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Logistics

Instructor: Tongxin Li
Email: litongxin@cuhk.edu.cn
Personal website: https://tongxin.me/
Office: Daoyuan Building 323A
Office hours: Thu 9:50-10:50 am

Course website: https://tongxin.me/DDA4210/
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USTFs:
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Assessment (DDA4210)

Homework (30%)
Three assignments (tri-weekly)
Involves theory, analysis, computation, and programming.

Course project (35%)
Format: Python programming for advanced machine learning
Topic: determined by yourself (given a few examples or choices)
Teamwork: 1 to 4 members per team
Outcome evaluation: [report(25%)+presentation(75%)]⇥rind

presentation: 75% = 10%peer + 25%TA + 40%instructor
rind 2 {0.5, 0.8, 1}: it is rated by your teammates on your contribution;
0.5 (or 0.8) means your contribution is less than 20% (or 50%) of the
expected workload.

Evaluation criteria: significance, novelty, technical soundness,
completeness

Final exam (35%)
Single-choice questions, calculation, math derivation/proofs, etc.

Tongxin Li (SDS, CUHK-SZ) Lecture 01 Introduction and Review Spring, 2024 6 / 43



Assessment (DDA4210)

Homework (30%)
Three assignments (tri-weekly)
Involves theory, analysis, computation, and programming.

Course project (35%)
Format: Python programming for advanced machine learning
Topic: determined by yourself (given a few examples or choices)
Teamwork: 1 to 4 members per team
Outcome evaluation: [report(25%)+presentation(75%)]⇥rind

presentation: 75% = 10%peer + 25%TA + 40%instructor
rind 2 {0.5, 0.8, 1}: it is rated by your teammates on your contribution;
0.5 (or 0.8) means your contribution is less than 20% (or 50%) of the
expected workload.

Evaluation criteria: significance, novelty, technical soundness,
completeness

Final exam (35%)
Single-choice questions, calculation, math derivation/proofs, etc.

Tongxin Li (SDS, CUHK-SZ) Lecture 01 Introduction and Review Spring, 2024 6 / 43

O



Assessment (DDA4210)

Homework (30%)
Three assignments (tri-weekly)
Involves theory, analysis, computation, and programming.

Course project (35%)
Format: Python programming for advanced machine learning
Topic: determined by yourself (given a few examples or choices)
Teamwork: 1 to 4 members per team
Outcome evaluation: [report(25%)+presentation(75%)]⇥rind

presentation: 75% = 10%peer + 25%TA + 40%instructor
rind 2 {0.5, 0.8, 1}: it is rated by your teammates on your contribution;
0.5 (or 0.8) means your contribution is less than 20% (or 50%) of the
expected workload.

Evaluation criteria: significance, novelty, technical soundness,
completeness

Final exam (35%)
Single-choice questions, calculation, math derivation/proofs, etc.

Tongxin Li (SDS, CUHK-SZ) Lecture 01 Introduction and Review Spring, 2024 6 / 43



Assessment (AIR6002)

Homework (40%)
Three assignments (tri-weekly)
Involves theory, analysis, computation, and more programming.

Course project (60%)
Format: Cutting-edge topics in advanced machine learning
Topic: determined by yourself (given a few examples or choices)
Teamwork: 1 to 3 members per team
Outcome evaluation: [mid-term proposal(10%)+
report(25%)+presentation(65%)]⇥rind

presentation: 75% = 10%peer + 25%TA + 40%instructor
rind 2 {0.5, 0.8, 1}: it is rated by your teammates on your contribution;
0.5 (or 0.8) means your contribution is less than 20% (or 50%) of the
expected workload.

Evaluation criteria: significance, novelty, technical soundness,
completeness
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Some remarks

Plagiarism violates the university policy of “Academic Integrity"
Plagiarism in homework assignments, course projects, and final
exam will be dealt with severity.
For example, assignments with plagiarism will be graded as zero.
Repeated plagiarism will lead to an "F" for the entire course.

Attendance requirement
Attending lectures/tutorials onsite is highly encouraged.
Please answer or raise questions actively.
Let the instructor/TAs be able to recognize you as a student in the
class.

