l P XK ¥ ORI

,M, The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 6 Object Oriented Programming

Tongxin Li

School of Data Science

Object

S >>> n =3 # n is an integer
* In Python, everything is an >>> id(n)

object (number, string, etc) 505408904
>>> type(n)
<class 'int'>

* You can use the id() function :zz ?d?s')'Wekome" 2 arle
and type() function to get 36201472
information about an object >>> type(s)

<class 'str'>

ID and type

* The id of an object is automatically assigned a unique integer by
Python when the program is executed

* The id for the object will not be changed during the execution of the
program

* The type for the object is determined by Python according to the
value of the object

ID and type

Type

int

float

bool

comp lex

tuple

frozenset

str

list

set

dict

Immutable?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

Variable is actually only a reference

* A variable in Python is actually a reference to an object.

n=23 f=3.0 s = "Welcome"
1d: 505408904 id: 26647120 id: 36201472

n == The object { === The object s===> The object
for int 3 for float for str
3.0 "Welcome"

Variable is actually only a reference

* A variable in Python is actually a reference to an object.

n=3 f=3.0 s = "Welcome"
1d: 505408904 id: 26647120 1id: 36201472

n = The object [=== The object s === The object
for int 3 for float for str
3.0 "Welcome"

1. id() returns the object’s memory address.

2. is returns True if and only if two objects have the same memory address.

Methods

* You can perform operations on >>> 5 = "Welcome®
ou C. P P >>> sl = s.lower() # Invoke the lower method
an object

>>> sl
. . 'welcome'
. Th.e operatl.ons are defined vo> 52 - S.upper() # Invoke the upper method
using functions >>> 52
'WELCOME '

* The functions for the objects are ...
called methods in Python

* Methods can only be invoked
from a specific object

Why we need object-oriented
programming?

* Writing a real software is a complicated process

* A sub-field in computer science called software engineering is invented to
help with the development of large-scale software systems

e People are always trying to invent new ways of writing programs so that
software development can be more efficient — structural programming, OO
programming, service-oriented architecture, etc

* Object oriented programing allows us to write program in a way that
naturally match the problem that we are trying to solve

Object

* An object represents an entity in
the real world that can be
distinctly identified.

* Examples: a student, a desk, a
circle, a button, and even a loan

* An object has a unique identity,
state, and behaviours

Key elements of an object

* An object’s identity is like a person’s ID. Python automatically assigns
each object a unique id for identifying the object at runtime.

* An object’s state (also known as its properties or attributes) is
represented by variables, called data fields.

* Python uses methods to define an object’s behavior (also known as
its actions). Recall that methods are defined as functions. You make
an object perform an action by invoking a method on that object.

How to create an object?

How to create an object?

* In Python, we use a template, called a class to create objects

Example: Use hub to make coins

Class

* Objects of the same kind are defined by using a common
class

* The relationship between Classes and objects is analogous to
that between an apple-pie recipe and apple pies

* A Python class uses variables to store data fields and defines
methods to perform actions

* A class is a contract—also sometimes called a template or
blueprint

Object v.s. class

* An object is an instance of a class, and you can create many instances of a
class

* Creating an instance of a class is referred to as instantiation

* The terms object and instance are often used interchangeably

Class Name: Circle | <— A class template

Data Fields:
radius is

Methods:
getArea
getPerimeter
setRadius

Circle Object 1 Circle Object 2 Circle Object 3 | < Three objects of
the Circle class

Data Fields: Data Fields: Data Fields:
radiusis 1 radius is 25 radius is 125

Class Example

* Class name: Human
* Data fields: Height, body weight, 1Q, EQ, education level ...
* Methods:

Eat()

Sleep()

Marry()

Work()

Define class

* Python uses the following syntax to define a class

* a class provides a special method, init (). This method, known as
an initializer, is invoked to initialize a new object’s state when it is
created

class ClassName:
initializer
methods

Define class

* Python uses the following syntax to define a class

e a class provides a special method, init_ (). This method, known as
an initializer, is invoked to initialize a new object’s state when it is
created

class ClassName:
initializer
methods

__init__ () is a dunder method. Dunder methods have specific roles and are
used to interact with Python’s built-in behaviors and protocols.

