
Nonlinear Dimensionality Reduction I: Local

Linear Embedding

36-350, Data Mining

5 October 2009

Contents

1 Why We Need Nonlinear Dimensionality Reduction 1

2 Local Linearity and Manifolds 5

3 Locally Linear Embedding (LLE) 7
3.1 Finding Neighborhoods . 8
3.2 Finding Weights . 9

3.2.1 k > p . 10
3.3 Finding Coordinates . 11

4 More Fun with Eigenvalues and Eigenvectors 12
4.1 Finding the Weights . 12

4.1.1 k > p . 14
4.2 Finding the Coordinates . 14

5 Calculation 16
5.1 Finding the Nearest Neighbors 16
5.2 Calculating the Weights . 19
5.3 Calculating the Coordinates . 24

1 Why We Need Nonlinear Dimensionality Re-
duction

Consider the points shown in Figure 1. Even though there are two features,
a.k.a. coordinates, all of the points fall on a one-dimensional curve (as it hap-
pens, a logarithmic spiral). This is exactly the kind of constraint which it would
be good to recognize and exploit — rather than using two separate coordinates,
we could just say how far along the curve a data-point is.

1

-300 -200 -100 0 100

-2
00

-1
00

0
10
0

20
0

30
0

40
0

x[,1]

x[
,2
]

x=matrix(c(exp(-0.2*(-(1:300)/10))*cos(-(1:300)/10),
exp(-0.2*(-(1:300)/10))*sin(-(1:300)/10)),

ncol=2)
plot(x)

Figure 1: Two-dimensional data constrained to a smooth one-dimensional re-
gion, namely the logarithmic spiral, r = e−0.2θ in polar coordinates.

2

0 50 100 150 200 250 300

-2
00

-1
00

0
10
0

20
0

30
0

Index

pr
co

m
p(

x)
$x

[,
1]

Figure 2: Projections of the spiral points on to their first principal component.

PCA will do poorly with data like this. Remember that to get a one-
dimensional representation out of it, we need to take the first principal com-
ponent, which is straight line along which the data’s projections have the most
variance. If this works for capturing structure along the spiral, then projections
on to the first PC should have the same order that the points have along the
spiral.1 Since, fortuitously, the data are already in that order, we can just plot
the first PC against the index (Figure 2). The results are — there is really no
other word for it — screwy.

So, PCA with one principal component fails to capture the one-dimensional
structure of the spiral. We could add another principal component, but then
we’ve just rotated our two-dimensional data. In fact, any linear dimensionality-

1It wouldn’t matter if the coordinate increased as we went out along the spiral or decreased,
just so long as it was monotonic.

3

-300 -200 -100 0 100

-2
00

-1
00

0
10
0

20
0

30
0

40
0

x1

x 2

fit.all = prcomp(x)
approx.all=fit.all$x[,1]%*%t(fit.all$rotation[,1])
plot(x,xlab=expression(x[1]),ylab=expression(x[2]))
points(approx.all,pch=4)

Figure 3: Spiral data (circles) replotted with their one-dimensional PCA ap-
proximations (crosses).

4

reduction method is going to fail here, simply because the spiral is not even
approximately a one-dimensional linear subspace.

What then are we to do?

1. Stick to not-too-nonlinear structures.

2. Somehow decompose nonlinear structures into linear subspaces.

3. Generalize the eigenvalue problem of minimizing distortion.

There’s not a great deal to be said about (1). Some curves can be approx-
imated by linear subspaces without too much heartbreak. (For instance, see
Figure 4.) We can use things like PCA on them, and so long as we remem-
ber that we’re just seeing an approximation, we won’t go too far wrong. But
fundamentally this is weak. (2) is hoping that we can somehow build a strong
method out of this weak one; as it happens we can, and it’s called locally linear
embedding (and its variants). The last is diffusion maps, which we’ll cover next
lecture.

2 Local Linearity and Manifolds

Let’s look again at Figure 4. A one-dimensional linear subspace is, in plain
words, a straight line. By doing PCA on this part of the data alone, we are
approximating a segment of the spiral curve by a straight line. Since the seg-
ment is not very curved, the approximation is reasonably good. (Or rather, the
segment was chosen so the approximation would be good, consequently it had
to have low curvature.) Notice that this error is not a random scatter of points
around the line, but rather a systematic mis-match between the true curve and
the line — a bias which would not go away no matter how much data we had
from the spiral. The size of the bias depends on how big a region we are using,
and how much the tangent direction to the curve changes across that region —
the average curvature. By using small regions when the curvature is high and
big regions when the curvature is low, we can maintain any desired degree of
approximation.

If we shifted to a different part of the curve, we could do PCA on the data
there, too, getting a different principal component and a different linear approx-
imations to the data. Generally, as we move around the degree of curvature will
change, so the size of the region we’d use would also need to grow or shrink.

This suggests that we could make some progress towards learning nonlinear
structures in the data by patching together lots of linear structures. We could,
for example, divide up the whole data space into regions, and do a separate
PCA in each region. Here we’d hope that in each region we needed only a single
principal component. Such hopes would generally be dashed, however, because
this is a bit too simple-minded to really work.

1. We’d need to chose the number of regions, introducing a trade-off between
having many points in each region (so as to deal with noise) and having
small regions (to keep the linear approximation good).

5

-250 -200 -150 -100

-2
00

-1
50

-1
00

x1

x 2

fit = prcomp(x[270:280,])
pca.approx = fit$x[,1]%*%t(fit$rotation[,1])+colMeans(x[270:280,])
plot(rbind(x[270:280,],pca.approx),type="n",

xlab=expression(x[1]),ylab=expression(x[2]))
points(x[270:280,])
points(pca.approx,pch=4)

Figure 4: Portion of the spiral data (circles) together with its one-dimensional
PCA approximation (crosses).

