
Introduction to Computer Science:
Programming Methodology

Lecture 7 Object Oriented Programming II

Tongxin	Li
School	of	Data	Science

Inheritance
• The object-oriented programming couples data and methods together into

objects

• The object oriented approach combines the power of the structural
programming with an added dimension that integrates data with
operations into objects

• Object-oriented programming (OOP) allows you to define new classes from
existing classes. This is called inheritance

• Inheritance extends the power of the object-oriented paradigm by adding
an important and powerful feature for reusing software

Superclass and subclass
• Inheritance enables you to define a general class (a superclass) and later

extend it to more specialized classes (subclasses)

• You use a class to model objects of the same type. Different classes may
have some common properties and behaviours that you can generalize in a
class

• Inheritance enables you to define a general class and later extend it to
define more specialized classes

• The specialized classes inherit the properties and methods from the
general class.

Geometric
Object and two
of its subclasses

The code for GeometricObject

The code for Circle class
• A subclass inherits

accessible data fields and
methods from its
superclass, but it can also
have other data fields and
methods

In Python, the super() function is
used to refer to the parent class or
superclass. It allows you to call
methods defined in the superclass
from the subclass, enabling you to
extend and customize the
functionality inherited from the
parent class.

Inheritance syntax
• The Circle class is derived from the GeometricObject class, based on

the following syntax

• Circle class inherits the GeometricObject class, thus inheriting the
methods getColor, setColor, isFilled, setFilled, and __str__
• The printCircle method invokes the __str__() method defined to

obtain properties defined in the superclass

The code for rectangle class

The code for testing Circle and
Rectangle

Some more information about super
and sub-class
• A subclass is not a subset of its superclass; In fact, a subclass usually

contains more information and methods than its superclass

• Inheritance models the is-a relationships, but not all is-a relationships
should be modelled using inheritance

• Do not blindly extend a class just for the sake of reusing methods. For
example, it makes no sense for a Tree class to extend a Person class,
even though they share common properties such as height and
weight. A subclass and its superclass must have the is-a relationship

Practice

What is the problem with the above code?

Overriding methods

• A subclass inherits methods from a superclass

• Sometimes it is necessary for the subclass to modify the
implementation of a method defined in the superclass. This
is referred to as method overriding

Example
• The __str__ method in the GeometricObject class returns the

string describing a geometric object. This method can be
overridden to return the string describing a circle

• The __str__() method is defined in the GeometricObject class and
modified in the Circle class. Both methods can be used in the
Circle class. To invoke the __str__ method defined in the
GeometricObject class from the Circle class, use super().__str__()

Practice

What would be the
output of the following
program?

The object class

• Every class in Python is descended from the object class

• The object class is defined in the Python library. If no inheritance is
specified when a class is defined, its superclass is object by default

Methods of the object class
• The __new__() method is automatically invoked when an object is

constructed. This method then invokes the __init__() method to initialize
the object. Normally you should only override the __init__() method to
initialize the data fields defined in the new class

• The __str__() method returns a string description for the object

• Usually you should override the __str__() method so that it returns an
informative description for the object

• The __eq__() method returns True if two objects are the same

What is the output of this program?

What is the output of this program?

What is the
output of this
program?

Polymorphism and dynamic binding

•Polymorphism means that an object of a subclass can
be passed to a parameter of a superclass type
•A method may be implemented in several classes

along the inheritance chain
•Python decides which method is invoked at runtime.

This is known as dynamic binding

Meaning of Polymorphism: the ability of something to have or to be displayed in
more than one form

Polymorphism

• The inheritance relationship enables a subclass to inherit
features from its superclass with additional new features
• A subclass is a specialization of its superclass; every instance

of a subclass is also an instance of its superclass, but not vice
versa
• Therefore, you can always pass an instance of a subclass to a

parameter of its superclass type

Example

Output

Dynamic binding

• Dynamic binding works as follows: Suppose an object o is an instance
of classes C1, C2, ..., Cn-1, and Cn, where C1 is a subclass of C2, C2 is a
subclass of C3, ..., and Cn-1 is a subclass of Cn
• That is, Cn is the most general class, and C1 is the most specific class
• In Python, Cn is the object class
• If o invokes a method p, Python searches the implementation for the

method p in C1, C2, ..., Cn-1, and Cn, in this order, until it is found

Example

• What would be the output of
this program?

Example

Question

• Suppose you want to modify the displayObject function in previous
example to perform the following tasks:

■ Display the area and perimeter of a GeometricObject instance
■ Display the diameter if the instance is a Circle, and the width and
height if the instance is a Rectangle

Does this program work?

Isinstance() function

• The isinstance() function can be used to determine whether an object
is an instance of a class

• This function determines whether an object is an instance of a class
by using the following syntax

Practice

What would be the outputs?

Practice

Questions
(a) Is goldenDelicious an instance of Fruit?
(b) Is goldenDelicious an instance of Orange?
(c) Is goldenDelicious an instance of Apple?
(d) Is goldenDelicious an instance of GoldenDelicious?
(e) Is goldenDelicious an instance of McIntosh?
(f) Is orange an instance of Orange?
(g) Is orange an instance of Fruit?
(h) Is orange an instance of Apple?
(i) Suppose the method makeAppleCider is defined in the Apple class. Can

goldenDelicious invoke this method? Can orange invoke this method?
(j) Suppose the method makeOrangeJuice is defined in the Orange class. Can

orange invoke this method? Can goldenDelicious invoke this method?

Practice: course class

Answer

Answer

Multiple Inheritance

• In Python, we can define new class from multiple classes

• This is called multiple inheritance

•Multiple inheritance is a feature in which a class can inherit
attributes and methods from more than one parent class

Inheritance Tree

• The inheritance relationship in Python can be represented by
a tree structure

Example

Example

