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Example
@ You work at a jail, and your boss asks you to automate potential
recidivism risk evaluation. You examine the various model options
and select a complex model because it gets the best performance:
a gradient boosted tree XGBoost or LightGBM.
@ Boss: Nice job, can | ask some questions about how the model

works?
o Which features are most important overall?
e For the people with high risk (y = 1), can you explain why?

Output

Explain a blackbox
or use an interpretable o ——[EELEE
model instead 1

Explainable
Al

\
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@ Explainable Al (XAl), or Interpretable Al, or Explainable Machine Learning
(XML), is artificial intelligence (Al) in which humans can understand the
reasoning behind decisions or predictions made by the Al.

@ XAl algorithms follow three principles.

o Transparency: the processes that extract model parameters from
training data and generate labels from testing data can be
described and motivated by the approach designer.

o Interpretability: the possibility of comprehending the ML model and
presenting the underlying basis for decision-making in a way that is
understandable to humans.

o Explainability: a concept that is recognized as important, but a
consensus definition is not available. One possibility is: "the
collection of features of the interpretable domain, that have
contributed for a given example to produce a decision (e.g.,
classification or regression)".

@ Algorithms fulfilling these principles provide a basis for justifying decisions,

tracking and thereby verifying them, improving the algorithms, and exploring new
facts.

Slide adapted from https://en.wikipedia.org/wiki/Explainable_artificial_intelligence
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Motivation

Machine learning (ML) algorithms used in Al can be categorized as
white-box or black-box.

Black box - we do not White box - we know
know anything everything

@ White-box models provide results that are understandable for
experts in the domain.
@ e.g.: linear regression, logistic regression, knn, linear SVM,
decision tree, GLMs, GAMs, kmeans, PCA
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Motivation

Machine learning (ML) algorithms used in Al can be categorized as
white-box or black-box.

Black box - we do not White box - we know
know anything everything

@ White-box models provide results that are understandable for
experts in the domain.
@ e.g.: linear regression, logistic regression, knn, linear SVM,
decision tree, GLMs, GAMs, kmeans, PCA
@ Black-box models are extremely hard to explain and can hardly be
understood even by domain experts.
e e.g.: ensemble learning (XGBoost, LightGBM, etc), kernel
methods, neural networks (MLP, CNN, RNN, transformer, GNN)
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Definitions
@ A model explanation attempts to highlight why a model made a
prediction
@ A feature importance explanation focuses on each feature’s role

o Feature attribution: each feature x; receives a score a; € R
o Feature selection: a subset of important features xs € {x1, ..., Xq}
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Definitions
@ A model explanation attempts to highlight why a model made a
prediction
@ A feature importance explanation focuses on each feature’s role

o Feature attribution: each feature x; receives a score a; € R
o Feature selection: a subset of important features xs € {x1, ..., Xq}

@ Explanations may relate to an individual prediction (local) or a
broader model behavior (global)

@ An explanation algorithm is a method that generates explanations
given input data and an ML model
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Removal-based Explanations

Idea: to understand a feature’s importance, remove it and see how the
prediction changes This is the underlying idea behind many popular
approaches SHAP, LIME, RISE, etc.

Doctor analogy:
@ Suppose we want to understand a doctor’s
diagnosis.
@ We can probe the doctor’s reasoning by
covering parts of the scan.

@ The diagnosis should change when we cover
important regions.

In ML, we can analyze models by withholding features.
Challenge: How to design the features to be removed?
Given d features, we have 2" possible ways to remove!
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e Permutation and Occlusion
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Permutation Test

Permutation test (also known as permutation feature importance) is
an "old" method introduced for random forests.
@ It determines overall (global) importance of each input feature via:
o First, evaluate the model’'s accuracy using the original data
e Then, one at a time, corrupt features and record the drop in
accuracy
- Corruption: randomize/permute/shuffling a column of the dataset
(corresponding to the feature)
- Accuracy drop: a; = Acc(original) — Acc (x;corrupted)
* It can be applied to training, validation, or testing datasets.

Height at age 20 (cm) | Height at age 10 (cm) Socks owned at age 10
182 55 20
175 ~147 10
156 142 5 8
153 130 24
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Permutation Test

Permutation test (also known as permutation feature importance) is
an "old" method introduced for random forests.
@ It determines overall (global) importance of each input feature via:

o First, evaluate the model's accuracy using the original data
e Then, one at a time, corrupt features and record the drop in
accuracy

- Corruption: randomize/permute/shuffling a column of the dataset
(corresponding to the feature)
- Accuracy drop: a; = Acc(original) — Acc (x;corrupted)
* It can be applied to training, validation, or testing datasets.
@ More precisely, it computes

a,.:j)l_ie(f(xg,...,;;,...,xg),yf) _;,jie(f(xg,...,xg),yf)

