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Motivation

Secure and Private Al




I The importance of data for ML

{

The biggest obstacle to using advanced
data analysis isn’t skill base or technology;
it’s plain old access to the data. 4

-Edd Wilder-James, Harvard Business Review



I The importance of data for ML

“Data is the New QOil”

Data privacy matters!



I What is privacy!?

Privacy Don’t tell

Confidentiality Don’t ask



I The importance of data for ML

Privacy Don’t tell

Confidentiality Don’t ask

Privacy is about the right to be left alone (from public scrutiny)

Confidentiality is about a promise from people who have privileged access.



I Importance of privacy by the United Nations

https://www.un.org/en/about-us/universal-declaration-of-human-rights



I Personal data in Big Data era

¢ Social networks: Facebook, LinkedIn

* Government, company, research centers collect personal information and analyze them

WECHAT PRIVACY POLICY

Last Updated: 2022-09-09
SUMMARY
Thank you for using WeChat! We respect your concerns about privacy and appreciate your trust and confidence in us.

Here is a summary of the information contained in this privacy policy ("Privacy Policy"). This summary is to help you navigate the
Privacy Policy and it is not a substitute for reading everything! You can use the hyperlinks below to jump directly to particular sections
in the Privacy Policy.

DOES THIS PRIVACY POLICY APPLY TO YOU?
This Privacy Policy only applies to you if you are a WeChat user, meaning that you have registered by linking a mobile nu Monthly active users: Daily active users: Founded:
uses an international dialing code other than +86 ("non-Chinese Mainland mobile number"). 2.45 Billion 1.62 Billion 2004

This Privacy Policy does not apply to you if you are a Weixin user. You are a Weixin user if you have either: Photos uploaded daily:  Video views daily: Rank

350 Million 8 Billion #1

« registered by linking a mobile number that uses international dialing code +86 ("Chinese Mainland mobile number"); or
« contracted with SFYIFRERITEH R LB PR/ 8] (Shenzhen Tencent Computer Systems Company Limited) for Weixin.

Facebook

Source: https://www.garyfox.co/social-media-statistics/
If you are a Weixin user, you are subject to the Weixin Agreement on Software License and Service of Tencent Weixin and
Weixin Privacy Protection Guidelines and not this Privacy Policy.




I Recent legislations on privacy forces businesses to revise their data practice

e can’t keep personal data for more than three weeks?

California /
Consumer /

Privacy / .
At/ * | will have to delete all traces of a user upon request?

How about machine learning models trained on user data!?



I Risk of personal information leakage

* YouTube & Amazon use viewing/buying records for recommendations.
* Emails in Gmail are used for targeted Ads and for completing your sentence.

* LLMs use public and third-party data for training



I Risk of personal information leakage

ML models memorize training datasets, even
though they are generalizing well!

Membership Inference Attacks Against
Machine Learning Models

Reza Shokri Marco Stronati® Congzheng Song Vitaly Shmatikov
Comell Tech INRIA Cornell Cornell Tech

Abstract—We quantitatively investigate how machine learning
models leak information about the individual data records on
which they were trained. We focus on the basic membership
inference attack: given a data record and black-box access to
a model, determine if the record was in the model’s training
dataset. To perform membership inference against a target model,
we make adversarial use of machine learning and train our own
inference model to recognize differences in the target model’s
predictions on the inputs that it trained on versus the inputs
that it did not train on.

We empirically evaluate our inference techniques on classi-
fication models trained by commercial “machine learning as a
service” providers such as Google and Amazon. Using realistic
datasets and classification tasks, including a hospital discharge
dataset whose membership is sensitive from the privacy perspec-
tive, we show that these models can be vulnerable to membership
inference attacks. We then investigate the factors that influence
this leakage and evaluate mitigation strategies.

Security and Privacy, 2017

The Secret Sharer:

Measuring Unintended Neural Network Memorization & Extracting Secrets

Nicholas Carlini Chang Liu
University of California, Berkeley University of California, Berkeley
Jernej Kos Ulfar Erlingsson Dawn Song
National University of Singapore Google Brain University of California, Berkeley

This paper presents exposure, a simple-to-compute
metric that can be applied to any deep learning model
for measuring the memorization of secrets. Using this
metric, we show how to extract those secrets efficiently
using black-box API access. Further, we show that un-
intended memorization occurs early, is not due to over-
fitting, and is a persistent issue across different types of
models, hyperparameters, and training strategies. We ex-
periment with both real-world models (e.g., a state-of-
the-art translation model) and datasets (e.g., the Enron
email dataset, which contains users’ credit card numbers)
to demonstrate both the utility of measuring exposure
and the ability to extract secrets.

Finally, we consider many defenses, finding some in-
effective (like regularization), and others to lack guaran-
tees. However, by instantiating our own differentially-
private recurrent model, we validate that by appropri-
ately investing in the use of state-of-the-art techniques,
the problem can be resolved, with high utility.

USENIX Security 19



I Risk of personal information leakage

Training GPT-4

_ Use reward model to fine-tune policy
Mysterious datasets vl model with reinforcement learning %

—

Prompt

How do | make a
bomb?

Mysterious Generate Train reward Reward
Public data | training Policy model model —» ly  Modelresponse — modelon —|
+ process output evaluations model

Third party data These are the

steps to build a
bomb. First, you'llo

want to...

e s ——

Adversarial testing with human
domain experts




I Risk of personal information leakage

Google Patents.................... 0.48%
The New York Times.......... 0.06%
Los Angeles Times

The Guardian........cccccceueuenne

Public Library of Science.. 0.06%
Forbes 0.05%
Huffington Post................... 0.05%
Patents.com

Scribd.eceee
Other.

Common Crawl/

Biography........ccccccceiccninnne 27.8%
Geography.....ccccocvcvevececucuennns 17.7%
Culture and Arts........ccccoc.. 15.8%
History 9.9%
Biology, Health, Medicine.....7.8%
Sports .6.5%
BUSINESS....coieeecicieeciciin 4.8%
Other society......... 4.4%
Science & Math 3.5%
Education........ccccccceeueee. 1.8%

English Wikipedia /

Web crawlers are used to gather data and train LLMs.

Archive .. 1.3%
BlogSpot......cvviciiiniiicciiniirens 1.0%

GitHub... 0.9%
The New York Times............ 0.7%
Wordpress 0.7%
Washington Post............ccc.... 0.7%

Wikia e 0.7%
BBC ... 0.7%
Other 89.9%

Reddit links

Romance......cccovveersecvennnns 26.1%
Fantasy 13.6%
Science Fiction.......ccccccocevuueee. 7.5%
New Adult

Young Adult......cccccoiiniiinnnne 6.8%
Thriller.....coeecececieece 5.9%
MyStery.....cnncinenn 5.6%
Vampires 5.4%
Horror 41%
Other .18.0%

BookCorpus (GPT-1only) ‘ 7




Personal data in Big Data era

Prefix

East Stroudsburg Stroudsburg... J

!