Example

import math

class Circle:
Construct a circle object
def __init__(self, radius = 1):
self.radius = radius

def getPerimeter(self):
return 2 * self.radius * math.pi

def getArea(self):
return self.radius * self.radius * math.pi

def setRadius(self, radius):
self.radius = radius

>>> circlel = Circle ()
>>7 circlel.radius

1

>>> circlel. getPerimeter ()
6. 283185307179586

>>> ecirclel. gethrea()
3.141592653589793

>>> circlel = Circle(2)
>>7 circlel.radius

2

>2>7 circlel.radius = 10
>>> ecirclel. getArea ()
314. 1592653589793

Constructing objects

* Once a class is defined, you can create objects from the class with a
constructor. The constructor does two things:

v'It creates an object in the memory for the class

VIt invokes the class’s __init_ () method to initialize the object

1. It creates an object in the memory for |___._._. > object
the class. Data Fields:

2. It invokes the class’s __init__ method
to initialize the object. The self
parameter in the __init__ method is |pee=e=e=- = __init__(self, ...)
automatically set to reference the

object that was just created.

Self

* All methods, including the
initializer, have the first
parameter self

* This parameter refers to the
object that invokes the
method.

* The self parameter in the
__init__ () method is
automatically set to
reference the object that
was just created

import math

class Circle:
Construct a circle object
def _ _init__(self, radius = 1):
self.radius = radius

def getPerimeter(self):

return 2 * self.radius * math.pi

def getArea(self):
return self.radius *

def setRadius(self, radius):
self.radius = radius

self.radius *

math.pi

Constructor arguments

* The arguments of the constructor match the parameters in the
__init__ () method without self

1. Creates a Circle object. | """""" - (Circle object |
2. Invokes _ _init__(self, radius)I ___________ » Circle object
radius: 5

* The initializer in the Circle class has a default radius value, then the
constructor without arguments will assign the default values to data
fields

Accessing member of objects

* Data fields are also called instance variables, >>> ¢ = Circle(5)
because each object (instance) has a specific >>> c.radius
value for a data field 5

>>> c.getPerimeter()

: 31.41592653589793
* Methods are also called instance methods, >>> c.getArea()

because a method which is invoked by an object 78 53981633974483
#mstance) will Berform actions based on the data
ields of that object

>>2>

* You can access the object’s data fields and
invoke its methods by using the dot operator (.),
also known as the object member access
operator (Does this look familiar?)

Scope of self

* The scope of an instance
variable is the entire
class once it is created

* You can also create local
variables in a method

* The scope of a local
variable is within the
method

def ClassName:

def
self.x =1

def ml(self, ...):
self.y = 2 # Create/modify vy
Z =5 # Create/modify z <———
Scope of z
-

def m2(self,
self.y = 3

u = self.x
self.ml(..

4
»)

1
o

v

1
++
Y I B

__init__(self, ...):

co)l

1

e —

Create/modify X

Create/modify y

Create/modify u

Invoke ml
h

Scope of self.x
and self.y

Example: Use the objects we’ve just defined

def main():
Create a circle with radius 1
circlel = Circle()
print("The area of the circle of radius",
circlel.radius , "15”, circlel.getArea())

Create a circle with radius 25

circle2 = Circle(25)

print("The area of the circle of radius”,
circleZ.radius, "is" circleZ2.getArea())

Create a circle with radius 125

circle3 = Circle(125)

print("The area of the circle of radius”,
circle3.radius , "is" circle3.getArea())