6

2. Ideally, the regions should be of different sizes, depending on average cur-
vature, but we don’t know the curvature.

3. What happens at the boundaries between regions? The principal compo-
nents of adjacent regions could be pointing in totally different directions.

Nonetheless, this is the core of a good idea. To make it work, we need
to say just a little about differential geometry, specifically the idea of a
manifold.2 For our purposes, a manifold is a smooth, curved subset of a
Euclidean space, in which it is embedded. The spiral curve (not the isolated
points I plotted) is a one-dimensional manifold in the plane, just as are lines,
circles, ellipses and parabolas. The surface of a sphere or a torus is a two-
dimensional manifold, like a plane. The essential fact about a q-dimensional
manifold is that it can be arbitrarily well-approximated by a q-dimensional
linear subspace, the tangent space, by taking a sufficiently small region about
any point.3 (This generalizes the fact any sufficiently small part of a curve
about any point looks very much like a straight line, the tangent line to the
curve at that point.) Moreover, as we move from point to point, the local linear
approximations change continuously, too. The more rapid the change in the
tangent space, the bigger the curvature of the manifold. (Again, this generalizes
the relation between curves and their tangent lines.) So if our data come from
a manifold, we should be able to do a local linear approximation around every
part of the manifold, and then smoothly interpolate them together into a single
global system. To do dimensionality reduction — to learn the manifold — we
want to find these global low-dimensional coordinates.4

3 Locally Linear Embedding (LLE)

Locally linear embedding (or: local linear embedding, you see both) is a clever
scheme for finding low-dimensional global coordinates when the data lie on (or

2Differential geometry is a very beautiful and important branch of mathematics, with
its roots in the needs of geographers in the 1800s to understand the curved surface of the
Earth in detail (geodesy). The theory of curved spaces they developed for this purpose
generalized the ordinary vector calculus and Euclidean geometry, and turned out to provide
the mathematical language for describing space, time and gravity (Einstein’s general theory
of relativity; Lawrie (1990)), the other fundamental forces of nature (gauge field theory;
Lawrie (1990)), dynamical systems Arnol’d (1973); Guckenheimer and Holmes (1983), and
indeed statistical inference (information geometry; Kass and Vos (1997); Amari and Nagaoka
(1993/2000)). Good introductions are Spivak (1965) and Schutz (1980) (which confines the
physics to one (long) chapter on applications).

3If it makes you happier: every point has an open neighborhood which is homeomorphic to
Rq , and the transition from neighborhood to neighborhood is continuous and differentiable.

4There are technicalities here which I am going to gloss over, because this is not a class in
differential geometry. (Take one, it’s good for you!) The biggest one is that most manifolds
don’t admit of a truly global coordinate system, one which is good everywhere without excep-
tion. But the places where it breaks down are usually isolated point and easily identified. For
instance, if you take a sphere, almost every point can be identified by latitude and longitude
— except for the poles, where longitude becomes ill-defined. Handling this in a mathemati-
cally precise way is tricky, but since these are probability-zero cases, we can ignore them in a
statistics class.

7

very near to) a manifold embedded in a high-dimensional space. The trick is
to do a different linear dimensionality reduction at each point (because locally
a manifold looks linear) and then combine these with minimal discrepancy. It
was introduced by Roweis and Saul (2000), though Saul and Roweis (2003) has
a fuller explanation. I don’t think it uses any elements which were unknown,
mathematically, since the 1950s. Rather than diminishing what Roweis and
Saul did, this should make the rest of us feel humble. . .

The LLE procedure has three steps: it builds a neighborhood for each point
in the data; finds the weights for linearly approximating the data in that neigh-
borhood; and finally finds the low-dimensional coordinates best reconstructed
by those weights. This low-dimensional coordinates are then returned.

To be more precise, the LLE algorithm is given as inputs an n × p data
matrix X, with rows ~xi; a desired number of dimensions q < p; and an integer
k for finding local neighborhoods, where k ≥ q + 1. The output is supposed to
be an n× q matrix Y, with rows ~yi.

1. For each ~xi, find the k nearest neighbors.

2. Find the weight matrix w which minimizes the residual sum of squares
for reconstructing each ~xi from its neighbors,

RSS(w) ≡
n∑
i=1

‖~xi −
∑
j 6=i

wij~xj‖
2

(1)

where wij = 0 unless ~xj is one of ~xi’s k-nearest neighbors, and for each i,∑
j wij = 1. (I will come back to this constraint below.)

3. Find the coordinates Y which minimize the reconstruction error using the
weights,

Φ(Y) ≡
n∑
i=1

‖~yi −
∑
j 6=i

wij~yj‖
2

(2)

subject to the constraints that
∑
i Yij = 0 for each j, and that YTY = I.

(I will come back to those constraints below, too.)

3.1 Finding Neighborhoods

In step 1, we define local neighborhoods for each point. By defining these in
terms of the k nearest neighbors, we make them physically large where the data
points are widely separated, and physically small when the density of the data is
high. We don’t know that the curvature of the manifold is low when the data are
sparse, but we do know that, whatever is happening out there, we have very little
idea what it is, so it’s safer to approximate it crudely. Conversely, if the data
are dense, we can capture both high and low curvature. If the actual curvature
is low, we might have been able to expand the region without loss, but again,
this is playing it safe. So, to summarize, using k-nearest neighborhoods means

8

we take a fine-grained view where there is a lot of data, and a coarse-grained
view where there is little data.