[ GPT-2 J

[ Memorized text ]

Ho rporation S|l centre

Marine Parade Southport

N

N J Source: Google Research

... prompts the GPT-2 language model with the prefix “East Stroudsburg Stroudsburg...”

it will autocomplete a long block of text that contains the full name, phone number, email address, and physical
address of a particular person whose information was included in GPT-2’s training data.



Personal data in Big Data era

& All Open Letters

Pause Giant Al Experiments: An Open
Letter Signatories

We call on all Al labs to immediately pause for at least 6 months the training of Al systems more powerft Yoshua Bengio, University of Montréal, Turing Laureate for developing deep learning, head of the Montreal
than GPT-4. Institute for Learning Algorithms

Signatures Stuart Russell, Berkeley, Professor of Computer Science, director of the Center for Intelligent Systems, and

Add your

1125 signature co-author of the standard textbook “Artificial Intelligence: a Modern Approach”

Elon Musk, CEO of SpaceX, Tesla & Twitter
Steve Wozniak, Co-founder, Apple
Yuval Noah Harari, Author and Professor, Hebrew University of Jerusalem.

Andrew Yang, Forward Party, Co-Chair, Presidential Candidate 2020, NYT Bestselling Author, Presidential

Ambassador of Global Entrepreneurship
Connor Leahy, CEO, Conjecture
Jaan Tallinn, Co-Founder of Skype, Centre for the Study of Existential Risk, Future of Life Institute

Evan Sharp, Co-Founder, Pinterest

Read More v



I Review

First Part of This Course:

Ensemble

Learning Theory
* GNN

Generative Models

Focus more on a single merit: accuracy



I Outlook

Second Part of This Course:

Causal Learning

e Differential Privacy and Federated Learning (This lecture)

Fairness in ML

Explainable Al (XAl)

Focus on more attributes: causality, privacy, fairness, and interpretability



This Lecture:

Introduction to Differential Privacy and
Federated Learning




I Outline

Again, privacy in ML can be a full course, we will only highlight a few important concepts

CS291A (Fall 2021) Introduction to Differential Privacy:

CSC 2515 Fall 2019

Machine Learning

Overview

i \lgoritl 1 Applications

Syllabus [ link ]

Instructor: Prof. Yu-Xiang Wang

Lecture Section: Monday/Wednesday 1:00-2:40 pm Location: HFH 1132 (also on Zoo:

Piazza: https://pi b/fall2021/cs291/home
Piazza is our main channel of communication. Questions should be posted here.

G https: 18956
This is where you submit your homeworks and project reports.

Office hours: Instructor: by appointment.

Course evaluation: 45% Homework, 40% Project, 5% for attendance / Participation. 1'

Scribing: Please volunteer here, use this latex template

Textbook:
« Dwork and Roth, The Algorit ic F of Di Privacy. [Ave
« Vadhan The C ity of Dif Privacy [Available here]

Privacy and Federated Learning:
Principles, Techniques and Emerging Frontiers

AAAI Workshop of Privacy Preserving Artificial Intelligence (PPAI-21)

Kallista
Bonawitz

Brendan
McMahan

Presenting the work of many

Foundations and Trends® in
Theoretical Computer Science
Vol. 9, Nos. 3-4 (2013) 1-277
© 2014 C. Dwork and A. Roth
DOI: 10.1561/0400000042

new

the essence of knowledge:

The Algorithmic Foundations
of Differential Privacy

Aaron Roth
University of Pennsylvania, USA
aaroth@gmail.com

Cynthia Dwork
Microsoft Research, USA
dwork@microsoft.com

Contact

 Office hours:
AN
4

§ Fan2q19

nachines to learn from data and experience, rather than requiring humans to specify
3cades, machine learning techniques have become increasingly central both in Al as an
5 course provides a broad introduction to some of the most commonly used ML

sarning. We begin with nearest neighbours, decision trees, and ensembles. Then we
'ssion, logistic and softmax regression, and neural networks. We then move on to
»babilistic models, but also principal components analysis and K-means. Finally, we

be held in the main lecture room.

ial Time Lecture/Tutorial Room  Start End
iesday noon-1pm Bahen 1190 Sept. 11 Nov. 27
day 4-5pm Bahen 1180 Sept. 12 Nov. 28

« Instructor: Roger Grosse (rgrosse at cs.toronto.edu)

\ CS 294-163: De’cen!ralized Security: Theory and Systems
.

I Course Info Schedule ssources

Lectures: Tue/Thur 3:30pm - 4:59pm, 310 Soda

“This courseis a. on theory and

Recently, there h both acad d

security, which refers o, loosely speaking, security mechanisms that do not rely on the trustworthiness of any central entity. In only a few years, this area has generated many beautiful
tructs i

decentralized access

i

well as exciting systems.

topics such
d others. (3 units)

control,

 federated learning,

This , which Pl

staft:
+ Instructor: Raluca Ada Popa

+ Co-Instructor+TA: Pratyush Mishra

» Special guests: Alice, Bob and the adversary,

A hy is required, and a fation in systems is beneficia.



I Outline

* Motivation and attacks Reconstruction attacks
Definitions
Gaussian Mochani
* Differential privacy Basic Mechanisms: Randomized Response, Laplace, Exponential

e DifferentiallvPrivate Machine Learn

Federated learning with DP Problem and Framework

Again, privacy in ML can be a full course, we will only highlight a few important concepts



Part |

Differential Privacy




Part |. |

Motivation, Attacks, and History




I Do we need a formal mathematical definition for privacy?

* Can’t we just remove personal identifiable information from the data so that it is de-identified?

* We are only seeing aggregate statistics usually?

* Secure multi-party computation (MPC) and federated learning have made it possible for

companies to train ML models with my data while keeping my data on my device?



I Do we need a formal mathematical definition for privacy?

Consider a simple and practical method:
Removing/modifying personal identifiable information

Questionnaire: Have you ever driven under the influence!?

Example: Name DUI?
John Yes
Jack No

Jennifer Yes
James No

Table: Dataset

Q: Is this a good enough privacy-preserving method?



I Do we need a formal mathematical definition for privacy?

Consider a simple and practical method:

Removing/modifying personal identifiable information

Example: Name DUI?

Yes
No
Yes
No

Table: Dataset

Q: Is this a good enough privacy-preserving method?



I Do we need a formal mathematical definition for privacy?

Consider a simple and practical method:

Removing/modifying personal identifiable information

From a different web ...

Example:
Name DUI? Car Model ZIP
Yes Mazda 6 91106
No Tesla 21927
Yes Accord 23772
No Benz 12678

Table: Dataset

Q: Is this a good enough privacy-preserving method?



I Do we need a formal mathematical definition for privacy?

Consider a simple and practical method:

Removing/modifying personal identifiable information

On More Example: CTE

What is your rate of the teacher/course!?




I Do we need a formal mathematical definition for privacy?

Consider a simple and practical method:

Removing/modifying personal identifiable information

On More Example: CTE Name: Anonym Score
What is your rate of the teacher/course?  0/6 Daniel 3
Why do you rate under 3? James 2
| obtained only 3/10 for problem [.(a) in HW?2. Alice 5

Q: Is this a good enough privacy-preserving method?