Modify circle radius

circle2.radius = 100 # or circle2.setRadius(100)

print("The area of the circle of radius”,
circleZ.radius, "is" «circle2.getArea())

main() # Call the main function

Result

The
The
The
The

area of the
area of the
area of the
area of the

circle of
circle of
circle of
circle of

radius
radius
radius
radius

1.0 is 3.141592653589793
25.0 is 1963.4954084936207
125.0 is 49087.385212340516
100.0 1is 31415.926535897932

What is wrong with this program?

class A:
def 1nit (self, 1):
self.1 = 1

def main():
a =AQ
print(a.i)

main()

What is wrong with these program?

class A: class A:

def A(self): - def init (self):

radius = 3 radius = 3

def setRadius(radius):
self.radius = radius

Example: TV class

TV

channel: 1int
volumelevel: 1int
on: bool

™VO

turnOn() : None

turnOff(): None

getChannel(): int

setChannel (channel: int): None
getVolume(): int
setVolume(volumelLevel: int): None
channelUp(): None
channelDown() : None
volumeUp(): None

volumeDown() : None

The current channel (1 to 120) of this TV.
The current volume level (1 to 7) of this TV.
Indicates whether this TV is on/off.

Constructs a default TV object.
Turns on this TV.

Turns off this TV.

Returns the channel for this TV.
Sets a new channel for this TV.
Gets the volume level for this TV.
Sets a new volume level for this TV.
Increases the channel number by 1.
Decreases the channel number by 1.
Increases the volume level by 1.

Decreases the volume level by 1.

class TV:

def

def

def

def

def

def

def

def

__init__(self):
self.channel = 1 # Default channel 1is 1

self.volumelLevel = 1 # Default volume level is 1

self.on = False # Initially, TV is off

turnOn(self):
self.on = True

turnOff(self) :
self.on = False

getChannel (self):
return self.channel

setChannel (self, channel):
if self.on and 1 <= self.channel <= 120:
self.channel = channel

getVolumelevel (self):
return self.volumelevel

setVolume(self, volumelLevel):
if self.on and \
1 <= self.volumelLevel <= 7:
self.volumelLevel = volumelevel

channelUp(self):

if self.on and self.channel < 120:
self.channel += 1

def channelDown(self):
if self.on and self.channel > 1:
self.channel -= 1

def volumeUp(self):
if self.on and self.volumelevel < 7:
self.volumelLevel += 1

def volumeDown(self):
if self.on and self.volumelLevel > 1:
self.volumelLevel -= 1

Example: the code to use TV class

In Python, import and from ... import are two ways to bring modules and their
contents (like functions, classes, or variables) into your current script or notebook.

import math
print(math.sqrt(16))

from math import sqrt
print(sqrt(16))

Importing everything: from module import *

Be careful when using from ... import * (Risk of Overwriting Names and Namespace
Pollution)

Example: the code to use TV class

from TV 1import TV

def main(Q):
tvl = TVO
tvl.turnOn()
tvl.setChannel (30)

tvl.setVolume(3) tvl's channel is 30 and volume Tlevel is 3

tv2 = TVO tv2's channel is 3 and volume Tevel is 2

tv2.turnOn()

tv2.channelUp ()
tv2.channelUp ()
tv2.volumeUp()

print("tvl's channel 1is", tvl.getChannel() ,

"and volume level 1is", tvl.getVolumelLevel())
print("tv2's channel 1is", tv2.getChannel(),

"and volume level 1s", tv2.getVolumelLevel())

main() # Call the main function

Mutable objects

from Circle import Circle

def main(Q:
Create a Circle object with radius 1
myCircle = Circle()

Print areas for radius 1, 2, 3, 4, and 5
n=>=5
printAreas(myCircle, n)

Display myCircle.radius and times
print("\nRadius 1is", myCircle.radius)
print("n 1is", n)

Print a table of areas for radius
def printAreas(c, times):
print("Radius \t\tArea")
while times >= 1:
print(c.radius, "\t\t", c.getArea())
c.radius = c.radius + 1
times = times - 1

main() # Call the main function

Radius

VT B W N =

Radius i1s 6
nis 5

Area

3.141592653589793
12.566370614359172
29.274333882308138
50.26548245743669
79.53981633974483

Practice

class Count:
def __init__(self, count = 0):
self.count = count

def main(Q):
¢ = Count()
n =1
m(c, n)

print("count 1s", c.count)
print("n 1s", n)

def m(c, n):
¢ = Count(5)
n = 3

main() # Call the main function

* What would be the output of the above program?

