l P XK ¥ ORI

,M, The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 7 Object Oriented Programming li

Tongxin Li

School of Data Science

Inheritance

. TB@ object-oriented programming couples data and methods together into
objects

* The object oriented approach combines the power of the structural
programming with an added dimension that integrates data with
operations into objects

* Object-oriented programming (OOP) allows you to define new classes from
existing classes. This is called inheritance

* Inheritance extends the power of the object-oriented paradigm by adding
an important and powerful feature for reusing software

Superclass and subclass

* Inheritance enables you to define a general class (a superclass) and later
extend it to more specialized classes (subclasses)

* You use a class to model objects of the same type. Different classes may
hlave some common properties and behaviours that you can generalize in a
class

* Inheritance enables you to define a general class and later extend it to
define more specialized classes

* The specialized classes inherit the properties and methods from the
general class.

Geometric
Object and two
of its subclasses

GeometricObject

-color: str
-filled: bool

GeometricObject(color: str, filled:

booT)
getColor(): str
setColor(color: str): None
isFilled(): bool
setFilled(filled: bool): None
__str__Q: str

The color of the object (default : green).

Indicates whether the object is filled with a color (default: True).

Creates a GeometricObject with the specified color and filled

values.
Returns the color.
Sets a new color.
Returns the fi171ed property.
Sets a new fi11ed property.

Returns a string representation of this object.

+ %

Circle

-radius: float

Circle(radius: float, color: str,
filled: bool)

getRadius(): float
setRadius(radius: float): None
getArea(): float
getPerimeter(): float
getDiameter(): float
printCircle(): None

Rectangle

-width: float
-height: float

Rectangle(width: float, height: float, color:

string, filled: bool)
getWidth(): float
setWidth(width: float): None
getHeight(): float
setHeight(height: float): None
getArea(): float
getPerimeter(): float

The code for GeometricObject

class GeometricObject:

def

def

def

def

def

def

__init__(self, color = "green", filled = True):

self._ _color = color
self. filled = filled

getColor(self):
return self.__color

setColor(self, color):
self.__color = color

isFilled(self):
return self.__filled

setFilled(self, filled):
self. filled = filled

__str__(self):

return "color: " + self.__color + \
" and filled: " + str(self.__filled)

GeometricObject class
initializer
data fields

getColor

setColor

isFilled

The code for Circle class

from GeometricObject import GeometricObject
e A Subclass inherits import math # math.pi is used in the class

accessible data fields and class Circle(GeometricObject):

methods from its def EJSQ;(t)‘,‘_(ff: It,_ia(u)hus):

superclass, but it can also self.__radius = radius

have other data fields and def getRadius(self):

return self.__radius
methods T

def setRadius(self, radius):
self.__radius = radius

In Python, the super() function is
used to refer to the parent class or
superclass. It allows you to call
methods defined in the superclass
from the subclass, enabling you to

def getArea(self):
return self.__radius * self.__radius * math.pi

def getDiameter(self):
return 2 * self.__radius

extend and customize the def getpeﬁ"‘eter(??]f)i . i

) o) return 2 * self.__radius * math.pi
functionality inherited from the
parent class. def printCircle(self):

print(self.__str__(+ " radius: " + str(self.__radius))

Inheritance syntax

* The Circle class is derived from the GeometricObject class, based on
the following syntax

subclass superclass

N s

class Circle(GeometricObject):

* Circle class inherits the GeometricObject class, thus inheriting the
methods getColor, setColor, isFilled, setFilled, and str

* The printCircle method invokes the str () method defined to
obtain properties defined in the superclass

The code for rectangle class

from GeometricObject import GeometricObject

class Rectangle(GeometricObject):

def

def

def

def

def

def

def

__init__(self, width = 1, height = 1):

super(Q).__init__Q
self. width = width
self.__height = height

getWidth(self):
return self._ _width

setWidth(self, width):
self.__width = width
getHeight(self):

return self.__height

setHeight(self, height):
self.__height = self.__height
getArea(self):

return self.__width * self.__height
getPerimeter(self):

return 2 * (self.__width + self.__height)

extend superclass
initializer
superclass initializer

methods

The code for testing Circle and
Rectangle

from CircleFromGeometricObject import Circle A circle color: green and filled: True
from RectangleFromGeometricObject 1import Rectangle The radius is 1.5