I Do we need a formal mathematical definition for privacy?

Consider a simple and practical method:

Removing/modifying personal identifiable information

* Name? Gender? Zip code? Watched movies?

NETFLIX <= |MDh

* Fragile under appropriate side information
* Easier to get in Big Data era

NOT a good enough privacy-preserving method!



Do we need a formal mathematical definition for privacy?

“Just six days of step counts are enough to uniquely identify you among 100 million other people.”

Atrial Steps Steps Steps Steps Steps Steps
ID Fibrillation #1 #2 #3 #4 #5 #6 Joe Black: “Achieved weekly goal! Check out
my performance:

Yes 8452 4434 3923 6236 7149 5121 g % 8452, 4434, 3923, 6236, 7149, 5121
L ]

Atrial  Steps Steps Steps Steps Steps Steps -
* ID Fibrillation #1 #2 #3 #4 #5 #6

080 Yes 7101 5523 5591 2199 4192 1110
| 100 Yes 8452 4434 3923 6236 7149 5121 CJoe Black 8452 4434 3923 6236 7149 5121 |

101 No 2313 5645 7111 4232 6561 4072

https://www.mobihealthnews.com/news/contributed-when-fitness-data-becomes-research-data-your-privacy-may-be-risk

Differencing attack and side information identifies individuals from aggregate statistics



Real-world Examples

@ In the 1990s, a government agency released a database of medical

visits, stripped of identifying information (names, addresses, social
security numbers)

e But it did contain zip code, birth date, and gender.

e Researchers estimated that 87 percent of Americans are uniquely
identifiable from this triplet.

@ Netflix Challenge (2006), a Kaggle-style competition to improve their
movie recommendations, with a $1 million prize

o They released a dataset consisting of 100 million movie ratings (by
“anonymized” numeric user ID), with dates
o Researchers found they could identify 99% of users who rated 6 or

more movies by cross-referencing with IMDB, where people posted
reviews publicly with their real names



I Real-world Examples

Not sufficient to prevent unique identification of individuals.

Name Age Gender Zip Code  Smoker Diagnosis

* 60-70  Male 191** Y Heart disease

. 60-70 Female 191** N Arthritis

¥ 60-70  Male 191** Y Lung cancer

3 60-70 Female 191* N Crohn’s disease

" 60-70  Male . g . 4 Lung cancer

’ 50-60  Female 191** N HIV

’ 50-60 Male 191** ) 4 Lyme disease

o 50-60  Male 191** Y Seasonal allergies
i 50-60  Female 191** N Ulcerative colitis

Kearns & Roth, The Ethical Algorithm

From this (fictional) hospital database, if we know Rebecca is 55 years old
and in this database, then we know she has 1 of 2 diseases.



Possible attacks

Membership inference attack:

* Train a ML model to predict whether individuals are used for training.
* Often obvious from the confidence of the ML-predictions alone.

Unintended memorization attack:

* Ask the language model to fill-in the question marks.

FYI: Modern DP learning models memorizes the entire dataset using their billions of parameters.They can
be thought of as an implicit transformation of the data into an efficient data-structure. In fact,
memorization might be the very reason why deep models work well. See (Feldman, 2019) https://

arxiv.org/abs/1906.05271

Generative model-inversion attacks:

* Model inversion attacks recover information about the training data from the trained model.

Reconstruction attack:
* An even stronger attack later: even without side-information, even with noise in the statistics.



I Possible attacks

Generative model-inversion attacks

* Model inversion attacks recover information about the training data from the trained model.

Target Masked EMI PlI GM

..O‘f_‘QO

reconstructing individuals from a face
recognition dataset, given a classifier
trained on this dataset and a generative

b] 1} 1} ‘gl ‘bl model trained on an unrelated dataset of
ﬂ ﬂ publicly available images.
225

Zhang et al.,“The secret revealer: Generative model-inversion attacks against deep neural networks.” https://arxiv.org/abs/1911.07135

Many more DNN-based attacks ...



I Reconstruction Attack

Introduced in a seminal paper by Dinur and Nissim in 2003 This attack motivates differential privacy!

Reconstruction Attacks in Practice:

US Census Bureau in 2018

motivating the Bureau’s adoption of differential privacy for data products derived from the 2020

decennial census!
Diffix

Aloni Cohen and Kobbi Nissim in the first bug bounty program 2017 - 2018
Travis Dick, Matthew Joseph, and Zachary Schutzman in the second bug bounty program 2020

SELECT COUNT(*) FROM rides

WHERE FLOOR(pickup latitude © 8.789 + 0.5)
= FLOOR(pickup latitude ©~ 8.789)

AND trip distance IN (0.87, 1.97, 2.75)

AND payment type = 'CSH'



I Reconstruction Attack

Consider the following model:
* We have a dataset of n individuals X = {z1,...,z,)
* One secret bit of information per person  b; € {0, 1}
* Each recordis ; = (ZZ', bi) z; € {0, l}d_l b; € {0,1} (d binary attributes)

* We can visualize such a dataset as a matrix

z1 | by

Z | b] =




I Reconstruction Attack

Consider the following model:

* The distinction between z; and b, is only in the mind of the attacker

* {245 ...,2,} is the prior information
* {by,...,b,} are the secret bits

Our goal is to understand if asking aggregate queries (defined by the prior information) can

learn non-trivial information about the secret bits.

Most basic aggregate query: counting query (how many data points satisfy a property)

The Dinur-Nissim attack uses a query g specified by a function ¢ : {0,1}¢~! = {0,1}

o) =3 olz) by



I Reconstruction Attack

The Dinur-Nissim attack uses a query ¢ specified by a function ¢ : {0,1}¢"! — {0,1}
n
¢(X) =) #(z) - b;.
=1

-ql(X)- 901(21) Sol(zn)- -bl

|4k (X). _SOk(.Z1) (Pk('zn)_ | bn_

|

Q7



I First Trial

The Dinur-Nissim attack uses a query g specified by a function ¢ : {0,1}¢~! — {0,1}

n
a(X) =D o(z)) - b;.
=1
How to design ¢ ? If answers are noiseless:

Yil?) =10 otherwise



I First Trial

The Dinur-Nissim attack uses a query g specified by a function ¢ : {0,1}¢~! — {0,1}

n
a(X) =) o(z;) - b;.
=1
How to design ¢ ? If answers are noiseless:

(2) = 1 ifz=z
Yil?) =10 otherwise

What if the answers are noisy?



I First Trial

An “inefficient” attacking scheme:

For simplicity, assume all z, ..., z, are distinct so that each user is uniquely identified by the
prior information

The attacker chooses queries g, ..., g; (k = 2") so that the matrix O, has as its rows all of {0,1}" .