Participation in Course&Teaching Evaluation (CTE)
Your feedback (either positive or negative) helps improve the
course and make it even better.
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Some remarks

The building blocks of machine learning are data, models,
and algorithms.

The building blocks of advanced machine learning
(DDA4210/AIR6002) are more complicated data, more
powerful models, and state-of-the-art algorithms in real-world
applications.
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Syllabus
1 Review of basic machine learning methods
2 Advanced ensemble learning
3 Learning theory
4 Advanced applications: recommendation and search
5 Spectral clustering and semi-supervised learning
6 Graph neural networks
7 Nonlinear dimensionality reduction and data visualization
8 Generative models (VAE, GAN, diffusion model)
9 Causal machine learning

10 Privacy in machine learning
11 Fairness in machine learning
12 Interpretability in machine learning
13 Course project presentation
14 Final exam
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Basic machine learning methods

Linear regression and classification
K-nearest neighbor method
Decision tree, bagging, and random forest
Support vector machine
Neural networks (MLP, CNN, and RNN)
K-means and Gaussian mixture models
Principal component analysis
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Advanced Machine Learning: Boosting

Boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance
in supervised learning, and a family of machine learning algorithms that convert weak
learners to strong ones.—-Wikipedia
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Advanced Machine Learning: Learning Theory

Machine Learning Theory1

Also known as Computational Learning Theory
Aims to understand the fundamental principles of learning as a
computational process and combines tools from Computer
Science and Statistics

Creating mathematical models that capture key aspects of machine
learning, in which one can analyze the inherent ease or difficulty of
different types of learning problems.
Proving guarantees for algorithms (under what conditions will they
succeed, how much data and computation time is needed) and
developing machine learning algorithms that provably meet desired
criteria.
Mathematically analyzing general issues, such as: "When can one
be confident about predictions made from limited data?", "What
kinds of methods can learn even in the presence of large quantities
of distracting information?"

1https://www.cs.cmu.edu/~avrim/Talks/mlt.pdf
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Advanced Machine Learning: Recommendation System

Collaborative filtering methods
Content-based methods
Hybrid methods
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Advanced Machine Learning: Spectral Clustering
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Advanced Machine Learning: Semi-Supervised Learning

Why Semi-Supervised Learning?
Classification on the two moons pattern [Zhou et al. 04]:
(a) two labeled points; (b) SVM with an RBF kernel; (c) k-NN with k = 1.
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Advanced Machine Learning: Graph Neural Networks
Graph-Structured data cannot be well handled by conventional neural networks!

Tasks: node classification, link prediction, graph classification

The image is from Thomas Kipf.
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Advanced Machine Learning: NLDR

NLDR: nonlinear Dimensionality reduction
Example: visualizing MNIST handwritten digits (10 classes)
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Advanced Machine Learning: Generative Models

Use the model trained on training data to generate new data, such as
images, text, audio, and videos.

Generating images [Rombach et al. 2022]
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Advanced Machine Learning: Generative Models

Use the model trained on training data to generate new data, such as
images, text, audio, and videos.

Text to image [Rombach et al. 2022]
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FirstPART.

1. Ensemble learning.

2. Recommendation system.

3.Clustering.S5. GNN 3
4. Nonlinear

DR.

6 Generative
Models.

7. Learning theory

· Develop ML models, and

algorithms
thatare agate.-

second PART.

Next, besides accuracy.

explainable.
E ↳ny-preserving. 3.
I robust.



Advanced Machine Learning: Causal Learning

Causal inference

Causal machine learning (for non-i.i.d problem)

Causal discovery
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Advanced Machine Learning: Privacy and Safety
Schematic overview of the relationships and interactions between data, algorithms,
actors and techniques in the field of secure and private AI [Kaissis et al. 2020]:
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Advanced Machine Learning: Fairness
Where does the unfairness in machine learning algorithms come from?
How can we address the unfairness?
Examples of how bias in machine learning can affect our daily lives [Grabski et al.