The area is 7.06858347058
def main(Q): The diameter 1is 3.0

circle = Circle(l.5)

print("A circle”, circle)

print("The radius 1is", circle.getRadius())
print("The area 1is", circle.getArea())
print("The diameter 1is", circle.getDiameter())

A rectangle color: green and filled: True
The area is 8
The perimeter is 12

rectangle = Rectangle(2, 4)

print("\nA rectangle', rectangle)

print("The area is'", rectangle.getArea())
print("The perimeter 1is", rectangle.getPerimeter())

main() # Call the main function

Some more information about super
and sub-class

e A subclass is not a subset of its superclass; In fact, a subclass usually
contains more information and methods than its superclass

* Inheritance models the is-a relationships, but not all is-a relationships
should be modelled using inheritance

* Do not blindly extend a class just for the sake of reusing methods. For
example, it makes no sense for a Tree class to extend a Person class,
even though they share common properties such as height and
weight. A subclass and its superclass must have the is-a relationship

Practice

class A:
def __init__(self, 1 = 0):
self.i1 =1
class B(A):
def __init__(self, j = 0):
self.j = j
def main():
b =BO
print(b.1)
print(b.j)

main() # Call the main function

What is the problem with the above code?

Overriding methods

* A subclass inherits methods from a superclass

* Sometimes it is necessary for the subclass to modify the
implementation of a method defined in the superclass. This
is referred to as method overriding

Example

* The str method in the GeometricObject class returns the
string describing a geometric object. This method can be
overridden to return the string describing a circle

e The str () method is defined in the GeometricObject class and
modified in the Circle class. Both methods can be used in the
Circle class. To invoke the str method defined in the
GeometricObject class from the Circle class, use super(). str ()

class Circle(GeometricObject):
Other methods are omitted

Override the __str__ method defined in GeometricObject
def __str__(self):
return super().__str__(+ " radius: " + str(radius) _str__ in superclass

Practice

What would be the
output of the following
program?

class A:
def __1init__(self, 1
self.1 =1

0):

def ml(self):
self.i += 1

class B(A):
def __init__(self, j = 0):
super().__init__(3)
self.j =3

def ml(self):
self.i += 1

def main():
b =BQO
b.m1()
print(b.1)
print(b.j)

main() # Call the main function

The object class

* Every class in Python is descended from the object class

* The object class is defined in the Python library. If no inheritance is
specified when a class is defined, its superclass is object by default

class ClassName: , class ClassName(object):
Equivalent

Methods of the object class

e The new () method is automatically invoked when an object is
constructed. This method then invokes the init () method to initialize
the object. Normally you should only override the init () method to
initialize the data fields defined in the new class

e The str () method returns a string description for the object

e Usually you should override the str () method so that it returns an
informative description for the object

* The eq () method returns True if two objects are the same

What is the output of this program?

A
__init (self, i = 0):
self.1 = 1

ml (self) :
self.1 += 1

__str__(self): |
The content of this object is: +str(self. i)

x = A(8)
print (x)

What is the output of this program?

class A:
def _ _new__(self):
print("A's __new__() 1invoked™)

def __init__(self):
print("A's __init__ () 1invoked™)

class B(A):
def _ _new_ (self):
print("B's __new__() invoked")

def __init__(self):
print("B's __init__ () invoked™)

def main(Q):
b =BQ
a = AQ

main() # Call the main function

What is the
output of this
program?

class A:

def _ _new__(self):
self.__init__(self)
print("A's __new__ () 1invoked")

def __init__(self):
print("A's __init__ () 1invoked™)

class B(A):
def __new__(self):
self.__init__(self)
print("B's __new__() invoked")

def _init__(self):

print("B's __init__ () 1invoked™)
def main():
b =BQ
a = A0

main() # Call the main function

Polymorphism and dynamic binding

* Polymorphism means that an object of a subclass can
be passed to a parameter of a superclass type