The attacker receives a vector a of noisy answers to the queries, where | g;(X) — a;| < an for all g;

k
111131X|(Qz . b)z — a,.,;l = ”QZ b — a'”oo S an.
e The attacker outputs any consistent guess b= {lgn, e l;n} of the private bits vector, i.e.,
k g ~
max |a; — (Qz - )i| = 1Qz -5 - aflw < an

Does there always exist such b ?



First Trial

Theorem [Dinur and Nissim 03]:There is a reconstruction attack that issues k = 2"

queries to a dataset of n users, obtains answers with error an, and reconstructs the secret

bits of all but 4an users.

Proof:



I First Trial

Theorem [Dinur and Nissim 03]:There is a reconstruction attack that issues k = 2"

queries to a dataset of n users, obtains answers with error an, and reconstructs the secret

bits of all but 4an users.

Proof: Fix some b
Sor={j:bj=0,bj=1}and Syo = {j: b; = 1,b; = 0}
If b and b differ by more than 4an bits, then at least one of above sets has more than 2an items
WLOG, assume it is Sy,
Suppose the i-th row of O, is the indicator vector of S,; (Q: why can we do this?)
(Qz)ij =1 < je€ So.

|(QZ : b)z - (QZ : i))z| - |S()1| > 2an -



I First Trial

Theorem [Dinur and Nissim 03]:There is a reconstruction attack that issues k = 2"

queries to a dataset of n users, obtains answers with error an, and reconstructs the secret

bits of all but 4an users.

Proof: Suppose the i-th row of O, is the indicator vector of S, (Q: why can we do this?)
(Qz)ij =1 < j€ Su.
(Qz-b)i — (Qz - b)i| = |Su| > 2am-
However,l; should satisfy
(Qz-b)i — (Qz - b)i| < la; — (Qz - b)i + |(Qz - b)i — ai| < 20m,

which implies a contradiction.



I Can we have an efficient attack!?

An “efficient” attacking scheme:

e The attacker now chooses k randomly chosen functions ¢, for some much smaller k = O(n)

* Upon receiving an answer vector a, the attacker now searches for a real-valued b € [0,1]" such that

la — Qz - b|le < an.
(Can be found efficiently by LP)

e b, is round to the nearest b,



I Can we have an efficient attack!?

An “efficient” attacking scheme:

e The attacker now chooses k randomly chosen functions ¢, for some much smaller k = O(n)

* Upon receiving an answer vector a, the attacker now searches for a real-valued b € [0,1]" such that

la — Qz - b|le < an.
(Can be found efficiently by LP)

e b, is round to the nearest b,

Q, is a random matrix, can show that with high probability [|Qz - b — Qz - b||%, > |i : b; # b

The scheme implies [|Qz b — Qz - bllc < |Qz b — alloo + |la — Qz - b]| o < 2an

reconstruction error ~ O(a’n?)



I Can we have an efficient attack?

An “efficient” attacking scheme:

e The attacker now chooses k randomly chosen functions ¢, for some much smaller k = O(n)

* Upon receiving an answer vector a, the attacker now searches for a real-valued b € [0,1]" such that

la — Qz - bl < an.
(Can be found efficiently by LP)

e b, is round to the nearest b,

Theorem [Dinur and Nissim 03]:There is a reconstruction attack that issues k = O(n)

queries to a dataset of n users, obtains answers with error an, and with high probability,

reconstructs the secret bits of all but o7~ users.



I Enforcing privacy is challenging!

* Revealing dataset (even if with Pll removed) is a bad idea

Model inversion attacks recover information about the training data from the trained model.

Even if you don’t release the raw data, the weights of a trained network might reveal sensitive information.

e Revealing aggregate statistics of the dataset has privacy risks

Differencing attack: with side information, even if reporting just one, may reveal information about individuals

Reconstruction attack

e Machine learning models encodes information of individuals in a dataset and will

spit them out when given a carefully constructed prompt

Membership inference attack

Unintended memorization



I Incomplete history of privacy protection

* Since 1970s: Statistical disclosure control (Duncan et al.; Hundepool et al)
* e.g., Data swapping (Dalenius, Reiss, 1982) was implemented in the Census

» 2002 - 2007: K-anonymity, |I-divergence, t-closeness (Sweeney et. al.,
Machanavajjhala et. al., Li et. al., 2002 - 2007 )

* These attempts have been shown to be fragile against side-information and

composition. See a recent revisit of this problem (and the references therein):
https://aloni.net/wp-content/uploads/2021/05/Quasi-IDs-are-the-Problem-working-paper.pdf

e 2006+: Differential privacy [Dwork, McSherry, Nissim, Smith, 2006++]

(Motivated by the reconstruction attack)



I Incomplete history of privacy protection

 Since 1970s: Statistical disclosure control (Duncan et al.; Hundepool et al)
 e.g., Data swapping (Dalenius, Reiss, 1982) was implemented in the Census

* 2002 - 2007: K-anonymity, |-divergence, t-closeness (Sweeney et. al.,
Machanavajjhala et. al., Li et. al., 2002 - 2007 )

* These attempts have been shown to be fragile against side-information and

composition. See a recent revisit of this problem (and the references therein):
https://aloni.net/wp-content/uploads/2021/05/Quasi-IDs-are-the-Problem-working-paper.pdf

e 2006+: Differential privacy [Dwork, McSherry, Nissim, Smith, 2006++]

2017 Godel Prize winners:
Dwork, McSherry, Nissim & Smith

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006, March). Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference (pp. 265-284). Springer, Berlin, Heidelberg.



Part |.2

Intuition and Definition




I Necessary properties

What properties are desirable?

* Do we want to target on some specific attack!?

Do we need assumptions on the adversary?

Do we need assumptions on the input data?

e Do we want to have a composable privacy component!?



I Necessary properties

Protect against most (if not all) attacks known to date

* Not making strong assumptions about the adversary

* Not making strong assumptions about the input data

Graceful degradation over composition (by repeatedly calling DP algorithms or other functions)

Do we need a formal mathematical definition for privacy? Yes!



I |dea: mathematical guarantees

* We have seen several attacks
Generative model-inversion attack
Membership inference attack
Unintended memorization attack

Reconstruction attack

|t is insufficient to defend against one specific attack.

* ldea: a pure mathematical definition that separates “privacy definition” from the

actual algorithm that implements the defense.



I Key idea of differential privacy: randomized response

Alice or
Bob?
-

Data
Analysis
Algorithm




I Differential privacy by examples

Let’s reconsider this example:

Questionnaire: Have you ever dodged your taxes?

Name Answer

John Yes
Jack No
Jennifer Yes
James No

Table: Dataset



I Differential privacy by examples

Let’s reconsider this example:

Questionnaire: Have you ever dodged your taxes?

@ Intuition: Randomized response is a survey technique that ensures
some level of privacy.

e Example: Have you ever dodged your taxes?

e Flip a coin.
o If the coin lands Heads, then answer truthfully.
o If it lands Tails, then flip it again.

o If it lands Heads, then answer Yes.
e If it lands Tails, then answer No.



I Differential privacy by examples

Let’s reconsider this example:

Questionnaire: Have you ever dodged your taxes?