It’s not strictly necessary to use k-nearest neighbors here; the important
thing is to establish some neighborhood for each point, and to do so in a way
which conforms or adapts to the data.

3.2 Finding Weights

Step 2 can be understood in a number of ways. Let’s start with the local
linearity of a manifold. Suppose that the manifold was exactly linear around ~xi,
i.e., that it and its neighbors belonged to a q-dimensional linear subspace. Since
q + 1 points in generally define a q-dimensional subspace, there would be some
combination of the neighbors which reconstructed ~xi exactly, i.e., some set of
weights wij such that

~xi =
∑
j

wij~xj (3)

Conversely, if there are such weights, then ~xi and (some of) its neighbors do form
a linear subspace. Since every manifold is locally linear, by taking a sufficiently
small region around each point we get arbitrarily close to having these equations
hold — n−1RSS(w) should shrink to zero as n grows.

Vitally, the same weights would work to reconstruct xi both in the high-
dimensional embedding space and the low-dimensional subspace. This means
that it is the weights around a given point which characterize what the manifold
looks like there (provided the neighborhood is small enough compared to the
curvature). Finding the weights gives us the same information as finding the
tangent space. This is why, in the last step, we will only need the weights, not
the original vectors.

Now, about the constraints that
∑
j wij = 1. This can be understood in

two ways, geometrically and probabilistically. Geometrically, what it gives us is
invariance under translation. That is, if we add any vector ~c to ~xi and all of its
neighbors, nothing happens to the function we’re minimizing:

~xi + ~c−
∑
j

wij(~xj + ~c) = ~xi + ~c−

∑
j

wij~xj

− ~c (4)

= ~xi −
∑
j

wij~xj (5)

Since we are looking at the same shape of manifold no matter how we move it
around in space, translational invariance is a constraint we want to impose.

Probabilistically, forcing the weights to sum to one makes w a stochastic
transition matrix.5 This should remind you of page-rank, where we built a

5Actually, it really only does that if wij ≥ 0. In that case we are approximating ~xi not
just by a linear combination of its neighbors, but by a convex combination. Often one gets
all positive weights anyway, but it can be helpful to impose this extra constraint.

9

Markov chain transition matrix from the graph connecting web-pages. There is
a tight connection here, which we’ll return to next time under the heading of
diffusion maps; for now this is just to tantalize.

We will see below how to actually minimize the squared error computa-
tionally; as you probably expect by now, it reduces to an eigenvalue problem.
Actually it reduces to a bunch (n) of eigenvalue problems: because there are no
constraints across the rows of w, we can find the optimal weights for each point
separately. Naturally, this simplifies the calculation.

3.2.1 k > p

If k, the number of neighbors, is greater than p, the number of features, then
(in general) the space spanned by k distinct vectors is the whole space. Then
~xi can be written exactly as a linear combination of its k-nearest neighbors.6

In fact, if k > p, then not only is there a solution to ~xi =
∑
j wij

~j, there are
generally infinitely many solutions, because there are more unknowns (k) than
equations (p). When this happens, we say that the optimization problem is ill-
posed, or irregular. There are many ways of regularizing ill-posed problems.
A common one, for this case, is what is called L2 or Tikhonov regularization:
instead of minimizing

‖~xi −
∑
j

wij~xj‖2 (6)

pick an α > 0 and minimize

‖~xi −
∑
j

wij~xj‖2 + α
∑
j

w2
ij (7)

This says: pick the weights which minimize a combination of reconstruction
error and the sum of the squared weights. As α→ 0, this gives us back the least-
squares problem. To see what the second, sum-of-squared-weights term does,
take the opposite limit, α→∞: the squared-error term becomes negligible, and
we just want to minimize the Euclidean (“L2”) norm of the weight vector wij .
Since the weights are constrained to add up to 1, we can best achieve this by
making all the weights equal — so some of them can’t be vastly larger than the
others, and they stabilize at a definite preferred value. Typically α is set to be
small, but not zero, so we allow some variation in the weights if it really helps
improve the fit.

We will see how to actually implement this regularization later, when we look
at the eigenvalue problems connected with LLE. The L2 term is an example of a
penalty term, used to stabilize a problem where just matching the data gives
irregular results, and there is an art to optimally picking λ; in practice, however,
LLE results are often fairly insensitive to it, when it’s needed at all. Remember,
the whole situation only comes up when k > p, and p can easily be very large
— 6380 for the gene-expression data, much larger for the Times corpus, etc.

6This is easiest to see when ~xi lies inside the body which has its neighbors as vertices, their
convex hull, but is true more generally.

10

(The fact that the scaling factor for the penalty term is a Greek letter is no
accident. If we set as a constraint that

∑
j w

2
ij ≤ c, the natural way to enforce

it in the optimization problem would be through a Lagrange multiplier, say α,
and we would end up minimizing

‖~xi −
∑
j

wij~xj‖2 − α

c−∑
j

w2
ij

 (8)

However, the αc term drops out when we take derivatives with respect to w.
There is a correspondence, generally not worth working out in detail, between α
and c, with big values of α implying small values of c and vice versa. In fact, the
usual symbol is λ instead of α, but we’ll be wanting λ for Lagrange multipliers
enforcing explicit constraints later.)

