases itself in each iteration

Practice

e Given a set of numbers, write a program to calculate
their sum using for loop

Answer

numberSet = [3, 4, 98, 38, 9, 10, 199, 78]

total = 0O

print Before’, total)

for num in numberSet:
total = total + num
print (total, num)

print (Last’, total)

Before O
3 3

7T 4

105 98
143 38
152 9
162 10
361 199
439 78
Last 439

Practice

e Given a set of numbers, write a program to calculate
their average using for loop

Answer

numberSet = [3, 4, 98, 38, 9, 10, 199, 78] efore O

3 3

X 74

0

B
total = %
count =
print (Before’, total) 2 igg gg
for num in numberSet:
total = total + num H 152 9
count = count t+ 1 6 162 10
print (count, total, num) 7 361 199
print (Last’, total, total/count) 8 439 78

Lgst 439 54, 875

Filtering in a loop

print (Before’)

Before
or value in [23,3, 43,39, 80, 111, 99, 3, 65] : Large value: SU
£ value>50: Largze value: 111
print Large value:’, value) Large value: 99
Large value: 65
print C After’) After

« We can use an if statement in a loop to catch/filter the values we are
interested at

Search using a Boolean variable

found = False Before False
‘ ‘ False 9
print (Before’, found) False 41
False 12
- wvalue in [9, 41, 12, 3, 74, 15]: False 3
1t value == 74: True 74

found = True
print (found, value) 1§$:r1$rue

print C After’, found)

« If we want to search in a set and double check whether a specific number is in that set

« We can use a Boolean variable, set it to False at the beginning, and assign True to it as long as the target
number is found

Finding the largest number

largest_so_far = -1 Before -1
print (Before’, largest_so_far) 9 9
39 39
or num in [9, 39,21, 98,4, 5, 100, 65] : 39 21
1 num’largest _so far: 98 93
largest _so _far = num gg g‘
print (larzest _so_far, num) 100 100
print After’, largsest_so_far) 1}323855100

« Use a variable to store the largest number we have seen so far
e If the current number is larger, we assign it to the store variable

Finding the smallest number

smallest _so _far = -1
print { Before', smallest _so_far)

» num in [9, 39, 21, 98, 4, 5, 100, 65] :
1 num < smallest so far:
smallest _so far num
print (smallest_so_far, num)

print { After’, smallest_so_far)

« Use a variable to store the smallest number we have seen so far
o If the current number is smaller, we assign it to the store variable
* What is the problem with this program?

Finding the smallest number

smallest so far = 1|

: sL=e L efore None
print (Before’, smallest_so_far)

9
39

- smallest _so _far == 1 21
smallest_so_far = num 98

B
9
or num in [9, 39,21, 98, 4,5, 100, 651 :
9
"num < smallest so_far: 4 4
4
4
4
A

smallest _so_far = num 5
print (smallest _so_far, num) 100

65
fter 4

print After’, smallest _so_far)

e We still use a variable to store the smallest value seen so far

e In the first iteration, the smallest value is none, so we need to use an if statement to check this

The is and is not operator

» Python has a “is” operator which can be used in logical expression

smallest _so_far = lone v h
. L T - Implies “is the same as”
print { Before', smallest so_far) D Siilar £, bt stronger than ==

 “is not” is also an operator

for num in [9, 39, 21, 98, 4, 5, 100, 65] :
1f smallest_so_far is HNone:
smallest _so_far = num
=11f num < smallest _so_far:
smallest _so_far = num

print (smallest _so_far, num)

print After’, smallest _so_far)

Is operator

print (10 is 10) True
A = 10 True
b = 10 True
print (a iz b) Falsp
a = 123

b = 7123

print (a iz b)

a = [1,2,3]

b = [1,2, 3]

print (a is b)