2020]:
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Advanced Machine Learning: Interpretability

Understanding the reasons behind decisions made by black-box
machine learning models
Explaining individual outputs of a model that predicts that a patient has the flu

[Ribeiro et al. 2016]:

Explaining an image classification prediction made by Google’s Inception neural
network [Ribeiro et al. 2016]:
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Review for basic machine learning methods

Linear regression and classification
K-nearest neighbor method
Decision tree, bagging, and random forest
Support vector machine
Neural networks (MLP, CNN, and RNN)
K-means and Gaussian mixture models
Principal component analysis
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Review: Linear Regression

Training data: D = {(x1, y1), (x2, y2), . . . (xN , yN)}
- xi 2 RD, yi 2 RK , i = 1, 2, . . . ,N
- with i.i.d assumption usually

Learn a linear function fW,b(x) = Wx + b from D
- W 2 RK⇥D, b 2 RK
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Review: Linear Regression

Linear regression (least squares)

min
W,b

NX

i=1

kyi � Wxi � bk2 (1)

Ridge regression

min
W,b

1
2

NX

i=1

kyi � Wxi � bk2 +
�

2
kWk2

F (2)

LASSO

min
W,b

1
2

NX

i=1

kyi � Wxi � bk2 + �kWk1 (3)

* kWkF =
qP

i
P

j w2
ij , kWk1 =

P
i
P

j |wij |
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Review: Linear Classification

Training data: D = {(x1, y1), (x2, y2), . . . (xN , yN)}
- xi 2 RD, yi 2 {+1,�1}, i = 1, 2, . . . ,N
- with i.i.d assumption usually

Learn a linear classifier fw,b(x) = w>x + b from D
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Review: Linear Classification

Logistic regression (binary classification, y 2 {0, 1})

fw,b(x) = �(w>x + b) =
1

1 + exp(�w>x � b)
(4)

min
w,b

� 1
N

NX

i=1

�
yi log fw,b(xi) + (1 � yi) log(1 � fw,b(xi))

�
(5)

Softmax regression (multi-class classification, y 2 {0, 1}K )

f (j)W,b(x) =
exp(w>

j x + bj)
PK

c=1 exp(w>
c x + bc)

(6)

min
w,b

� 1
N

NX

i=1

KX

j=1

yij log f (j)w,b(xi) (7)
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Review: K-Nearest Neighbor Method

k-NN: a nonlinear regression
or classification model
Determine the following
beforehand

- distance metric (`2 or `1
norms, etc)

- number (k ) of nearest
neighbors

k-NN is a non-parametric
model

Figure: A toy example (k=3)
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Review: Decision Tree
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Review: Random Forest
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Review: Support Vector Machine

Margin width:

M = (x+ � x�) · n

= (x+ � x�) · w
kwk =

2
kwk

Maximum margin classifier

min
w, b

1
2
kwk2

s.t. yi(w>xi + b) � 1, 8i
(8)

Tongxin Li (SDS, CUHK-SZ) Lecture 01 Introduction and Review Spring, 2024 33 / 43

(1964)

- ! O

-oo
Conly works well when

dreary
-

- O
Q:DB Linear V O

Moal,heet X



Review: Support Vector Machine

Margin width:

M = (x+ � x�) · n

= (x+ � x�) · w
kwk =

2
kwk

Maximum margin classifier

min
w, b

1
2
kwk2

s.t. yi(w>xi + b) � 1, 8i
(8)

Tongxin Li (SDS, CUHK-SZ) Lecture 01 Introduction and Review Spring, 2024 33 / 43

If data is notlinearly

/
separable,

Soft

-
X

1 +i2max (0.1 - x:(wixi-b)
I

-

1-maxis:(wixi-b)e
differentiable



Review: Support Vector Machine
Dual problem

max
↵

LD(↵) =
NX

i=1

↵i �
1
2

NX

i=1

NX

j=1

↵i↵j yiyjx>
i xj

s.t.
NX

i=1

↵i yi = 0, ↵i � 0, i = 1, . . . ,N

(9)

