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Data structure and algorithm

• A data structure is a systematic way of organizing and 
accessing data

• An algorithm is a step-by-step procedure for performing 
some task in a finite amount of time.



Why study data structure and algorithm?

Moore’s law (Gordon Moore) predicts that the density of transistors in 
integrated circuits would continue to double every 1 to 2 years



Why study data structure and algorithm?

• Moore’s law predicts that the density of transistors in integrated circuits 
would continue to double every 1 to 2 years

• However, in many areas, performance gains due to the improvements in 
algorithms have greatly exceeded even the dramatic performance gains 
due to increased processor speed

• Important for all other branches of computer science

• Plays a key role in modern technological innovation



Why study data structure and algorithm?

• Provide novel “lens” on processes outside of computer 
science and technology, such as quantum mechanics, 
economic markets, evolution

• Challenging (good for your brain!!) and funny



The algorithm designer’s mantra

• “Perhaps the most important principle for the good 
algorithm designer is to refuse to be content”

Aho, Hopcroft, and Ullman, The Design and Analysis of Computer 
Algorithms, 1974



Why study data structure and algorithm?

• Challenging (good for your brain!!) and funny

• Improved Heap Design for the Dijkstra's algorithm

• The Dijkstra's algorithm was proposed in 1956 for 
finding the shortest path between nodes in a graph

(Optional)



Example: Integer Multiplication

• Inputs: two n-digits number x and y

• Output: the product of x and y

• Primitive operations: add or multiply 2 single digit numbers



How do we define a“good” algorithm?

• The primary analysis of algorithms involves characterizing the running 
times and space usage of algorithms and data structure operations

• Running time is a natural measure of “goodness,” since time is a 
precious resource—computer solutions should run as fast as possible

• Space usage is another major issue to consider when we design an 
algorithm, since we only have limited storage spaces 



Measuring the running time experimentally



Visualize the running time

• Running time and space 
usage are dependent on 
the size of the input

• Perform independent 
experiments on many 
different test inputs of 
various sizes

• Visualize the results by 
plotting the 
performance of each 
run of the algorithm as a 
point



Challenges of experimental analysis

• Experimental running times of two algorithms are difficult to directly 
compare unless the experiments are performed in the same
hardware and software environments

• Experiments can be done only on a limited set of test inputs; hence, 
they leave out the running times of inputs not included in the 
experiment (and these inputs may be important)

• An algorithm must be fully implemented in order to execute it to 
study its running time experimentally



Principle of algorithm analysis 1: Counting 
primitive operations
• To analyse the running time of an algorithm without performing 

experiments, we perform an analysis directly on a high-level description of 
the algorithm

• We define a set of primitive operations such as the following:
ü Assigning an identifier to an object
ü Determining the object associated with an identifier
ü Performing an arithmetic operation (for example, adding two numbers)
ü Comparing two numbers
ü Accessing a single element of a Python list by index
ü Calling a function (excluding operations executed within the function)
ü Returning from a function.



Principle of algorithm analysis 2: Measuring 
Operations as a Function of Input Size

• To capture the order of growth of an algorithm’s running 
time, we will associate, with each algorithm, a function f (n)
that characterizes the number of primitive operations that 
are performed as a function of the input size n



Principle of algorithm analysis 3: Focusing 
on the Worst-Case Input
• An algorithm may run faster on some inputs than it does on others of 

the same size. Thus, we may wish to express the running time of an 
algorithm as the function of the input size obtained by taking the 
average over all possible inputs of the same size

• Unfortunately, such an average-case analysis is typically quite 
challenging. It requires us to define a probability distribution on the 
set of inputs, which is often a difficult task

• We will characterize running times in terms of the worst case, as a 
function of the input size, n, of the algorithm



The 7 functions used in algorithm analysis
• We may use the following 7 functions to measure the time complexity 

of an algorithm: constant, logarithm, linear, N-log-N, quadratic, cubic 
and other polynomials, exponential



Asymptotic Analysis
• In algorithm analysis, we focus on the growth rate of the running time as a 

function of the input size n, taking a “big-picture” approach

• Vocabulary for the analysis and design of algorithms

• “Sweet spot” for high-level reasoning about algorithms

• Coarse enough to supress unnecessary details, e.g. 
architecture/language/compiler…

• Sharp enough to make meaningful comparisons between algorithms



The big Oh notation

• Let f(n) and g(n) be functions mapping positive integers to 
positive real numbers.
•We say that f(n) is O(g(n)) if there is a real constant c > 0 and 

an integer constant n0 ≥ 1 such that
f(n) ≤ cg(n), for n ≥ n0

• This definition is often referred to as the “big-Oh” notation
• Example: The function 8n+5 is O(n).



