
DDA4210 - 24 Spring Assignment Guru: Yifei Wu

Assignment 1: Basics, Bias-Variance, LS Opt., and Alg. Analysis

Assigned: Jan./1/9 Due: Jan./1/31 at 10:00 p.m.

Rules

• English: Answer the questions in English. Otherwise, you’ll lose half of the points.

• Electronic submission: Turn in solutions electronically via Blackboard. Be sure to submit
your homework as a single readable file.

• Collaboration policy: Collaboration is allowed for all problems, but please list all the
people with whom you discussed. Crediting help from other classmates will not take away
any credit from you.

Notably, only insightful discussions are allowed. Directly sharing the solutions is prohibited.
The details of the collaboration policy for this course are available in the Resources tab on
Piazza.

• Time issue: Note that late submissions will result in discounted scores: 0-24 hours → 80%,
24-72 hours → 50%, 72 or more hours→ 0%.

• Score and weight:

DDA4210: 100 points, the weight of this assignment in the final grade is 10%.
AIR6002: 150 points, the weight of this assignment in the final grade is 15%.

• Important Note: Problems/Sub-problems with a label [AIR6002] are only required for
master students in AIR6002.

• Questions on assignment: Start early and come to TA office hours with your questions
on the assignments.

1

1. Basics (you are assumed to know the answers before taking this course)
Answer each of the following problems with 1-2 short sentences. [8 points]

(a) What is a hypothesis set?

(b) What is the hypothesis set of a linear model?

(c) What is overfitting?

(d) What are two ways to prevent overfitting?

(e) What are training data and test data, and how are they used differently? Why should you
never change your model based on information from test data?

(f) What are the two assumptions we make about how our dataset is sampled?

(g) Consider the machine learning problem of deciding whether or not an email is spam. What
could X, the input space, be? What could Y , the output space, be?

(h) What is the k-fold cross-validation procedure?

2. Bias-Variance Tradeoff

(a) Derive the bias-variance decomposition for the squared error loss function. That is, show that
for a model fS trained on a dataset S to predict a target y(x) for each x,

ES [Eout (fS)] = Ex[Bias(x) + Var(x)]

given the following definitions: [10 points]

F (x) = ES [fS(x)]

Eout (fS) = Ex

[
(fS(x)− y(x))2

]
Bias(x) = (F (x)− y(x))2

Var(x) = ES

[
(fS(x)− F (x))2

]
(b) [AIR6002] In the following problems you will explore the bias-variance tradeoff by producing

learning curves for polynomial regression models.

A learning curve for a model is a plot showing both the training error and the cross-validation
error as a function of the number of points in the training set. These plots provide valuable
information regarding the bias and variance of a model and can help determine whether a
model is over- or under-fitting.

Polynomial regression is a type of regression that models the target y as a degree- d polynomial
function of the input x. (The modeler chooses d.) You don’t need to know how it works for
this problem, just know that it produces a polynomial that attempts to fit the data.

Use the provided notebook_2.ipynb Jupyter notebook to enter your code for this question.
This notebook contains examples of using NumPy’s polyfit and polyval methods, and

2

notebook_2.ipynb
polyfit
polyval

scikit-learn’s KFold method; you may find it helpful to read through and run this example
code prior to continuing with this problem. Additionally, you may find it helpful to look at
the documentation for scikitlearn’s learning_curve method for some guidance.

The dataset bv_data.csv is provided and has a header denoting which columns correspond
to which values. Using this dataset, plot learning curves for 1st-, 2nd-, 6th-, and 12th-
degree polynomial regression (4 separate plots) by following these steps for each degree d ∈
{1, 2, 6, 12}:

(1) For each N ∈ {20, 25, 30, 35, · · · , 100} :

i. Perform 5-fold cross-validation on the first N points in the dataset (setting aside the
other points), computing the both the training and validation error for each fold.

∗ Use the mean squared error loss as the error function.

∗ Use NumPy’s polyfit method to perform the degree-d polynomial regression
and NumPy’s polyval method to help compute the errors. (See the example
code and NumPy documentation for details.)

∗ When partitioning your data into folds, although in practice you should ran-
domize your partitions, for the purposes of this set, simply divide the data into
K contiguous blocks.

ii. Compute the average of the training and validation errors from the 5 folds.