* A method may be implemented in several classes
along the inheritance chain

* Python decides which method is invoked at runtime.
This is known as dynamic binding

Meaning of Polymorphism: the ability of something to have or to be displayed in
more than one form

Polymorphism

* The inheritance relationship enables a subclass to inherit
features from its superclass with additional new features

* A subclass is a specialization of its superclass; every instance
of a subclass is also an instance of its superclass, but not vice

versa

* Therefore, you can always pass an instance of a subclass to a
parameter of its superclass type

from CircleFromGeometricObject import Circle
Exa m p | e from RectangleFromGeometricObject import Rectangle
def main():
Display circle and rectangle properties

c = Circle(4)

r = Rectangle(l, 3)

displayObject(c)

displayObject(r)

print("Are the circle and rectangle the same size?",
isSameArea(c, r))

Display geometric object properties
def displayObject(g) :
print(g.__str__Q)

Compare the areas of two geometric objects
def isSameArea(gl, g2) :
return gl.getArea() == g2.getArea()

main() # Call the main function

Output

color: green and filled: True radius: 4
color: green and filled: True width: 1 height: 3
Are the circle and rectangle the same size? False

Dynamic binding

* Dynamic binding works as follows: Suppose an object o is an instance
of classes C1, C2, ..., Cn-1, and Cn, where C1 is a subclass of C2, C2 is a
subclass of C3, ..., and Cn-1 is a subclass of Cn

* That is, Cn is the most general class, and C1 is the most specific class
* In Python, Cn is the object class

* If o invokes a method p, Python searches the implementation for the
method p in C1, C2, ..., Cn-1, and Cn, in this order, until it is found

& K= G K= - e K—_a |

, If 0 is an instance of C4, 0 is also an
object instance of C;, Cs, ..., Cy-1, and C,,.

class Cl:

Example def _init_(selo):

def output (self):
print (" In Cl, the f is:’, self.f)

 What would be the output of class €2(C1):

. def _init__ (self):
this program? T e

def output (self) :
print (C In C2, the f is:’, self.f)

class C3(C2):
def _init_ (self):
self.f =3

class C4(C3):
def _init_ (self):
self.f = 4

a=C4()
print (a. f)
a. output ()

Example

class Student:
def str__ (self):
return "'Student”

def printStudent(self):
print(self.__str__(Q0))

class GraduateStudent(Student):
def _ _str__ (self):

return "'Graduate Student”

= Student()
= GraduateStudent()
.printStudent()

.printStudent()

T 0T

Question

* Suppose you want to modify the displayObject function in previous
example to perform the following tasks:

m Display the area and perimeter of a GeometricObject instance

m Display the diameter if the instance is a Circle, and the width and
height if the instance is a Rectangle

Does this program work?

def displayObject(g):
print("Area is", g.getArea())
print("Perimeter 1s", g.getPerimeter())
print("Diameter 1is'", g.getDiameter())
print("Width is", g.getWidth())
print("Height 1s", g.getHeight())

Isinstance() function

* The isinstance() function can be used to determine whether an object
is an instance of a class

* This function determines whether an object is an instance of a class
by using the following syntax

isinstance(object, ClassName)

from CircleFromGeometricObject import Circle
from RectangleFromGeometricObject import Rectangle

def main():
Display circle and rectangle properties
c = Circle(4)
r = Rectangle(l, 3)
print("Circle...™)
displayObject(c)
print(""Rectangle...™)
displayObject(r)

Display geometric object properties

def displayObject(g):
print("Area is", g.getArea())
print("Perimeter 1is", g.getPerimeter())

if isinstance(g, Circle):
print("Diameter 1is", g.getDiameter())
elif isinstance(g, Rectangle) :
print("Width is", g.getWidth())
print("Height is", g.getHeight())

main() # Call the main function

Circle...