The big Oh notation

• The big-Oh notation allows us to say that a function f(n) is 
“less than or equal to” another function g(n) up to a constant 
factor and in the asymptotic sense as n grows toward infinity

• The big-Oh notation is used widely to characterize running 
times and space bounds in terms of some parameter n, 
which varies from problem to problem, but is always defined 
as a chosen measure of the “size” of the problem



Some Properties of the Big-Oh 
Notation
• The big-Oh notation allows us to ignore constant factors and lower-order 

terms and focus on the main components of a function that affect its 
growth

• Example: 5𝑛! + 3𝑛" + 2𝑛# + 4𝑛 + 1 is  O(𝑛!)
• Example: 2$%# is  O(2$)
• Example: 2𝑛 + 100𝑙𝑜𝑔𝑛 is  O(𝑛)

• In general, we should use the big-Oh notation to characterize a function as 
closely as possible



Comparative analysis
Question: Suppose two algorithms solving the same problem 
are available: an algorithm A, which has a running time of 
O(n), and an algorithm B, which has a running time of O(𝑛!). 
Which algorithm is better?

Answer: Algorithm A is asymptotically better than algorithm B



Comparative analysis
• We can use the big-Oh notation to order classes of functions by 

asymptotic growth rate 
• Our seven functions are ordered by increasing growth rate in the 

following sequence



Why AlghaGo is a remarkable achievement?

• If we use the brute 
force approach to 
search the best move 
in Go, the time 
complexity is at the 
order of 𝑂(10")

• The search space is 
even larger than the 
number of atoms in 
the universe!!!



The line of tractability
• To differentiate efficient and inefficient algorithms, the 

general line is between polynomial time algorithms and 
exponential time algorithms

• The distinction between polynomial-time and exponential-
time algorithms is considered a robust measure of 
tractability



Example: Finding the smallest number in a list 

•What is the time complexity of this algorithm?



Recursion
• Recursion is a technique by which a function makes one or 

more calls to itself during execution

• Recursion provides an elegant and powerful alternative for 
performing repetitive tasks

• Recursion is an important technique in the study of data 
structures and algorithms



Inception



Example: The factorial function

• The factorial of a positive integer n, denoted n!, is defined as follows:

• The factorial function is important because it is known to equal the 
number of ways in which n distinct items can be arranged into a 
sequence, that is, the number of permutations of n items



The recursive definition

• First, a recursive definition contains one or more base cases, 
which are defined non-recursively in terms of fixed 
quantities

• Second, it also contains one or more recursive cases, which 
are defined by appealing to the definition of the function 
being defined



The recursive definition of 
factorial function
• The factorial function can be naturally defined in a recursive way, for 

example, 5! = 5 ·(4 · 3 · 2 · 1) = 5 · 4!

• More generally, for a positive integer n, we can define n! to be n · 
(n−1)!

• Therefore, the recursive definition of factorial function is:



Solution



How Python implements recursion

• In Python, each time a function (recursive or otherwise) is called, a 
structure known as an activation record or frame is created to store 
information about the progress of that invocation of the function

• This activation record stores the function call’s parameters and local 
variables

• When the execution of a function leads to a nested function call, the 
execution of the former call is suspended and its activation record 
stores the place in the source code at which the flow of control 
should continue upon return of the nested call



The recursive trace



Example: Drawing an English ruler
• We denote the length of the tick 

designating a whole inch as the 
major tick length. 

• Between the marks for whole 
inches, the ruler contains a series 
of minor ticks, placed at intervals 
of 1/2 inch, 1/4 inch, and so on. 

• As the size of the interval 
decreases by half, the tick length 
decreases by one



Recursive implementation of English 
ruler

•An interval with a central tick length L ≥ 1 is 
composed of:
ü An interval with a central tick length L−1
ü A single tick of length L
ü An interval with a central tick length L−1



Solution



The recursive 
trace for 
English ruler



Example: Binary search
• A classic and very useful recursive algorithm, binary search, can be 

used to efficiently locate a target value within a sorted sequence of n
elements

• When the sequence is unsorted, the standard approach to search for 
a target value is to use a loop to examine every element, until either 
finding the target or exhausting the data set; This is known as the 
sequential search algorithm



Binary search

• When the sequence is sorted and indexable, binary search is a much 
more efficient algorithm

• For any index j, we know that all the values stored at indices 0, . . . , 
j−1 are less than or equal to the value at index j, and all the values 
stored at indices j+1, . . . ,n−1 are greater than or equal to that at 
index j



The strategy of binary search

• We call an element of the sequence a candidate if, at the current 
stage of the search, we cannot rule out that this item matches the 
target

• The algorithm maintains two parameters, low and high, such that all 
the candidate entries have index at least low and at most high

• Initially, low = 0 and high = n−1. We then compare the target value to 
the median candidate, that is, the item data[mid] with index

mid = (low+high)/2



The strategy of binary search

• If the target equals data[mid], then we have found the item we 
are looking for, and the search terminates successfully

• If target < data[mid], then we recur on the first half of the 
sequence, that is, on the interval of indices from low to mid−1

• If target > data[mid], then we recur on the second half of the 
sequence, that is, on the interval of indices from mid+1 to high



Solution



Time complexity of binary search

Proposition: The binary search algorithm runs in 
O(logn) time for a sorted sequence with n elements



Proof