- £(-,-): an arbitrary loss function
- %I: the i-th feature is corrupted

Leo Breiman, "Random forests" (2001)
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Permutation Test

Example: variable importance in random forest on diabetes data

30

g .
g 20
8 10
- S .+ ¢
o » . PS
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1 2 3 4 5 6 7 8
variable
Glucose concentration BMI

Skin thickness
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Permutation Test

Example: variable importance in random forest on diabetes data

30

s .
8 20
]
& 10
- S .+ ¢
o » . PS
10
1 2 3 4 5 6 7 8
variable
Glucose concentration ‘ BMI

Skin thickness

Properties of permutation test based explanation
@ Works for any model
@ Can use with continuous or categorical features
@ Fast, easy to implement
@ Empirical, no theoretical guarantees
@ Problematic for correlated features
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Occlusion

Occlusion is an early approach for deep learning models
@ Occlusion: block/mask something
@ Explain individual (local) predictions for image classifiers
@ Calculate pixel (or super-pixel) importance
Occlusion process:
@ Make prediction given full image
@ Occlude various image regions, record how the prediction changes

@ Occlude by replacing with uninformative (zero) pixels
o Potentially occlude 2x2, 4x4, etc., or super-pixels

@ Mathematically,

a="f(x,....,xq)—f,(x1,...,0,...,Xq)

Zeiler & Fergus, “Visualizing and understanding convolutional networks” (2014)
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Occlusion

An intuitive example

-‘\_/’[ 7 ‘i\./?
A o A
(L) D) (1
N N

2
H

https://towardsdatascience.com/inshort-occlusion-analysis-for-explaining-dnns-dO0ad3af9aeb6
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Occlusion

Example: attribution generated by occlusion with squared grey
patches of different sizes

Original (label: "garter snake") Occlusion-1 Occlusion-5x5 Occlusion-10x10 Occlusion-15x15

& ;
- 2 . ¥ 3
o B ’

e L ™ 4‘, o

® . w» 2 =

o
M~ 2 v ol .

Properties of occlusion based explanation
@ Works with any model, even non-image data

@ Moderately fast: d + 1 model evaluations to explain each
prediction

@ Easy to implement
@ Empirical, no theoretical guarantees

Ancona et al. Towards better understanding of gradient-based attribution methods for Deep Neural Networks (2018)
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Permutation Test vs Occlusion

Permutation tests Occlusion

Corrupt input Randomize features Set to zero
Observe model change Change in accuracy Change in prediction
Calculate impact Remove single feat. Remove single feat.
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A General Framework

1. Feature removal 2. Model behavior 3. Summary technique
f ttt tt t t tt
[ XX ] [ X X ] evee

Prediction loss
€(®. @)

Dataset loss

EX(®. @ )]

Feature Influence

t ot
e0ve

Figure 1: A unified framework for removal-based explanations. Each method is determined
by three choices: how it removes features, what model behavior it analyzes, and
how it summarizes feature influence.
Options for feature removal approach: 1.replace with default values (zero); 2.replace
with random values; 3.train separate models with each feature set; 4.use a model that
accepts missing features; 5.application-based operations (e.g. blurring for images).
Covert et al., “Explaining by removing: a unified framework for model explanation” (2021)
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A General Framework

1. Feature removal 2. Model behavior 3. Summary technique
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Figure 1: A unified framework for removal-based explanations. Each method is determined
by three choices: how it removes features, what model behavior it analyzes, and
how it summarizes feature influence.

@ At least 26 published papers follow this recipe
@ Example methods include SHAP, LIME, etc.
@ Suggested the term removal-based explanations
Covert et al., “Explaining by removing: a unified framework for model explanation” (2021)
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A General Framework

Permutation tests Occlusion
1. Feature removal Sample new values Set to zero
2. Model behavior Dataset loss Individual prediction
3. Summarization Remove single feat. Remove single feat.

Options for feature removal approach: 1.replace with default values (zero); 2.replace
with random values; 3.train separate models with each feature set; 4.use a model that
accepts missing features; 5.application-based operations (e.g. blurring for images).

Covert et al., “Explaining by removing: a unified framework for model explanation” (2021)
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A General Framework

METHOD

REMOVAL

BEHAVIOR

SUMMARY

|

Vol

IME (2009)

IME (2010)

QII

SHAP

KernelSHAP
TreeSHAP
LossSHAP

SAGE

Shapley Net Effects
SPVIM

Shapley Effects
Permutation Test
Conditional Perm. Test
Feature Ablation (LOCO)
Univariate Predictors
L2X

REAL-X

INVASE

LIME (Images)
LIME (Tabular)
PredDiff

Occlusion

CXPlain

RISE

MM

MIR

MP

EP

FIDO-CA

Separate models
Marginalize (uniform)

Marginalize (marginals product)
Marginalize (conditional/marginal)

Marginalize (marginal)
Tree distribution
Marginalize (conditional)
Marginalize (conditional)
Separate models (linear)
Separate models
Marginalize (conditional)
Marginalize (marginal)
Marginalize (conditional)
Separate models
Separate models
Surrogate
Surrogate
Missingness during training
Default values

Marginalize (replacement dist.)