@ Intuition: Randomized response is a survey technique that ensures
some level of privacy.
e Example: Have you ever dodged your taxes?

e Flip a coin.
o If the coin lands Heads, then answer truthfully.
o If it lands Tails, then flip it again.

e If it lands Heads, then answer Yes.
e If it lands Tails, then answer No.
e Probability of responses:
‘ Yes No
Dodge | 3/4 1/4
No Dodge | 1/4 3/4




I Differential privacy by examples

Let’s reconsider this example:
Does this randomization help?

@ Tammy the Tax Investigator assigns a prior probability of 0.02 to Bob
having dodged his taxes. Then she notices he answered Yes to the

survey. What is her posterior probability?

Pr(Dodge) Pr(Yes | Dodge)
Pr(Dodge) Pr(Yes | Dodge) + Pr(NoDodge) Pr(Yes | NoDodge)
0.02-32
T 0.02-3+098-1
~ 0.058

Pr(Dodge | Yes) =




I Differential privacy by examples

Let’s reconsider this example:

Does this randomization help?

@ Tammy the Tax Investigator assigns a prior probability of 0.02 to Bob
having dodged his taxes. Then she notices he answered Yes to the
survey. What is her posterior probability?

Pr(Dodge) Pr(Yes | Dodge)
Pr(Dodge) Pr(Yes | Dodge) + Pr(NoDodge) Pr(Yes | NoDodge)
0.02-32
T 0.02-3+098-1
~ 0.058

Pr(Dodge | Yes) =

@ So Tammy's beliefs haven't shifted too much.

@ More generally, randomness turns out to be a really useful technique
for preventing information leakage.



I Differential privacy by examples

Let’s reconsider this example:

Does randomization affect population-level statistics?

@ Does randomization change the population mean p ?



I Differential privacy by examples

Let’s reconsider this example:

Does randomization affect population-level statistics?

@ Does randomization change the population mean y ?

@ How accurately can we estimate u, the population mean?

o Let X{f) denote individual i's response if they respond truthfully, and
Xlg:) individual i's response under the RR mechanism.

@ Maximum likelihood estimate, if everyone responds truthfully:

1 o (i)



I Differential privacy by examples

Does randomization affect population-level statistics?

@ How accurately can we estimate u, the population mean?

o Let Xrg) denote individual i's response if they respond truthfully, and
Truthful Case: XI({') individual i's response under the RR mechanism.

@ Maximum likelihood estimate, if everyone responds truthfully:

1 on
/.IZT — NZX{-\I)
i=1

RR Case: @ How to estimate p from the randomized responses {XP({'.)}?

i 1 3
EX] = 5 (1- )+ 5

R 2 i
=>MR=NZXI({) -

NI -



I Differential privacy by examples

Does randomization affect population-level statistics?
@ How accurately can we estimate p, the population mean?

We can estimate the mean y for the RR case. What is the payoff?

A. Estimate accuracy
B.Variance
C. Computational complexity

D.Both A and B

E.Both A, B, and C



I Differential privacy by examples

Does randomization affect population-level statistics?

@ How accurately can we estimate p, the population mean?

We can estimate the mean u for the RR case. What is the payoff?

@ Variance of the ML estimate:

1 i
Var(fir) = Var(X\))

- %u(l — 1.

@ Variance of the estimator:
N 4 i

Var(figr) = N Var(Xf({))

4

N
= 4Var(,i2T)

> Var(Xéf.)) Why this inequality holds?



I Differential privacy by examples

We can estimate the mean y for the RR case. What is the payoff?
@ Variance of the ML estimate:
Ay = L (7
Var(fit) = N Var(Xt’)
1
= —u(l — p).
k)
@ Variance of the estimator:
4 .
Var(jir) = N Var(Xlg))
> %Var(X{,i)) Why this inequality holds?

= 4 Var(fr)

@ The variance decays as 1/N, which is good.
@ But it is at least 4x larger because of the randomization. Can we do better?



I Differential privacy

Basic setup:

@ There is a database D which potentially contains sensitive
information about individuals.

@ The database curator has access to the full database. We assume the
curator is trusted.

@ The data analyst wants to analyze the data. She asks a series of
queries to the curator, and the curator provides a response to each
query.

@ The way in which the curator responds to queries is called the

mechanism. We'd like a mechnism that gives helpful responses but
avoids leaking sensitive information about individuals.

Database

Database curator Database analyst



I Differential privacy

@ Two databases D; and D, are neighbouring if they agree except for a
single entry.

o ldea: if the mechanism behaves nearly identically for D; and D5,
then an attacker can't tell whether D; or Dy was used (and hence
can't learn much about the individual).

@ Definition:

e A mechanism M is e-differentially private if for any two neighbouring
databases D; and D5, and any set R of possible responses

Pr(M(Dy) € R) < exp(e) Pr(M(Ds) € R).

e Note: for small ¢, exp(e) =~ 1 +«.

@ A consequence: for any possible response y,

Pr(M(D1) = y)
Pr(M(D2) =y)

exp(—¢) < < exp(e)



Differential privacy

@ Two databases D; and D, are neighbouring if they agree except for a
single entry.

@ ldea: if the mechanism behaves nearly identically for D; and D»,
then an attacker can't tell whether D; or D, was used (and hence
can't learn much about the individual).

@ Definition:

e A mechanism M is (g, 0)-differential private if for any two neighbouring
databases D; and D5, and any set R of possible responses

Pr(M(D;) € R) < exp(e) Pr(M(D;) € R)+6  (small, decreasing with n)

O The randomness only comes from the randomized mechanism

© We may define “neighboring relationship” differently to encode different
granularity of the DP guarantee: e.g.,“Add/remove”,“Replace”

© Need to hold for any pairs of neighboring inputs and any set of outputs



I Differential privacy visualization

p(y| D)

p(y | D2)

Y

log p(y)

Notice that the tail behavior is important.




I Differential privacy example

@ Anna is an attacker who wants to figure out if Patrick (x) is in the
cancer database D. Her prior probability for him being in the
database is 0.4. D is e-differentially private. She makes a query and
gets back y = M(D).



I Differential privacy example

@ Anna is an attacker who wants to figure out if Patrick (x) is in the
cancer database D. Her prior probability for him being in the
database is 0.4. D is e-differentially private. She makes a query and
gets back y = M(D).

@ She's narrowed it down to two possible databases D; and D,, which
are identical except that x € D; and x & D».



I Differential privacy example

@ Anna is an attacker who wants to figure out if Patrick (x) is in the
cancer database D. Her prior probability for him being in the
database is 0.4. D is e-differentially private. She makes a query and
gets back y = M(D).