Hiding data fields

* Direct access of a data field in an object is not good !!

* First, data may be tampered with

e Second, the class becomes difficult to maintain and
vulnerable to bugs

Private data fields

* Prevent other programmers from directly accessing the data
fields of your class is a common industrial practice

* This is known as data hiding

* This can be done by defining private data fields

Private data fields

* In Python, the private data fields
are defined with two leading
underscores. You can also define a

rivate method named with two
eading underscores

* Private data fields and methods
can be accessed within a class, but
they cannot be accessed outside
the class

* Define some methods to allow
access to private data fields

import math

class Circle:
Construct a circle object
def __init__(self, radius = 1):
self.__radius = radius

def getRadius(self):
return self.__radius

def getPerimeter(self):

return 2 * self.__radius * math.pi

def getArea(self):
return self.__radius *

self. radius *

math.pi

Practice

class A:
def __init__(self, 1):
self. 1 =1

def main(Q):
a = A(5)
print(a.__1)

main() # Call the main function

* What is the problem with this program?

Practice

def main(Q):
a =A0
a.print()

class A:
def __init__(self, newS = "Welcome™):
self. s = newS

def print(self):
print(self.__s)

main() # Call the main function

* Is the above code correct? If yes, what would be the output?

Practice

class A:
def __1nit__(self, on):
self. _on = not on

def main(Q):
a = A(False)
print(a.on)

main() # Call the main function

* |s the above code correct? If not, how do we fix it?

Abstraction

* Abstraction means separate the implementation of a part of code
from the usage of that code

* In software engineering, there are many levels of abstraction, a
commonly used one is called function abstraction

* Function abstraction means separating the implementation of a
function from its usage

* Abstraction makes your code easy to maintain, debug and reuse

Example

Return the gcd of two integers
def gcd(nl, n2):

gcd = 1 # Initial ged is 1

k =2 # Possible gcd

while k <= n1 and k <= n2:
ifnl %k ==0and n2 % k == 0:
gcd = k # Update gcd
k += 1

return gcd # Return gcd
Prompt the user to enter two integers

nl = eval(input("Enter the first integer: "))
n2 = eval(input("Enter the second integer: "))

print("The greatest common divisor for", nl,
"and", n2, "is", gcd(nl, n2))

Check whether number is prime

def isPrime(number): _ _ o .
divisor = 2 Write and maintain isPrime()
while divisor <= number / 2:

if number % divisor == 0: '
If true, number is not prime
return False # number is not a prime

divisor += 1

return True # number is prime Programmer 1

def printPrimeNumbers(numberOfPrimes):
NUMBER_OF_PRIMES = 50 # Number of primes to display
NUMBER_OF_PRIMES_PER_LINE = 10 # Display 10 per Tline
count = 0 # Count the number of prime numbers
number = 2 # A number to be tested for primeness

Repeatedly find prime numbers - -] _ _
while count < numberOfPrimes: Write and maintain printPrimeNumbers()
Print the prime number and increase the count . :

if isPrime(number):
count += 1 # Increase the count _ '

print(number, end = " ")
if count % NUMBER_OF_PRIMES_PER_LINE == 0:
Print the number and advance to the new line

printQ Programmer 2

Check if the next number 1is prime
number += 1

def main():
print("The first 50 prime numbers are')

If we write everything
together...

def printPrimeNumbers (numberOfPrimes) :
NUMBER_OF _PRIMES = 50 # Number of primes to display
NUMBEE_OF PRIMES PER_LINE = 10 # Display 10 per line
count = 0 # Count the number of prime numbers
number = 2 # A number to be tested for primeness