(2) Create a learning curve by plotting both the average training and validation error as
functions of N . [10 points]

3. Find the closed-form solutions of the following optimization problems (W ∈ RK×D, N ≫ D >
K):

(a) minimizeW,b
∑N

i=1 ∥yi −Wxi − b∥2 [5 points]

(b) minimizeW,b
1
2

∑N
i=1 ∥yi −Wxi − b∥2 + λ

2∥W∥2F [7 points]

4. Consider the following problem

minimize
W

1

2
∥WΦ−Y∥2F +

λ

2
∥W∥2F

where ∥ · ∥F denotes the Frobenius norm; Y ∈ RK×N , Φ = [ϕ(x1), ϕ(x2), . . . , ϕ(xN)], xi ∈ RD,
i = 1, 2, . . . , N , and ϕ is the feature map induced by a kernel function k(·, ·). Prove that for any
x ∈ RD, we can make prediction as

y = Wϕ(x) = Y (K+ λI)−1 k(x),

where K = Φ⊤Φ and k(x) = [k(x1,x), k(x2,x), . . . , k(xN ,x)]⊤. [14 points]

5. Compute the space and time complexities (in the form of big O, consider only the training
stage) of the following algorithms: [6 points]

3

KFold
learning_curve
bv_data.csv
polyfit
polyval
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html

(a) Ridge regression (Question 2(b)) with the closed-form solution

(b) PCA (N data points of D-dimension, choose d principal components)

(c) Neural network with architecture D−H1 −H2 −K on a mini-batch of size B (consider only
the forward process and neglect the computational costs of activation functions)

* [Hint: the time complexity of A ∈ Rm×n × B ∈ Rn×l is O(mnl); the time complexities of
eigenvalue decomposition and inverse of an n× n matrix are both O(n3).]

6. Prove the convergence of the generic gradient boosting algorithm (AnyBoost). Specifically,
suppose in the algorithm of AnyBoost (page 14 of Lecture 02), the gradient of the objective function
L is L-Lipschitz continuous, i.e., there exists L > 0 such that

∥∇L(H)−∇L(H ′)∥ ≤ L∥H −H ′∥

holds for any H and H ′. Suppose in the algorithm, α is computed as

αt+1 = −⟨∇L(Ht), ht+1⟩
L∥ht+1∥2

.

Then the ensemble model is updated as Ht+1 = Ht + αt+1ht+1. Prove that the algorithm either
terminates at round T with ⟨∇L(Ht), ht+1⟩ or L(Ht) converges to a finite value, in which case

limt→∞⟨∇L(Ht), ht+1⟩ = 0.

* [Hint: Using the following result: Suppose L : H → R and ∥∇L(F)−∇L(G)∥ ≤ L∥F −G∥ holds

for any F and G in H, then L(F + wG)− L(F) ≤ w⟨∇L(F), G⟩+ Lw2

2 ∥G∥2 holds for any w > 0.]
[14 points]

7. Stochastic gradient descent (SGD) is an important optimization tool in machine learning, used
every- where from logistic regression to training neural networks. In this problem, you will be asked
to first implement SGD for linear regression using the squared loss function. Then, you will analyze
how several parameters affect the learning process.

Linear regression learns a model of the form:

f (x1, x2, · · · , xd) =

(
d∑

i=1

wixi

)
+ b

(a) We can make our algebra and coding simpler by writing f (x1, x2, · · · , xd) = wTx for vectors
w and x. But at first glance, this formulation seems to be missing the bias term b from the
equation above. How should we define x and w such that the model includes the bias term?

[3 points]

Linear regression learns a model by minimizing the squared loss function L, which is the sum across
all training data {(x1, y1) , · · · , (xN , yN)} of the squared difference between actual and predicted
output values:

L(f) =
N∑
i=1

(
yi −wTxi

)2
4

(b) SGD uses the gradient of the loss function to make incremental adjustments to the weight
vector w. Derive the gradient of the squared loss function with respect to w for linear
regression.

[3 points]

[AIR6002] The following few problems ask you to work with the first of two provided Jupyter
notebooks for this problem, notebook_7_part1.ipynb, which includes tools for gradient descent
visualization. This notebook utilizes the files sgd_helper.py and multiopt.mp4, but you should
not need to modify either of these files. In addition, to run the animation code provided in this
notebook, you may need to install FFmpeg, which includes a library for handling multimedia data.
For step-by-step instructions on installing FFmpeg, please refer to the file installing_ffmpeg.pdf.

For your implementation of problems (c)-(e), do not consider the bias term.

(c) [AIR6002] Implement the loss, gradient, and SGD functions, defined in the notebook, to
perform SGD, using the guidelines below:

- Use a squared loss function.

- Terminate the SGD process after a specified number of epochs, where each epoch performs
one SGD iteration for each point in the dataset.

- It is recommended, but not required, that you shuffle the order of the points before each
epoch such that you go through the points in a random order. You can use numpy.random.

permutation.