@ She's narrowed it down to two possible databases D; and D,, which
are identical except that x € D; and x & D».

o After observing y, she computes her posterior probability using Bayes'
Rule:
Pr(x € D)Pr(y |x € D)
Pr(x € D)Pr(y|x € D) + Pr(x € D) Pr(y | x € D)
S Pr(x € D)Pr(y|x € D)
— Pr(x € D)Pr(y| x € D) + exp(e) Pr(x € D) Pr(y | x € D)
. Pr(x € D)
~ Pr(x € D) + exp(e) Pr(x & D)
> 0.4 exp(—¢)

Pr(xe Dly) =

@ Similarly, Pr(x € D|y) < 0.4exp(e). So Anna hasn't learned much about Patrick.



I Differential privacy is composable

@ In what sense does this definition guarantee privacy?

@ Suppose a data analyst takes the result y = M(D) and further
processes it with some algorithm f (without peeking at the data
itself). Is it still private? Example: Stochastic Gradient Updates [I]

@ Let R be a set of possible outputs, and R’ be the pre-image under f,
ie. Rl ={y:f(y) e R}.

Pr(f(M(D1)) € R) = Pr(M(D;) e R))
< exp(e) Pr(M(D,) € R')
= exp(e) Pr(f(M(D2)) € R)

@ Hence, the composition f o M is also e-differentially private. No
matter how clever the analyst is, or the resources she throws at it, she
can't learn more than € about an individual entry!

[I] Deep Learning with Differential Privacy https://arxiv.org/pdf/1607.00133.pdf




Composition rules

@ So far, we've been looking at one query in isolation. What if we want
to answer more than one question from the data we've collected?
@ Can't just repeatedly use the same mechanism independently

e Suppose the analyst asks the same counting query K times, and the
curator always responds independently using the Laplace mechanism.

e The analyst can get arbitrarily accurate counts by averaging the
responses, rendering the privacy guarantee meaningless.

@ Can we relate the privacy of multiple queries to the privacy of a single
query? Such a result is known as a composition rule.



I Composition rules

@ The easiest case is when the queries are non-adaptive, i.e. the

analyst(s) make the queries without seeing the results of previous
queries.

@ Claim: Querying an e-differentially private mechanism K times
non-adaptively is Ke-differentially private.

o Letting y1, y» be the responses, we have y; 1L y»|D. So,

p(y1,y2|D1) _ ply1|D1) ply2| D1)
pP(y1,¥21D2)  p(y1|D2) p(y2| D2)
< exp(e) - exp(e)
= exp(2¢)

@ Corrollary: if your privacy budget is €, you should make sure the
privacy parameters of the individual queries sum up to €.



I Composition rules

e Example: Recall that for naive Bayes, we made a counting query
that requests the joint counts of (t,x;) for each feature Xx;.

e We concluded that Af = D, so the Laplace mechanism adds Laplace
noise with scale D/e.

@ We can alternatively formulate this as D different queries, chosen
non-adaptively, each of which asks for the joint counts (t, x;) for one
feature Xx;.

o To satisfy a privacy budget of ¢, each query should be F-differentially
private.

o The sensitivity of each query is Af; = 1.

e So we should add Laplace noise with scale Afj/(¢/D) = D/e.

@ Hence, the composition rule agrees with the basic Laplace mechanism
for this example.



I Advantages and disadvantages of DP

O Advantages

A formal mathematical definition of privacy that provides rigorous guarantees and provably
effective protections against privacy risks; makes no assumptions on adversary, database, etc

The de-facto standard in privacy --- the only one still being actively researched on

Composable in industrial applications

Interpretable, quantifiable, composable formalism
O Disadvantages

e Sometimes too restrict



Part |.3

Basic Mechanism

Laplace mechanism

Exponential mechanism




I Laplace mechanism

How to find a mechanism for differential privacy?

The first mechanism designed together with DP: Laplace mechanism

@ A lot of queries we might want to ask can be seen as counting
queries, i.e. counting the number of entries which have property P.

e E.g. naive Bayes, decision trees

@ ldea: Maybe the mechanism can return noisy counts which are
accurate enough for whatever analysis we're trying to do.

We focus on eg-differential privacy



I Laplace mechanism

What kind of noise we would like to add to the counts?

First trial: Gaussian

p(y)

What: exp(—¢) <

log p(y)

Pr(M(D;) = y)

gap increases
linearly

Pr(M(D2) = y)

< exp(e)




I Laplace mechanism

What kind of noise we would like to add to the counts?

1 _
Second trial: Laplace distribution p(y; i, b) = — exp (— ly ,u|)

2b b
05 | | l ]
' p=0, b=1 =——
=0, b=2 =—
0.4 + ” p=0, b=4 =——
pu=-5, b=4 ——v
0.3

0.2

0.1




I Laplace mechanism

What kind of noise we would like to add to the counts?

1 —
Second trial: Laplace distribution p(y; i, b) = % exp (_ ly - N|>

p(y) log p(y)

Pr(M(D1) = y)

What: exp(—¢) < 5 1(D,) = y)

< exp(e)



I Laplace mechanism

@ Let f be a deterministic vector-valued function of a database. The L!
sensitivity of f is defined as:

Af = max 1f(D1) — £(D2)]|1-
neighbours

@ Recall that [|x||1 = D_; |xi|.

@ Suppose f returns the vector of counts of individuals who fall into k
disjoint buckets. What is the L! sensitivity of f? (Ans: 1)

@ Laplace mechanism: return a vector y whose entries are
independently sampled from Laplace distributions

Af
y; ~ Laplace (f(D),-, ?) ,

where f(D); denotes the ith entry of f(D).

In other words: f(D)+ Z where Z; ~ Lap(Af/e) i.i.d.



I Laplace mechanism is differentially private

e Claim: the Laplace mechanism is differentially private.
@ Let D; and D, be two neighboring databases, and y = M(D).

p(y|D1) I 557 exp(— = BUi=xil)

N § Y;
p(Y|D2) [T, 55 exp(—fB2)izxil)

e(|f(D2)i —yil — |f(D1)i — yi
:Hexp((l( )i —yil = |f(D1) Y|)>

Af

Af

€Y . |f(D2)i — f(Dr)il
- P ( AF )
_ e||f(D2) — £(D1)llx
- &P ( Af )
< exp(e) (defn. of Af)

< Hexp (€(|f(D2)i — f(Dl)i|)> (triangle ineq.)




I Laplace mechanism is differentially private

e Example: What fraction of Canadians have blue eyes?

@ Mechanism returns the counts (£71,&2) of Canadians with and without
blue eyes, plus Laplace noise. We'd like to satisfy a privacy constraint
of e = 0.1. How much Laplace noise should we add?

o Ans: Af/e =1/0.1 = 10.
@ The noise scale is independent of the population size!

@ l.e., you can answer the query to within about £10 people, out of the
population of Canada. So you can obtain very accurate answers to
queries over large populations.



I Laplace mechanism is differentially private

Comparison to randomized response

@ Recall the randomized response method:
‘ Yes No

Dodge | 3/4 1/4
No Dodge | 1/4 3/4

e For what ¢ is this e-differentially private? (Ans: log 3)

@ Recall: ML estimate from truthful responses has variance ﬁu(l — )
and estimate from randomized responses has variance at least 4x

larger.