3.3 Finding Coordinates

As I said above, if the local neighborhoods are small compared to the curvature
of the manifold, weights in the embedding space and weights on the manifold
should be the same. (More precisely, the two sets of weights are exactly equal
for linear subspaces, and for other manifolds they can be brought arbitrarily
close to each other by shrinking the neighborhood sufficiently.) In the third and
last step of LLE, we have just calculated the weights in the embedding space,
so we take them to be approximately equal to the weights on the manifold, and
solve for coordinates on the manifold.

So, taking the weight matrix w as fixed, we ask for the Y which minimizes

Φ(Y) =
∑
i

∥∥∥∥∥∥~yi −
∑
j 6=i

~yjwij

∥∥∥∥∥∥
2

(9)

That is, what should the coordinates ~yi be on the manifold, that these weights
reconstruct them?

As mentioned, some constraints are going to be needed. Remember that
we saw above that we could add any constant vector ~c to ~xi and its neighbors
without affecting the sum of squares, because

∑
j wij = 1. We could do the

same with the ~yi, so the minimization problem, as posed, has an infinity of
equally-good solutions. To fix this — to “break the degeneracy” — we impose
the constraint

1
n

∑
i

~yi = 0 (10)

Since if the mean vector was not zero, we could just subtract it from all the
~yi without changing the quality of the solution, this is just a book-keeping
convenience.

Similarly, we also impose the convention that

1
n

YTY = I (11)

11

i.e., that the covariance matrix of Y be the (q-dimensional) identity matrix. This
is not as substantial as it looks. If we found a solution where the covariance
matrix of Y was not diagonal, we could use PCA to rotate the new coordinates
on the manifold so they were uncorrelated, giving a diagonal covariance matrix.
The only bit of this which is not, again, a book-keeping convenience is assuming
that all the coordinates have the same variance — that the diagonal covariance
matrix is in fact I.

This optimization problem is like multi-dimensional scaling: we are ask-
ing for low-dimensional vectors which preserve certain relationships (averaging
weights) among high-dimensional vectors. We are also asking to do it under
constraints, which we will impose through Lagrange multipliers. Once again, it
turns into an eigenvalue problem, though one just a bit more subtle than what
we saw with PCA.

(One reason to suspect the appearance of eigenvalues, in addition to my very
heavy-handed foreshadowing, is that eigenvectors are automatically orthogonal
to each other and normalized, so making the columns of Y be the eigenvectors
of some matrix would automatically satisfy Eq. 11.)

Unfortunately, the finding the coordinates does not break up into n smaller
problems, the way finding the weights did, because each row of Y appears in
Φ multiple times, once as the focal vector ~yi, and then again as one of the
neighbors of other vectors.

4 More Fun with Eigenvalues and Eigenvectors

To sum up: for each ~xi, we want to find the weights wij which minimize

RSSi(w) = ‖~xi −
∑
j

wij~xj‖2 (12)

where wij = 0 unless ~xj is one of the k nearest neighbors of ~xi, under the con-
straint that

∑
j wij = 1. Given those weights, we want to find the q-dimensional

vectors ~yi which minimize

Φ(Y) =
n∑
i=1

‖~yi −
∑
j

wij~yj‖2 (13)

with the constraints that n−1
∑
i ~yi = 0, n−1YTY = I.

4.1 Finding the Weights

In this subsection, assume that j just runs over the neighbors of ~xi, so we don’t
have to worry about the weights (including wii) which we know are zero.

We saw that RSSi is invariant if we add an arbitrary ~c to all the vectors.

12

Set ~c = −~xi, centering the vectors on the focal point ~xi:

RSSi = ‖
∑
j

wij(~xj − ~xi)‖2 (14)

= ‖
∑
j

wij~zj‖2 (15)

defining ~zj = ~xj − ~xi. If we correspondingly define the k × p matrix z, and set
wi to be the k × 1 matrix, the vector we get from the sum is just wT

i z. The
squared magnitude of any vector ~r, considered as a row matrix r, is rrT , so

RSSi = wT
i zzTwi (16)

Notice that zzT is a k × k matrix consisting of all the inner products of the
neighbors. This symmetric matrix is called the Gram matrix of the set of
vectors, and accordingly abbreviated G — here I’ll say Gi to remind us that it
depends on our choice of focal point ~xi.

RSSi = wT
i Giwi (17)

Notice that the data matter only in so far as they determine the Gram matrix
Gi; the problem is invariant under any transformation which leaves all the inner
products alone (translation, rotation, mirror-reversal, etc.).

We want to minimize RSSi, but we have the constraint
∑
j wij = 1. We

impose this via a Lagrange multiplier, λ.7 To express the constraint in matrix
form, introduce the k × 1 matrix of all 1s, call it 1.8 Then the constraint has
the form 1Twi = 1, or 1Twi − 1 = 0. Now we can write the Lagrangian:

L(wi, λ) = wT
i Giwi − λ(1Tw − 1) (18)

Taking derivatives, and remembering that Gi is symmetric,

∂L
∂wi

= 2Giwi − λ1 = 0 (19)

∂L
∂λ

= 1Twi − 1 = 0 (20)

or
Giwi =

λ

2
1 (21)

If the Gram matrix is invertible,

wi =
λ

2
G−1
i 1 (22)

where λ can be adjusted to ensure that everything sums to 1.
7This λ should not be confused with the penalty-term λ used when k > p. See next

sub-section.
8This should not be confused with the identity matrix, I.