- Measure the loss after each epoch. Your SGD function should output a vector with the loss
after each epoch, and a matrix of the weights after each epoch (one row per epoch). Note
that the weights from all epochs are stored in order to run subsequent visualization code to
illustrate SGD. [10 points]

(d) [AIR6002] Run the visualization code in the notebook corresponding to problem (d). How
does the convergence behavior of SGD change as the starting point varies? How does this
differ between datasets 1 and 2? Please answer in 2-3 sentences. [3 points]

(e) [AIR6002] Run the visualization code in the notebook corresponding to problem (e). One
of the cells-titled ”Plotting SGD Convergence”-must be filled in as follows. Perform SGD on
dataset 1 for each of the learning rates η ∈ {1e− 6, 5e− 6, 1e− 5, 3e− 5, 1e− 4}. On a single
plot, show the training error vs. number of epochs trained for each of these values of η. What
happens as η changes? [6 points]

The following problems consider SGD with the larger, higher-dimensional dataset, sgd_data.csv.
The file has a header denoting which columns correspond to which values. For these problems, use
the Jupyter notebook notebook_7_part2.ipynb.

For your implementation of problems (f)-(h), do consider the bias term using your answer to
problem (a).

5

notebook_7_part1.ipynb
sgd_helper.py
multiopt.mp4
installing_ffmpeg.pdf
loss
gradient
SGD
numpy.random.permutation
numpy.random.permutation
SGD
sgd_data.csv
notebook_7_part2 .ipynb

(f) [AIR6002] Use your SGD code with the given dataset, and report your final weights. Follow
the guidelines below for your implementation: [6 points]

- Use η = e−15 as the step size.

- Use w = [0.001, 0.001, 0.001, 0.001] as the initial weight vector and b = 0.001 as the initial
bias.

- Use at least 1000 epochs.

- You should incorporate the bias term in your implementation of SGD and do so in the
vector style of problem (a).

- Note that for these problems, it is no longer necessary for the SGD function to store the
weights after all epochs; you may change your code to only return the final weights.

(g) [AIR6002] Perform SGD as in the previous problem for each learning rate η in{
e−10, e−11, e−12, e−13, e−14, e−15

}
,

and calculate the training error at the beginning of each epoch during training. On a single
plot, show training error vs. number of epochs trained for each of these values of η. Explain
what is happening. [3 points]

(h) [AIR6002] The closed form solution for linear regression with least squares is

w =

(
N∑
i=1

xix
T
i

)−1(N∑
i=1

xiyi

)
.

Compute this analytical solution. Does the result match up with what you got from SGD?

[3 points]

Answer the remaining questions in 1-2 short sentences.

(i) [AIR6002] Is there any reason to use SGD when a closed form solution exists? [3 points]

(j) [AIR6002] Based on the SGD convergence plots that you generated earlier, describe a stop-
ping condition that is more sophisticated than a pre-defined number of epochs. [3 points]

(k) [AIR6002] How does the convergence behavior of the weight vector differ between the per-
ceptron and SGD algorithms?

[3 points]

6

8. True or False? If False, then explain shortly. [10 points]

(a) The inequality G(F , n) ≤ n2 holds for any model class F .

(b) The VC dimension of an axis-aligned rectangle in a 2D space is 4.

(c) The VC dimension of a circle in a 2D space is 4.

(d) The VC dimension of 1-nearest neighbor classifier in d-dimensional space is d+ 1.

(e) Let d be the VC dimension of F . Then the inequality G(F , n) ≤
(
en
d

)d
always holds.

9. In LASSO, the model class is defined as F = {x 7→ ⟨w,x⟩ : ∥w∥1 ≤ α}. Suppose x ∈ Rd,
y ∈ {−1,+1}, the training data are S = {(xi, yi)}ni=1, and max1≤i≤n ∥xi∥∞ ≤ β, where ∥ · ∥∞
denotes the largest absolute element of a vector.

(a) Find an upper bound of the empirical Rademacher complexity

RS(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif (xi)

]

, where σi are the Rademacher variables. [15 points]

(b) Suppose the loss function is the absolute loss. Use the inequality (highlighted in blue) on page
30 and Lemma 5 on page 35 (i.e., R(ℓ ◦F) ≤ ηR(F)) of Lecture 03 to derive a generalization
error bound for LASSO. [5 points]

* [Hint: For question (a), please use the inequality ⟨a,b⟩ ≤ ∥a∥1∥b∥∞ and the following lemma:

Lemma 1. Let A ⊆ Rn be a finite set of points with r = maxx∈A ∥x∥2 and denote x =
(x1, x2, . . . , xn). Then

Eσ

[
max
x∈A

n∑
i=1

xiσi

]
≤ r
√
2 log |A|,

where |A| denotes the cardinality of set A and σi are the Rademacher variables.]

7