Area is 50.26548245743669
Perimeter is 25.132741228718345
Diameter 1is 8

Rectangle...

Area 1is 3

Perimeter is 8

Width is 1

Height is 3

Practice

class Person:
def getInfo(self):
return "Person”

def printPerson(self):
print(self.getInfo())

class Student(Person):
def getInfo(self):
return "Student”

Person() .printPerson()
Student() .printPerson()

(a)

class Person:
def __getInfo(self):
return "Person”

def printPerson(self):
print(self.__getInfo())

class Student(Person):
def __getInfo(self):
return "Student”

Person() .printPerson()
Student() .printPerson()

(b)

What would be the outputs?

Practice

Fruit
I\
I I
Apple |
AN
Go]denDe]iciousl McIntosh

Assume that the following statements are given:

goldenDelicious = GoldenDelicious()
orange = Orange()

Questions

(a) Is goldenDelicious an instance of Fruit?

(b) Is goldenDelicious an instance of Orange?

(c) Is goldenDelicious an instance of Apple?

(d) Is goldenDelicious an instance of GoldenDelicious?
(e) Is goldenDelicious an instance of Mclntosh?

(f) Is orange an instance of Orange?

(g) Is orange an instance of Fruit?

(h) Is orange an instance of Apple?

(i) Suppose the method makeAppleCider is defined in the Apple class. Can
goldenDelicious invoke this method? Can orange invoke this method?

(j) Suppose the method makeOrangeluice is defined in the Orange class. Can
orange invoke this method? Can goldenDelicious invoke this method?

Practice: course class

-courseName: str The name of the course.

-students: 1list A list to store the students in the course.

Course(courseName: str)
getCourseName(): str
addStudent(student: str): None
dropStudent(student: str): None
getStudents(): Tist
getNumberOfStudents(): 1int

Creates a course with the specified name.
Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

Answer from Course import Course

def main(Q):

_ " " Number of students in coursel: 3
coursel = Course("Data Structures’) Peter Jones, Brian Smith, Anne Kennedy,

course2 = Course("Database Systems") Number of students in course2: 2

coursel.addStudent(""Peter Jones')
coursel.addStudent("Brian Smith")
coursel.addStudent("Anne Kennedy')

course2.addStudent(""Peter Jones')
course2.addStudent(""Steve Smith')

print(""Number of students in coursel:",
coursel.getNumberOfStudents())
students = coursel.getStudents()
for student in students:
print(student, end = ", ")

print(""\nNumber of students in course2:",
course2.getNumberOfStudents())

main() # Call the main function

Answer

class Course:

def

def

def

def

def

def

__init__(self, courseName):

self._ _courseName = courseName
self._ _students = []

addStudent(self, student):
self.__students.append(student)

getStudents(self):
return self.__students

getNumberOfStudents(self):
return len(self.__students)

getCourseName(self):
return self.__courseName

dropStudent(student):
print("Left as an exercise')

Multiple Inheritance

* In Python, we can define new class from multiple classes

* This is called multiple inheritance

* Multiple inheritance is a feature in which a class can inherit
attributes and methods from more than one parent class

Inheritance Tree

child class

* The inheritance relationship in Python can be represented by
a tree structure

Example

class AQ:
def _init_ (self, a=100) :
self. a=a

class B():
def _init_ (self, b=200) :
self. b=b

class C(A,B):
def _init__ (self, a, b, c=300) :
super (). init_ (a)
super (). _init__ (b)

self. c=c

def output (self):
print (self. a)
print (self. c)
print (self.b)

def main() :
c =C(1,2,3)
c. output ()

main ()

Example

class AQ):
def _init_ (self, a=100) :
self. a=a

class B():
def _init_ (self, b=200) :
self. b=b

class C(A,B):
def _init_ (self, a, b, c=300) :
A. init_ (self, a)
B. init_ (self,b)
self. c=c

def output (self):
print (self. a)
print (self. c)
print (self.b)

def main() :
c =C(1,2,3)
c. output ()

main ()