I Laplace mechanism is differentially private

@ Recall: ML estimate from truthful responses has variance %,u(l — 1)
and estimate from randomized responses has variance at least 4x

larger.

e Laplace mechanism: add Laplace noise i with scale
Af/e =1/log3 ~ 0.91
N
X9 4 )
1
n
N

=2 |

i=

T+

>

o The added noise has variance O(1/N?), compared with the statistical
error, which is O(1/N). So we lose almost no accuracy.



I Exponential mechanism

@ Suppose the goal of the analysis is to make a decision Y.

e We have a loss function £(Y, D) which determines how unhappy we
are with any particular Y as a response for database D.

@ The exponential mechanism tries to pick a reasonably good decision
subject to a privacy constraint. We do this by picking Y randomly as:

Pr(Y =y) x exp (—ﬁﬁ(y, D))

e AL is the sensitivity of £, just like for the Laplace mechanism.

@ The resulting probabilities are basically a softmax of —L.
Distributions of this form are also called Boltzmann distributions
(from statistical mechanics).



I Exponential mechanism is differentially private

@ Claim: The exponential mechanism is e-differentially private.

@ For two neighboring databases D; and D,, and any value y,

exp(—ﬁﬁ(y,pl))
ply |D1) _ 2y exp( =54z £y, 1))
p(y | D2) exp(— 52z L(y,D2))

>, exp(— 4z L(y',D2))
_exp (= 2A££(Y7D1)) ’eXp( ar Ly, D2))
_pr( 2A££(Y>D2)) >, exp (—aaz L1y, Dl))
<exp(e/2) < exp(e/2)

@ Both inequalities are straightforward applications of the definition of

AL.

p(y | D1) ,
o Hence, 5,5 < exp(g), so we're done.




I Exponential mechanism example

e Example: inferring the parameter of a Bernoulli distribution

@ Suppose we have a dataset D = {xi,...,xyn} of coin flips, and we
want to estimate the bias 6 while protecting the privacy of each
individual coin flip with € = 0.1.

@ Our loss is negative log-likelihood:

L(8,D) = —log H p(xi; 0)

@ What is the sensitivity AL?
e Ans: AL = 00, because an observation x; = 1 has probability 1 under
6=1and probability 0 under 6=0.
e Hence, we can't use the exponential mechanism without further
assumptions.



I Exponential mechanism example

o Now suppose we restrict 6 to be in the interval (0.1,0.9). Now what
is the sensitivity?

e Ans: AL = —log0.1 = 2.3.

@ The exponential mechanism samples 0 as
&
2AL

N
= exp (0.022 log H p(xi; é))

i=1

p(8| D) o exp (— c(6, D))

N
H P(Xi; 9)0.022
i=1

é0~022NH(1 _ §)0-022NT

@ Note: This is a beta distribution with parameters a =1 + 0.022 Ny
and b =1+ 0.022 N7, truncated to (0.1,0.9).



I Comparison of Laplace and Exponential mechanisms

@ Let's compare the Laplace and exponential mechanisms for estimating
9.

e Laplace mechanism: compute the counts Ny and N, then add
Laplace noise with scale AL/e = 22.

o = Nu
Nu+Nt .
o Can show Var(d| D) = O(1/N?)

e Exponential mechanism:
6 ~ TruncatedBeta(1 4 0.022 Ny, 1+ 0.022 N1)

o Can show Var(d| D) = O(1/N)

So the Laplace mechanism is much more accurate in this case. But the exponential

mechanism is still useful in cases that aren’t easily formulated as counts



Part |l

Federated Learning




I Introduction to federated learning

@ So far, we've assumed there's a curator who we trust with access to
all the raw data.

@ What if a company (say Google) wants to learn a classifier from the
images stored on everyone's phones, but without having to send the
images to Google?

@ Federated learning: learning a model without any centralized entity
having access to all the data

e Google sends the phone the current weights of the network

e The phone does a small number of steps of gradient descent, and
communicates the local update back to Google

e Google updates their network by adding the local update

@ Does this satisfy differential privacy?

e Not automatically, but the local updates could be randomized in a way
that makes them differentially private.



I Introduction to federated learning

A typical round of learning consists of the following sequence.

/ -

‘/ Swdgh:l
F )\
‘.’ Send back

weights updated

Modolwibwdglm\ Worker 1

@ A random subset of members of the Federation (known as clients) is
selected to receive the global model synchronously from the server.

@ Each selected client computes an updated model using its local data.
© The model updates are sent from the selected clients to the server.

© The server aggregates these models (typically by averaging) to
construct an improved global model.



I Normal assumptions in FL

* Distributed storage (Non-IID)

O User data is localized to their own usage

O Hard to be a representative of the population
* Heterogeneous services (Unbalanced)
O Some users will make much heavier on particular services than others
e Distributed computing capacity (Massively distributed)
O Expect a large number of devices to be updated at the same time
* Limited communication

O Mobile devices are frequently offline or on slow or expensive connections



I Introduction to federated learning (Optional)

1F server
1/
dcelviiecnets @ ﬁ -
(3 federated
= training
3 deployment |
T
3 development @ .
A D
engineer

https://sites.cs.ucsb.edu/~yuxiangw/classes/DPCourse-202 | Fall/Lectures/peter_kairouz_guest_lecture.pdf



I Ensuring privacy of participating users (Optional)

What private information might an actor learn with access to... @
[ J
... the
device? .. the server? ... the released
models and
server metrics?
client - j E
devices
federated
training
model
a model deployment °
development @ . /\
yd -
° eneneer ... the deployed
... the model?

network?




I Data minimization principles for FL (Optional)

. E
... the o
devicp2| =10 ... the server? ... the released
models and
server Share this page |
L~
client »
devices )
y; federat
trainin| \_‘/\J E
deployment °
pment ploy . /\
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. " eneine ... the deployed
- the model?
network?




Need complementary privacy technologies (Optional)

... the server?

client
devices

o ... the
network?

Enclaves, SMPC,
Secure Aggregation,
Local Differential Privacy

server

- model
6 development

... the released
models and
metrics?

Central Differential Privacy,
Privacy Auditing (secret
sharer, membership

inference)

deployment

engineer

VAN

... the deployed
model?




FL used by Google Cloud (Optional)

Cloud Architecture Center Was this helpful? i) ca

Federated learning on Google Cloud A - Send feedback

Last reviewed 2022-06-08 UTC
7N

J\@

[

Your phone personalizes the model locally, based on your usage (A).
Many users' updates are aggregated (B) to form a consensus change
(C) to the shared model, after which the procedure is repeated.

C.
To make Federated Learning possible, we had to overcome many algorithmic and technical challenges. In a typical
machine learning system, an optimization algorithm like Stochastic Gradient Descent (SGD) runs on a large dataset
partitioned homogeneously across servers in the cloud. Such highly iterative algorithms require low-latency, high-

throughput connections to the training data. But in the Federated Learning setting, the data is distributed across
millions of devices in a highly uneven fashion. In addition, these devices have significantly higher-latency, lower-

throughput connections and are only intermittently available for training.