Repeatedly find prime numbers
while count < numberQfPrimes:

#Determine whether a number 1s a prime number
isPrime = True
divisor = 2
while (divisor<=number/2):
1T number%divisor ==0:
isPrime = Falsze
break
divisor *+=1

Print the prime number and increase the count
1t 1sPrime==True:
count += 1 # Increase the count

print (number, end = 7 7)

11 count % NUMBER_OF_PRIMES_PEE_LINE == O:
Print the number and advance to the ne
print ()

Check 1f the next number 1s prime
number += 1

printPrimeNumbers (20)

w line

Class abstraction and encapsulation

* Class abstraction means separating class implementation
from the use of a class

* The class implementation details are invisible from the user

* The class’s collection of methods, together with the
description of how these methods are expected to behave,
serves as the class’s contract with the client

Class abstraction and encapsulation

* The user of the class does not need to know how the class is
implemented. The details of implementation are encapsulated and
hidden from the user.

* This is known as class encapsulation

* |n essence, encapsulation combines data and methods into a single
object and hides the data fields and method implementation from
the user

Class implementation
is like a black box
hidden from the clients

Class’s Contract
Class . (.h.ea.ders of
initializer and
methods)

Clients use the
~—> class through the

class’s contract

Example — BMI calculation

-name: str
-age: 1int
-weight: float
-height: float

The get methods for these data fields
are provided in the class, but are omitted in
the UML diagram for brevity.

BMI(name: str, age: int, weight:

float, height: float)

getBMI(): float
getStatus(): str

The name of the person.

The age of the person.

The weight of the person in pounds.
The height of the person in inches.

Creates a BMI object with the specified
name, age (the default is 20), weight,
and height.

Returns the BMI.

Returns the BMI status (e.g., Normal,
Overweight, etc.).

The code to use BMI class

from BMI import BMI e We can use the BMI class if

def main(): you have its contract
bmil = BMI("John Doe", 18, 145, 70) ’

details about how it is

bmil.getBMI() , bmil.getStatus()) .
? ’ implemented!!

bmi2 = BMI("Peter King", 50, 215, 70)
print("The BMI for"”, bmi2.getName(), "is"
bmi2.getBMI() , bmi2.getStatus())

main() # Call the main function

The BMI class

class BMI: def getStatus(self):
def __init__(self, name, age, weight, height): bmi = self.getBMI()
self.__name = name if bmi < 18.5:
self.__age = age return "Underweight"”
self.__weight = weight elif bmi < 25:
self.__height = height return "Normal"
elif bmi < 30:
def getBMI(self): return "Overweight"”
KILOGRAMS_PER_POUND = 0.45359237 else:
METERS_PER_INCH = 0.0254 return "Obese"”
bmi = self.__weight * KILOGRAMS_PER_POUND / \
((self.__height * METERS_PER_INCH) * \ def getName(self):
(self.__height * METERS_PER_INCH)) return self.__name

return round(bmi * 100) / 100

def getAge(self):
return self.__age

def getWeight(self):
return self.__weight

def getHeight(self):
return self.__height

Example
- Loan

The — sign denotes a private data field\

Loan

:gg;ua11nterestRate: float
-numberOfYears: int
-loanAmount: float
-borrower: str

Loan(annualInterestRate: float,
numberOfYears: int, loanAmount
float, borrower: str)

getAnnualInterestRate(): float
getNumberOfYears(): int
getLoanAmount(): float
getBorrower(): str

setAnnualInterestRate(
annualInterestRate: float): None

setNumberOfYears(
numberOfYears: int): None

setLoanAmount(
loanAmount: float): None

setBorrower(borrower: str): None
setMonthlyPayment(): float
getTotalPayment(): float

The annual interest rate of the loan (default 2.5).

The number of years for the loan (default 1).
The loan amount (default 1000).
The borrower of this loan (default " ").