13

4.1.1 k > p

If k > p, we modify the objective function to be

wT
i Giwi + αwT

i wi (23)

where α > 0 determines the degree of regularization. Proceeding as before to
impose the constraint,

L = wT
i Giwi + αwT

i wi − λ(1Twi − 1) (24)

where now λ is the Lagrange multiplier. Taking the derivative with respect to
wi and setting it to zero,

2Giwi + 2αwi = λ1 (25)

(Gi + αI)wi =
λ

2
1 (26)

wi =
λ

2
(Gi + αI)−11 (27)

where, again, we pick λ to properly normalize the right-hand side.

4.2 Finding the Coordinates

As with PCA, it’s easier to think about the q = 1 case first; the general case
follows similar lines. So ~yi is just a single scalar number, yi, and Y reduces to
an n× 1 column of numbers. We’ll revisit q > 1 at the end.

The objective function is

Φ(Y) =
n∑
i=1

yi −∑
j

wijyj

2

(28)

=
n∑
i=1

y2
i − yi

∑
j

wijyj

−
∑

j

wijyj

 yi +

∑
j

wijyj

2

(29)

= YTY −YT (wY)− (wY)TY + (wY)T (wY) (30)
= ((I−w)Y)T ((I−w)Y) (31)
= YT (I−w)T (I−w)Y (32)

Define the m×m matrix M = (I−w)T (I−w).

Φ(Y) = YTMY (33)

This looks promising — it’s the same sort of quadratic form that we maximized
in doing PCA.

Now let’s use a Lagrange multiplier µ to impose the constraint that n−1YTY =
I — but, since q = 1, that’s the 1× 1 identity matrix, i.e., the scalar number 1.

L(Y, µ) = YTMY − µ(n−1YTY − 1) (34)

14

Note that this µ is not the same as the µ which constrained the weights!
Proceeding as we did with PCA,

∂L
∂Y

= 2MY − 2µn−1Y = 0 (35)

or
MY =

µ

n
Y (36)

so Y must be an eigenvector of M. Because Y is defined for each point in
the data set, it is a function of the data-points, and we call it an eigenfunc-
tion, to avoid confusion with things like the eigenvectors of PCA (which are
p-dimensional vectors in feature space). Because we are trying to minimize
YTMY, we want the eigenfunctions going with the smallest eigenvalues — the
bottom eigenfunctions — unlike the case with PCA, where we wanted the top
eigenvectors.

M being an n × n matrix, it has, in general, n eigenvalues, and n mutu-
ally orthogonal eigenfunctions. The eigenvalues are real and non-negative; the
smallest of them is always zero, with eigenfunction 1. To see this, notice that
w1 = 1.9 Then

(I−w)1 = 0 (37)
(I−w)T (I−w)1 = 0 (38)

M1 = 0 (39)

Since this eigenfunction is constant, it doesn’t give a useful coordinate on the
manifold. To get our first coordinate, then, we need to take the two bottom
eigenfunctions, and discard the constant.

Again as with PCA, if we want to use q > 1, we just need to take multiple
eigenfunctions of M . To get q coordinates, we take the bottom q+ 1 eigenfunc-
tions, discard the constant eigenfunction with eigenvalue 0, and use the others
as our coordinates on the manifold. Because the eigenfunctions are orthogonal,
the no-covariance constraint is automatically satisfied. Notice that adding an-
other coordinate just means taking another eigenfunction of the same matrix
M — as is the case with PCA, but not with factor analysis.

(What happened to the mean-zero constraint? Well, we can add another
Lagrange multiplier ν to enforce it, but the constraint is linear in Y, it’s AY = 0
for some matrix A [Exercise: write out A], so when we take partial derivatives
we get

∂L(Y, µ, ν)
∂Y

= 2MY − 2µY − νA = 0 (40)

and this is the only equation in which ν appears. So we are actually free to
pick any ν we like, and may as well set it to be zero. Geometrically, this is
the translational invariance yet again. In optimization terms, the size of the
Lagrange multiplier tells us about how strongly the constraint pushes us away

9Each row of w1 is a weighted average of the other rows of 1. But all the rows of 1 are
the same.

15

Local linear embedding of data vectors
Inputs: n*p matrix of vectors, number of dimensions q to find (< p),
number of nearest neighbors per vector, scalar regularization setting

Calls: find.kNNs, reconstruction.weights, coords.from.weights
Output: n*q matrix of new coordinates
lle <- function(x,q,k=q+1,alpha=0.01) {
stopifnot(q>0, q<ncol(x), k>q, alpha>0) # sanity checks
kNNs = find.kNNs(x,k) # should return an n*k matrix of indices
w = reconstruction.weights(x,kNNs,alpha) # n*n weight matrix
coords = coords.from.weights(w,q) # n*q coordinate matrix
return(coords)

}

Code Example 1: Locally linear embedding in R. Notice that this top-level
function is very simple, and mirrors the math exactly.

from the unconstrained optimum — when it’s zero, as here, it means that the
constrained optimum is also an unconstrained optimum — but we knew that
already!)

5 Calculation

Let’s break this down from the top. The nice thing about doing this is that the
over-all function is four lines, one of which is just the return (Example 1).

5.1 Finding the Nearest Neighbors

The following approach is straightforward (exploiting an R utility function,
order), but not recommended for “industrial strength” uses. A lot of thought
has been given to efficient algorithms for finding nearest neighbors, and this
isn’t even close to the state of the art. For large n, the difference in efficiency
would be quite substantial. For the present, however, this will do.

To find the k nearest neighbors of each point, we first need to calculate the
distances between all pairs of points. The neighborhoods only depend on these
distances, not the actual points themselves. We just need to find the k smallest
entries in each row of the distance matrix (Example 2).