I FedSGD (Optional)

E

—— Gradient gr — VFk wt)
— Model - - n -
Wil < Wt — 1N D pey 2k

McMahan et al, 2017 Communication-Efficient Learning of Deep Networks from Decentralized Data: https://arxiv.org/pdf/1602.05629.pdf



I FedAvg (Optional)

——  Gradient k —
 Mear Weyq < Wt — NGk
k

K nk
W1 4= D pe1 Wit

McMahan et al, 2017 Communication-Efficient Learning of Deep Networks from Decentralized Data: https://arxiv.org/pdf/1602.05629.pdf



I FedAvg (Optional)

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E' is the number
of local epochs, and 7 is the learning rate.

Server executes:

initialize wy

foreachroundt =1,2,... do
m < max(C - K,1)
S; < (random set of m clients)
for each client £ € S; in parallel do

wf, ,  ClientUpdate(k, w;)

Mt < Y e s, Mk
Wit1 = D pes, T’:L—’“twfﬂ /I Erratum

4

ClientUpdate(k, w): // Run on client k
B < (split Py into batches of size B)
for each local epoch ¢ from 1 to £ do

for batch b € B do
w < w —nVel(w;b)
return w to server

McMahan et al, 2017 Communication-Efficient Learning of Deep Networks from Decentralized Data: https://arxiv.org/pdf/ 1 602.05629.pdf



I Trade-offs Between Local and Global Iterations (Optional)

Number of rounds of communication necessary to achieve a test-set accuracy of 97% for the

2NN(MLP) and 99% for the CNN on MNIST:

2NN IID NON-IID

C B=o B=10 B = oo B =10
0.0 1455 316 4278 3275

0.1 1474 (1.0x)  87(3.6x) 1796 (2.4x) 664 (4.9x)
0.2 1658 (0.9x) 77 (4.1x) 1528 (2.8x) 619 (5.3x)
0.5 — (=)  75(4.2x) — (=) 443 (7.4%)
1.0 — (=) 70 (4.5%) — (=) 380 (8.6x)
CNN, E =

0.0 387 50 1181 956

0.1 339 (1.1x)  18(2.8x) 1100 (1.1x) 206 (4.6x)
0.2 337 (1.1x)  18(2.8x) 978 (1.2x) 200 (4.8x)
0.5 164 (2.4x)  18(2.8x) 1067 (1.1x) 261 (3.7x)
1.0 246 (1.6x) 16 (3.1x) — =) 97 (9.9x)

C - ratio of clients updated to the server

B - batch size of clients

E - number of epochs client makes over its local dataset on each round

McMahan et al, 2017 Communication-Efficient Learning of Deep Networks from Decentralized Data: https://arxiv.org/pdf/1602.05629.pdf



I Comparisons Between FedSGD and FedAvg (Optional)

Number of rounds of communication necessary to achieve a test-set accuracy of 97% for the

2NN(MLP) and 99% for the CNN on MNIST:

MNIST CNN, 99% ACCURACY

CNN E B U 11D NoON-IID
FEDSGD 1 o 1 626 483
FEDAVG 5 o 5 179 (3.5x) 1000 (0.5%)
FEDAVG 1 50 12 65 (9.6x) 600 (0.8x)
FEDAVG 20 oo 20 234 (2.7x) 672 (0.7%)
FEDAVG 1 10 60 34 (18.4x) 350 (1.4x)
FEDAVG 5 50 60 29 (21.6x) 334 (1.4x)
FEpAve 20 50 240 32 (19.6x) 426 (1.1x)
FEDAVG 5 10 300 20 (31.3x) 229 (2.1x)
FEpAve 20 10 1200 18 (34.8%) 173 (2.8%)

SHAKESPEARE LSTM, 54% ACCURACY
LSTM E B U 11D NoON-IID

FEDSGD 1 oo 1.0 2488 3906

FEDAVG 1 50 1.5 1635 (1.5%) 549 (7.1x)
FEDAVG 5 o 5.0 613 (4.1x) 597 (6.5%)
FEDAVG 1 10 7.4 460 (5.4x) 164 (23.8x%)
FEDAVG 5 50 7.4 401 (6.2x%) 152 (25.7x)
FEDAVG 5 10 37.1 192 (13.0x) 41 (95.3x%)

K - number of clients
B - batch size

E - number of epochs
u- En/(KB)

expected number of updates per round.

McMahan et al, 2017 Communication-Efficient Learning of Deep Networks from Decentralized Data: https://arxiv.org/pdf/1602.05629.pdf



I Locally differentially private federated training (Optional)

updated model

data device Clip update and add
noise on each
device

Evfimievski, Alexandre, et al. Privacy preserving mining of association rules. Information Systems 2004
Warner, Stanley L. Randomized response: A survey technique for eliminating evasive answer bias. JASA 1965



I Differential privacy and local differential privacy (Optional)

Centralized Setting

1

S

Distributed Setting

5
\
I g

= = =

Relies on distributed optimization




I Differential privacy and local differential privacy (Optional)

Distributed Differential Privacy

*@)*M(D) M

Bob /

Central DP: full trust in service provider | Local DP: weaker trust assumptions
Higher utility at reasonable privacy levels Utility often suffers

Dwork, et. al. “Our Data, Ourselves: Privacy Via Distributed Noise Generation”. 2006.



I Differential privacy and local differential privacy (Optional)

PrM(d) € S] < e* Pr[M(d') € S] + 6

Differential Privacy Local Differential Privacy

e d, d' are sets of data e dandd' are single samples
e d and d' differ in one sample

e Centralized setting e Distributed setting



I Deployment of local differential privacy (Optional)

¢ RAPPOR by Google RAPPOR: Randomized Aggregatable Privacy-Preserving
Ordinal Response

O Collect user data

Ulfgos)frllingsson \(/;asylI Pihur lAIe}(sangra Koro!oya
O Randomized Aggregatable Privacy-Preserving Ordinal Response ulfar@googi6.com vpihur@google.com Ly oy Soaner Callorna
g8reg Y g P orolova@usc.edu
True value: "The number 68" Do m 1
4 signal bits
Bloom filter (B): | | |
Fake Bloom 69 bits on
psrAP 10V R S A R AU |
Report sent 145 bits on
osorert T IR 0L OO A T
mrT T T T T T
18 32 64 128 256

Bloom filter bits
Article | December 2017

* Private Count Mean Sketch by Apple

Privacy

Learning with Privacy at Scale

O Collect emoji usage data along with other information in iPhone

O Learning with Privacy at Scale
Differential Privacy Team

0 Yy = @



I Distributed DP (Optional)

client
devices
Some DP guarantees
e Very few (~10s) people have

° access to the server




Part |l

Summary




I Learning Outcomes

Understand why privacy matters in ML

Know how to describe possible attacks

Be able to derive the theorems for reconstruction attacks

Be able to state the definition of differential privacy

Be able to state and verify simple mechanisms

* Understand the composition rule

Know what federated learning is and how differential privacy can be guaranteed