Constructs a Loan object with the
specified annual interest rate, number of years, loan
amount, and borrower.

Returns the annual interest rate of this loan.
Returns the number of the years of this loan.
Returns the amount of this loan.

Returns the borrower of this loan.

Sets a new annual interest rate for this loan.

Sets a new number of years for this loan.
Sets a new amount for this loan.

Sets a new borrower for this loan.
Returns the monthly payment of this loan.

Returns the total payment of this loan.

from Loan import Loan

def main(Q):
Enter yearly interest rate
annualInterestRate = eval (input
("Enter yearly interest rate, for example, 7.25: "))

Enter number of years
numberOfYears = eval (input(
"Enter number of years as an integer: "))

Enter loan amount
ToanAmount = eval (input(
"Enter loan amount, for example, 120000.95: "))

Enter a borrower
borrower = input("Enter a borrower's name: ")

Create a Loan object
Toan = Loan(annualInterestRate, numberOfYears,
lToanAmount, borrower)
Enter yearly interest rate, for example, 7.25: 2.5 EEEE
Display loan date, monthly payment, and total payment Enter number of years as an integer: 5 [“enter

print("The lToan is for", loan.getBorrower()) Enter loan amount, for example, 120000.95: 1000

print("The monthly payment 1is", Enter a borrower's name: John Jones
format(loan.getMonthlyPayment() , ".2f")) The loan is for John Jones

print("The total payment 1is", The monthly payment is 17.75
format(loan.getTotalPayment() , ".2f")) The total payment is 1064.84

main() # Call the main function

Example of loan class

class Loan : def setLoanAmount(self, ToanAmount):
def __1init__(self, annuallnterestRate = 2.5, self._ _loanAmount = loanAmount
numberOfYears = 1, ToanAmount = 1000, borrower = " "):
self.__annualInterestRate = annualInterestRate def setBorrower(self, borrower):
self.__numberOfYears = numberOfYears self.__borrower = borrower

self.__loanAmount = loanAmount
def getMonthlyPayment(self):

self.__borrower = borrower monthlyInterestRate = self.__annualInterestRate / 1200
monthlyPayment = \
def getAnnualInterestRate(self): self.__TloanAmount * monthlyInterestRate / (1 - (1 /
return self.__annualInterestRate (1 + monthlyInterestRate) ** (self.__numberOfYears * 12)))

return monthlyPayment
def getNumberOfYears(self):

return self.__numberOfYears def getTotalPayment(self):
totalPayment = self.getMonthlyPayment() * \
def getlLoanAmount(self): self.__numberOfYears * 12
return self.__loanAmount return totalPayment

def getBorrower(self):
return self.__borrower

def setAnnualInterestRate(self, annualInterestRate):
self.__annualInterestRate = annualInterestRate

def setNumberOfYears(self, numberOfYears):
self.__numberOfYears = numberOfYears

Practice

(The Rectangle class) Following the example of the Circle class, design a
class named Rectangle to represent a rectangle. The class contains:

m Two data fields named width and height.

m A constructor that creates a rectangle with the specified width and
height.

The default values are 1 and 2 for the width and height, respectively.
m A method named getArea() that returns the area of this rectangle.
m A method named getPerimeter() that returns the perimeter.

Practice

(The Stock class) Design a class named Stock to represent a company’s stock that contains:
m A private string data field named symbol for the stock’s symbol.
m A private string data field named name for the stock’s name.

m A private float data field named previousClosingPrice that stores the stock price for the previous
day.

m A private float data field named currentPrice that stores the stock price for the current time.

m A constructor that creates a stock with the specified symbol, name, previous price, and current
price.

m A get method for returning the stock name.

m A get method for returning the stock symbol.

m Get and set methods for getting/setting the stock’s previous price.
m Get and set methods for getting/setting the stock’s current price.

m A method named getChangePercent() that returns the percentage changed from
previousClosingPrice to currentPrice.