Most of the work is done either by dist, a built-in function optimized for
calculating distance matrices, or by smallest.by.rows (Example 3), which we
are about to write. The +1 and −1 in the last two lines come from simplifying
that. Instead of dist, we could have recycled code from the first lecture, but
this really is faster, and more flexible.

smallest.by.rows uses the utility function order. Given a vector, it re-
turns the permutation that puts the vector into increasing order, i.e., its return

16

Find multiple nearest neighbors in a data frame
Inputs: n*p matrix of data vectors, number of neighbors to find,
optional arguments to dist function

Calls: smallest.by.rows
Output: n*k matrix of the indices of nearest neighbors
find.kNNs <- function(x,k,...) {
x.distances = dist(x,...) # Uses the built-in distance function
x.distances = as.matrix(x.distances) # need to make it a matrix
kNNs = smallest.by.rows(x.distances,k+1) # see text for +1
return(kNNs[,-1]) # see text for -1

}

Code Example 2: Finding the k nearest neighbors of all the row-vectors in a
data frame.

Find the k smallest entries in each row of an array
Inputs: n*p array, p >= k, number of smallest entries to find
Output: n*k array of column indices for smallest entries per row
smallest.by.rows <- function(m,k) {
stopifnot(ncol(m) >= k) # Otherwise "k smallest" is meaningless
row.orders = t(apply(m,1,order))
k.smallest = row.orders[,1:k]
return(k.smallest)

}

Code Example 3: Finding which columns contain the smallest entries in each
row.

17

is a vector of integers as long as its input.10 The first line of smallest.by.rows
applies order to each row of the input matrix m. The first column of row.orders
now gives the column number of the smallest entry in each row of m; the sec-
ond column, the second smallest entry, and so forth. By taking the first k
columns, we get the set of the smallest entries in each row. find.kNNs applies
this function to the distance matrix, giving the indices of the closest points.
However, every point is closest to itself, so to get k neighbors, we need the
k + 1 closest points; and we want to discard the first column we get back from
smallest.by.rows.

Let’s check that we’re getting sensible results from the parts.

> r
[,1] [,2]

[1,] 7 2
[2,] 3 4
> smallest.by.rows(r,1)
[1] 2 1
> smallest.by.rows(r,2)

[,1] [,2]
[1,] 2 1
[2,] 1 2

Since 7 > 2 but 3 < 4, this is correct. Now try a small distance matrix, from
the first five points on the spiral:

> round(as.matrix(dist(x[1:5,])),2)
1 2 3 4 5

1 0.00 0.11 0.21 0.32 0.43
2 0.11 0.00 0.11 0.22 0.33
3 0.21 0.11 0.00 0.11 0.22
4 0.32 0.22 0.11 0.00 0.11
5 0.43 0.33 0.22 0.11 0.00
> smallest.by.rows(as.matrix(dist(x[1:5,])),3)
[,1] [,2] [,3]

1 1 2 3
2 2 1 3
3 3 2 4
4 4 3 5
5 5 4 3

Notice that the first column, as asserted above, is saying that every point is
closest to itself. But the two nearest neighbors are right.

> find.kNNs(x[1:5,],2)
[,1] [,2]

10There is a lot of control over ties, but we don’t care about ties. See help(order), though,
it’s a handy function.

18

Least-squares weights for linear approx. of data from neighbors
Inputs: n*p matrix of vectors, n*k matrix of neighbor indices,
scalar regularization setting

Calls: local.weights
Outputs: n*n matrix of weights
reconstruction.weights <- function(x,neighbors,alpha) {
stopifnot(is.matrix(x),is.matrix(neighbors),alpha>0)
n=nrow(x)
stopifnot(nrow(neighbors) == n)
w = matrix(0,nrow=n,ncol=n)
for (i in 1:n) {
i.neighbors = neighbors[i,]
w[i,i.neighbors] = local.weights(x[i,],x[i.neighbors,],alpha)

}
return(w)

}

Code Example 4: Iterative (and so not really recommended) function to find
linear least-squares reconstruction weights.

1 2 3
2 1 3
3 2 4
4 3 5
5 4 3

Success!

5.2 Calculating the Weights

First, the slow iterative way (Example 4). Aside from sanity-checking the in-
puts, this just creates a square, n × n weight-matrix w, initially populated
with all zeroes, and then fills each line of it by calling a to-be-written function,
local.weights (Example 5).

For testing, it would really be better to break local.weights up into two
sub-parts — one which finds the Gram matrix, and another which solves for the
weights — but let’s just test it altogether this once.

> matrix(mapply("*",local.weights(x[1,],x[2:3,],0.01),x[2:3,]),nrow=2)
[,1] [,2]

[1,] 2.014934 -0.4084473
[2,] -0.989357 0.3060440
> colSums(matrix(mapply("*",local.weights(x[1,],x[2:3,],0.01),x[2:3,]),nrow=2))
[1] 1.0255769 -0.1024033
> colSums(matrix(mapply("*",local.weights(x[1,],x[2:3,],0.01),x[2:3,]),nrow=2))
+ - x[1,]

19

Calculate local reconstruction weights from vectors
Inputs: focal vector (1*p matrix), k*p matrix of neighbors,
scalar regularization setting

Outputs: length k vector of weights, summing to 1
local.weights <- function(focal,neighbors,alpha) {
basic matrix-shape sanity checks
stopifnot(nrow(focal)==1,ncol(focal)==ncol(neighbors))
Should really sanity-check the rest (is.numeric, etc.)
k = nrow(neighbors)
Center on the focal vector
neighbors=t(t(neighbors)-focal) # exploits recycling rule, which
has a weird preference for columns

gram = neighbors %*% t(neighbors)
Try to solve the problem without regularization
weights = try(solve(gram,rep(1,k)))
The try function tries to evaluate its argument and returns
the value if successful; otherwise it returns an error
message of class "try-error"

if (identical(class(weights),"try-error")) {
Un-regularized solution failed, try to regularize
TODO: look at the error, check if it’s something
regularization could fix!

weights = solve(gram+alpha*diag(k),rep(1,k))
}
Enforce the unit-sum constraint
weights = weights/sum(weights)
return(weights)

}

Code Example 5: Find the weights for approximating a vector as a linear
combination of the rows of a matrix.