Kernel SVM
- replace x with �(x)
- �(xi)>�(xj) = k(xi , xj)
- k(xi , xj) is a kernel function, e.g, k(xi , xj) = exp(��kxi � xjk2)

Slacked SVM

min
w,b,⇠

1
2
kwk2 + C

NX

i=1

⇠i

s.t. yi(w>xi + b) � 1 � ⇠i , ⇠i � 0, i = 1, . . . ,N

(10)
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Review: Neural Networks

Fully connected feedforward network (multi-layer perceptron,
MLP)

h(1) = f (1)(x) h(2) = f (2)(h(1)) . . . y = f (L)(h(L�1))

Or y = f (L) � · · · � f (1)(x)
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Review: Neural Networks

Convolutional neural network (CNN)
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Review: Neural Networks

Recurrent neural network (RNN)

Other models for sequential data
LSTM, GRU, etc
Transformer

Widely used in LLMs such as GPTs
Not covered by DDA3020 and DDA4210
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Review: Classification on Real Data

Classification on MNIST handwritten digits dataset
http://yann.lecun.com/exdb/mnist/

Figure: Samples of MNIST
(28 ⇥ 28 gray-scale images, 60k
for training, 10 k for testing)

classifier test error
rate (%)

linear classifier
(least squares) 12.0

k-nearest-neighbors 5.0
generalized linear classifier

(Gaussian basis 1000) 3.6

neural network (MLP)
500-300 HU, softmax

1.53

CNN LeNet-5 0.95
SVM (Gaussian kernel) 1.4
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Review: Classification on Real Data

Classification on Fashion-MNIST dataset
https://cloudxlab.com/blog/fashion-mnist-using-machine-learning/

Figure: Samples of Fashion-MNIST
(28 ⇥ 28 gray-scale images, 60k for
training, 10 k for testing)

classifier test error
rate (%)

softmax 15.3
decision tree 21.06
random forest 15.18
neural network (MLP)

(256-128-100 HU)
12.6

CNN <8
HOG+SVM 7.4
Google AutoML 6.1

More results are at https://github.com/
zalandoresearch/fashion-mnist

Tongxin Li (SDS, CUHK-SZ) Lecture 01 Introduction and Review Spring, 2024 39 / 43



Review: K-Means Clustering

Clustering (unsupervised learning): given a set of D-dimensional
data {x1, x2, . . . , xN}, partition them into K clusters such that each
data point is similar to the data in the same cluster and dissimilar
to the data in different clusters.

Denote cluster j by Cj and let
µj be the centroid of Cj .
K-means clustering minimizes

J(µ) =
KX

j=1

X

x2Cj

��x � µj
��2

(11)
Algorithm (alternate)

1 Assign each data point to
the closest center

2 Update the cluster center
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Review: Gaussian Mixture Models

Multivariate Gaussian distribution

p(x | µ,⌃) =
1p

(2⇡)D|⌃|
exp

✓
�1

2
(x � µ)>⌃�1(x � µ)

◆

Gaussian mixture distribution

p(x) =
KX

j=1

⇡jN (x|µj ,⌃j)

- K different Gaussian distributions
- {⇡j}: mixing coefficients
-
PK

j=1 ⇡j = 1, 0  ⇡j  1

Algorithm: Expectation-Maximization
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Review: Principal Component Analysis

PCA: find the orthogonal
projection of data onto a
lower-dimensional subspace that

- maximizes the variance of
projected data

- or minimizes the reconstruction
error, i.e.,

J =
1
N

NX

i=1

kxi � x̃ik2

=
1
N

NX

i=1

��xi � UU>xi
��2

(12)

* x 2 RD, U 2 RD⇥d

Solution of PCA: eigenvalue decomposition or singular value
decomposition
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Review: More Topics (optional)

Bayes’ theorem, maximum likelihood estimation (MLE), maximum
a posteriori estimation (MAP)
Classification evaluation metrics

Precision, recall, accuracy, F1-score, AUC (TPR/FPR)

Cross-validation
Over-/under-fitting and bias-variance trade-off
Expectation maximization
Kernel density estimation
Clustering evaluation metrics
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