Marginalize (conditional)
Zeros
Zeros
Zeros
Default values
Extend pixel values
Blurring
Blurring
Generative model

Prediction
Prediction
Prediction
Prediction
Prediction
Prediction
Prediction loss
Dataset loss (label)
Dataset loss (label)
Dataset loss (label)
Dataset loss (output)
Dataset loss (label)
Dataset loss (label)
Dataset loss (label)
Dataset loss (label)
Prediction loss (output)
Prediction loss (output)
Prediction mean loss
Prediction
Prediction
Prediction
Prediction
Prediction loss
Prediction
Prediction
Prediction
Prediction
Prediction
Prediction

Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Remove individual
Remove individual
Remove individual
Include individual
High-value subset
High-value subset
High-value subset
Linear model
Linear model
Remove individual
Remove individual
Remove individual
Mean when included
Partitioned subsets
High-value subset
Low-value subset
High-value subset
High-value subset

gxin Li
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LIME

Local Interpretable Model-agnostic Explanations (LIME): feature attribution
for an individual sample x

&(x) = argmin L (f,g,7x) + 2(9)
geG

- f:RY — R. In classification, f(x) is the probability (or a binary indicator) that x
belongs to a certain class 7.

- g:{0,1} — R denotes an interpretable model, e.g., g(z') = wy - 2’

- mx(2): a proximity measure between z to x, e.g., exp (—||x — z||?/o?)

- L(f, g, nx): afidelity function measuring of how unfaithful g is in approximating f
in the locality defined by 7, e.9., L(f, g, 7mx) = >, ,ic= ™(2) (f(2) — g (2))?

- Q(g): complexity measure (Example?)

Ribeiro et al., "Why should | trust you? Explaining the predictions of any classifier” (2016)
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LIME

Local Interpretable Model-agnostic Explanations (LIME)
&(x) = argmin L (f,g,7x) + Q(9)
geG

- x,zeRY, X,z €{0,1}¢

- RIS R, g(Z)=wy-Z

- me(2) = exp (—|Ix — 2|2/0?)

- L(F.9.m) = X, ez ™(2) (H(2) - 9(2))°
Generate z': sample instances around x’ by drawing nonzero elements of x’
uniformly at random (where the number of such draws is also uniformly
sampled).

U Algorithm 1 Sparse Linear Explanations using LIME

+ 4 Require: Classifier f, Number of samples N
+ 1 Require: Instance z, and its interpretable version z’
+ . Require: Similarity kernel 7., Length of explanation K
™Y Z+{}

+ for i€ {1,2,3,..,N} do

+ [ ] + 2} « sample_around(z')

1 ®e® Z  ZU(, f(2:), ma())

I end for

] * . w < K-Lasso(Z, K) b with 2] as features, f(z) as target
] return w

Ribeiro et al., "Why should | trust you? Explaining the predictions of any classifier” (2016)
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LIME: Explain Random Forest

White Wine Quality dataset (4898 samples and 11 features):

fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density

pH sulphates alcohol quality
o 7.4 0.70 0.00 19 0.076 1.0 340 09978 3.51 0.56 9.4 bad
1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 bad
2 78 0.76 0.04 23 0.092 15.0 54.0 009970 3.26 0.65 9.8 bad
3 1.2 0.28 0.56 19 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 good
4 7.4 0.70 0.00 19 0.076 1.0 340 09978 3.51 0.56 9.4 bad
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LIME: Explain Random Forest

White Wine Quality dataset (4898 samples and 11 features):

fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality

[ 7.4 0.70 0.00 19 0.076 1.0 340 09978 3.51 0.56 9.4 bad
1 78 0.88 0.00 26 0.098 25.0 670 09968 3.20 068 98  bad
2 78 076 0.04 23 0.092 15.0 540 09970 3.26 065 98  bad
3 1.2 0.28 0.56 19 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 good
I3 7.4 0.70 0.00 19 0.076 1.0 340 09978 351 0.56 94  bad
Results:
Prediction probabilities bad densuy <_g1zsd Feature Value
bad
good [ 1.00 10 20 <alcohol <= 1110 density.
;zczo ?Odotal sulfur dio... el
085 <siphats <= 062 total sulfur dioxide