20

[1] 0.0104723155 -0.0005531495

The mapply function is another of the lapply family of utility functions. Just
as sapply sweeps a function along a vector, mapply sweeps a multi-argument
function (hence the m) along multiple argument vectors, recycling as neces-
sary. Here the function is multiplication, so we’re getting the products of the
reconstruction weights and the vectors. (I re-organize this into a matrix for
comprehensibility.) Then I add up the weighted vectors, getting something that
looks reasonably close to x[1,]. This is confirmed by actually subtract the lat-
ter from the approximation, and seeing that the differences are small for both
coordinates.

This didn’t use the regularization; let’s turn it on and see what happens.

> colSums(matrix(mapply("*",local.weights(x[1,],x[2:4,],0.01),x[2:4,]),nrow=3))
+ -x[1,]
Error in drop(.Call("La_dgesv", a, as.matrix(b), tol, PACKAGE = "base")) :
system is computationally singular: reciprocal condition number = 6.73492e-19

[1] 0.01091407 -0.06487090

The error message alerts us that the unregularized attempt to solve for the
weights failed, since the determinant of the Gram matrix was as close to zero
as makes no difference, hence it’s uninvertible. (The error message could be
suppressed by adding a silent=TRUE option to try; see help(try).) However,
with just a touch of regularization (α = 0.01) we get quite reasonable accuracy.

Let’s test our iterative solution. Pick k = 2, each row of the weight matrix
should have two non-zero entries, which should sum to one. (We might expect
some small deviation from 1 due to finite-precision arithmetic.) First, of course,
the weights should match what the local.weights function says.

> x.2NNs <- find.kNNs(x,2)
> x.2NNs[1,]
[1] 2 3
> local.weights(x[1,],x[x.2NNs[1,],],0.01)
[1] 1.9753018 -0.9753018
> wts<-reconstruction.weights(x,x.2NNs,0.01)
> wts[1,1:6]
[1] 0.0000000 1.9753018 -0.9753018 0.0000000 0.0000000 0.0000000
> sum(wts[1,] != 0)
[1] 2
> all(rowSums(wts != 0)==2)
[1] TRUE
> all(rowSums(wts) == 1)
[1] FALSE
> summary(rowSums(wts))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

21

Why does summary say that all the rows sum to 1, when directly testing that
says otherwise? Because some rows don’t quite sum to 1, just closer-than-display
tolerance to 1.

> sum(wts[1,]) == 1
[1] FALSE
> sum(wts[1,])
[1] 1
> sum(wts[1,]) - 1
[1] -1.110223e-16
> summary(rowSums(wts)-1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.220e-16 0.000e+00 0.000e+00 -1.406e-17 0.000e+00 2.220e-16

So the constraint is satisfied to ±2 ·10−16, which is good enough for all practical
purposes. It does, however, mean that we have to be careful about testing the
constraint!

> all(abs(rowSums(wts)-1) < 1e-7)
[1] TRUE

Of course, iteration is usually Not the Way We Do It in R — especially here,
where there’s no dependence between the rows of the weight matrix.11 What
makes this a bit tricky is that we need to combine information from two matrices
— the data frame and the matrix giving the neighborhood of each point. We
could try using something like mapply or Map, but it’s cleaner to just write a
function to do the calculation for each row (Example 6), and then apply it to
the rows.

As always, check the new function:

> w.1 = local.weights.from.indices(1,x,x.2NNs,0.01)
> w.1[w.1 != 0]
[1] 1.9753018 -0.9753018
> which(w.1 != 0)
[1] 2 3

So (at least for the first row!) it has the right values in the right positions.
Now the final function is simple (Example 7), and passes the check:

> wts.2 = reconstruction.weights.2(x,x.2NNs,0.01)
> identical(wts.2,wts)
[1] TRUE

11Remember what makes loops slow in R is that every time we change an object, we actually
create a new copy with the modified values and then destroy the old one. If n is large, then
the weight matrix, with n2 entries, is very large, and we are wasting a lot of time creating
and destroying big matrices to make small changes.

22

Get approximation weights from indices of point and neighbors
Inputs: index of focal point, n*p matrix of vectors, n*k matrix
of nearest neighbor indices, scalar regularization setting

Calls: local.weights
Output: vector of n reconstruction weights
local.weights.for.index <- function(focal,x,NNs,alpha) {
n = nrow(x)
stopifnot(n> 0, 0 < focal, focal <= n, nrow(NNs)==n)
w = rep(0,n)
neighbors = NNs[focal,]
wts = local.weights(x[focal,],x[neighbors,],alpha)
w[neighbors] = wts
return(w)

}

Code Example 6: Finding the weights for the linear approximation of a point
given its index, the data-frame, and the matrix of neighbors.

Local linear approximation weights, without iteration
Inputs: n*p matrix of vectors, n*k matrix of neighbor indices,
scalar regularization setting

Calls: local.weights.for.index
Outputs: n*n matrix of reconstruction weights
reconstruction.weights.2 <- function(x,neighbors,alpha) {
Sanity-checking should go here
n = nrow(x)
w = sapply(1:n,local.weights.for.index,x=x,NNs=neighbors,

alpha=alpha)
w = t(w) # sapply returns the transpose of the matrix we want
return(w)

}

Code Example 7: Non-iterative calculation of the weight matrix.

23

Find intrinsic coordinates from local linear approximation weights
Inputs: n*n matrix of weights, number of dimensions q, numerical
tolerance for checking the row-sum constraint on the weights

Output: n*q matrix of new coordinates on the manifold
coords.from.weights <- function(w,q,tol=1e-7) {
n=nrow(w)
stopifnot(ncol(w)==n) # Needs to be square
Check that the weights are normalized
to within tol > 0 to handle round-off error

stopifnot(all(abs(rowSums(w)-1) < tol))
Make the Laplacian
M = t(diag(n)-w)%*%(diag(n)-w)
diag(n) is n*n identity matrix

soln = eigen(M) # eigenvalues and eigenvectors (here,
eigenfunctions), in order of decreasing eigenvalue

coords = soln$vectors[,((n-q):(n-1))] # bottom eigenfunctions
except for the trivial one

return(coords)
}

Code Example 8: Getting manifold coordinates from approximation weights
by finding eigenfunctions.

5.3 Calculating the Coordinates

Having gone through all the eigen-manipulation, this is a straightforward cal-
culation (Example 8).

Notice that w will in general be a very sparse matrix — it has only k
non-zero entries per row, and typically k � n. There are special techniques
for rapidly solving eigenvalue problems for sparse matrices, which are not being
used here — another way in which this is not an industrial-strength version.

Let’s try this out: make the coordinate (with q = 1), plot it (Figure 5), and
check that it really is monotonically increasing, as the figure suggests.

> spiral.lle = coords.from.weights(wts,1)
> plot(spiral.lle,ylab="Coordinate on manifold")
> all(diff(spiral.lle) > 0)
[1] TRUE

So the coordinate we got through LLE increases along the spiral, just as it
should, and we have successfully recovered the underlying structure of the data.
To verify this in a more visually pleasing way, Figure 6 plots the original data
again, but now with points colored so that their color in the rainbow corresponds
to their inferred coordinate on the manifold.

Before celebrating our final victory, test that everything works when we put
it together:

24

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

Index

C
oo

rd
in

at
e

on
 m

an
ifo

ld

plot(coords.from.weights(wts,1),ylab="Coordinate on manifold")

Figure 5: Coordinate on the manifold estimated by locally-linear embedding for
the spiral data. Notice that it increases monotonically along the spiral, as it
should.

25

-300 -200 -100 0 100

-2
00

-1
00

0
10
0

20
0

30
0

40
0

x[,1]

x[
,2
]

plot(x,col=rainbow(300,end=5/6)[cut(spiral.lle,300,labels=FALSE)])

Figure 6: The original spiral data, but with color advancing smoothly along the
spectrum according to the intrinsic coordinate found by LLE.

26

> all(lle(x,1,2)==spiral.lle)
[1] TRUE

�

27

References

Amari, Shun-ichi and Hiroshi Nagaoka (1993/2000). Methods of Informa-
tion Geometry . Providence, Rhode Island: American Mathematical Society.
Translated by Daishi Harada. As Joho Kika no Hoho, Tokyo: Iwanami Shoten
Publishers.

Arnol’d, V. I. (1973). Ordinary Differential Equations. Cambridge, Mas-
sachusetts: MIT Press. Trans. Richard A. Silverman from Obyknovennye
differentsial’nye Uravneniya.

Guckenheimer, John and Philip Holmes (1983). Nonlinear Oscillations, Dynam-
ical Systems and Bifurcations of Vector Fields. New York: Springer-Verlag.

Kass, Robert E. and Paul W. Vos (1997). Geometrical Foundations of Asymp-
totic Inference. New York: Wiley.

Lawrie, Ian D. (1990). A Unified Grand Tour of Theoretical Physics. Bristol,
England: Adam Hilger.

Roweis, Sam T. and Laurence K. Saul (2000). “Nonlinear Dimensional-
ity Reduction by Locally Linear Embedding.” Science, 290: 2323–2326.
doi:10.1126/science.290.5500.2323.

Saul, Lawrence K. and Sam T. Roweis (2003). “Think Globally, Fit Locally:
Supervised Learning of Low Dimensional Manifolds.” Journal of Machine
Learning Research, 4: 119–155. URL http://jmlr.csail.mit.edu/papers/
v4/saul03a.html.

Schutz, Bernard F. (1980). Geometrical Methods of Mathematical Physics. Cam-
bridge, England: Cambridge University Press.

Spivak, Michael (1965). Calculus on Manifolds: A Modern Approach to Clas-
sical Theorems of Advanced Calculus. Menlo Park, California: Benjamin
Cummings.

28

http://dx.doi.org/10.1126/science.290.5500.2323
http://jmlr.csail.mit.edu/papers/v4/saul03a.html
http://jmlr.csail.mit.edu/papers/v4/saul03a.html

	Why We Need Nonlinear Dimensionality Reduction
	Local Linearity and Manifolds
	Locally Linear Embedding (LLE)
	Finding Neighborhoods
	Finding Weights
	k > p

	Finding Coordinates

	More Fun with Eigenvalues and Eigenvectors
	Finding the Weights
	k > p

	Finding the Coordinates

	Calculation
	Finding the Nearest Neighbors
	Calculating the Weights
	Calculating the Coordinates