1 te
0.40 < volatile acidity ... sulphates.
003

volatile acidity

0.10 < citric acid <= 0 26
citric acid
residual sugar <= 7 90
residual sugar
3 31 <pH<=3.40

pH.
14 00 < free sulfur dio... oe Sulfur dloxde
fixed acidity <= 7A10
000l
The example is from https://betterdatascience.com/lime/
The dataset is from https:/archive.ics.uci.edu/ml/d wine+quality
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LIME: Explain Random Forest

White Wine Quality dataset (4898 samples and 11 features):

fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality

0 7.4 0.70 0.00 19 0.076 1.0 340 09978 351 0.56 94  bad
1 7.8 0.88 0.00 26 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 bad
2 78 0.76 0.04 23 0.092 15.0 54.0 09970 3.26 0.65 9.8 bad
3 1.2 0.28 0.56 19 0.075 17.0 60.0 09980 3.16 0.58 98  good
I3 74 0.70 0.00 19 0.076 1.0 340 09978 351 0.56 94  bad
Results:

Prediction b::ababllmes ) k:lacl:hol . 050 good Feature Value

good sulphates <=m(2.55 alcohol

total sulfur dioxide > ... sulphates
o

040 < voatie acidiy .. RIEE D
003

1,00 < density <= 1.00 Volatile acidity
0.02|

density

010 < citric acid <= 0.26
0.01 citric acid

3.31<pH<=3.40
01 PH
14.00 < free sulfur dio...
001 free sulfur dioxide
residual sugar <= 1.90| e
001 residual sugar

1710 < fixed acidity <=...
logo

The example is from https://betterdatascience.com/lime/
The dataset is from https:/archive.ics.uci.edu/ml/d wine+quality
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LIME: Explain Deep Neural Network

Model: Google’s pre-trained Inception neural network

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

Ribeiro et al., "Why should | trust you? Explaining the predictions of any classifier” (2016)
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RISE

Randomized Input Sampling for Explanation
@ Samples many subsets of missing features

@ Calculates mean prediction when Xx; included

Sit(A) = E[M] NZf(/@M M;(\) saliency or importance map

Petsiuk et al., "RISE: Randomized input sampling for explanation of black-box models" (2018)
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SHAP

SHapley Additive exPlanations (SHAP)

@ Based on Shapley values (Cooperative game
theory, 1953) (Nash equilibrium is from
noncooperative game theory)

@ Unify various existing XAl methods

@ Axiomatic definitions (the axioms of SHAP
slightly differ from Shapley values) Lioyd Shapley

@ A prediction can be explained by assuming that ~ Won 2012 Nobel Memorial
each feature value of the instance is a “player” in Prize in economics
a game where the prediction is the payout.

Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model predictions. (2017).

Lloyd Shapley, "A value for n-person games" (1953)
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SHAP: Shapley Values

@ Setofplayers D= {1,...,d}
@ A game is given by specifying a value for every coalition S C D
@ Represented by a characteristic function: v : 2° — R

@ Grand coalition value v(D), null coalition v(@), arbitrary coalition v(S)

Company
Employees . Profits
- A ™
L,
N = ; o "l sl
e S
PlayersS € D Value v(S)
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SHAP: Shapley Values

@ Setofplayers D= {1,...,d}

@ A game is given by specifying a value for every coalition S C D

@ Represented by a characteristic function: v : 2° — R

@ Grand coalition value v(D), null coalition v(@), arbitrary coalition v(S)

Company
Employees . Profits

a & A * Which players will participate

t &2 1 vs. break off on their own?

- ; [l "Gd )
{; v £ * How to allocate credit
nnn I among players?
PlayersS € D Value v(S)

Shapley values allocate credit to players in a cooperative game. Shapley
values were famously derived from a set of fairness axioms.
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SHAP: Shapley Values

@ The Shapley value assigns a vector of credits to each game (in

RRY, one credit per player), mathematically, a function of the form
5 ﬂame

¢:G—RY

@ For a game v, Shapley values are ¢¢(v), ..., ¢q(V)
@ Axiomatic uniqueness: The Shapley value is the only attribution
method ¢ that satisfies the following four properties
o (Efficiency) The credits sum to the grand coalition’s value, or
e @i(V) = V(D) — v(2)
o (Symmetry) If two players (/,/) are interchangeable, or v(SU {i}) =
v(Su{j})forall S C D, then ¢;(v) = ¢;(v)
o (Null player) If a player contributes no value, or v(SU {i}) = v(S)
forall S C D, then ¢;(v) =0
o (Linearity) The credits for linear combinations of games behave
linearly, or ¢ (civi + cova) = C1¢ (V1) + Co¢p (v2), where ¢y, ¢ € R

Lloyd Shapley, "A value for n-person games" (1953)
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SHAP: Shapley Values

@ The Shapley value of a feature value is its contribution to the
payout, weighted and summed over all possible feature value
combinations:

o= Y2 By s ) - vis)

SCD\i
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SHAP: Shapley Values

@ The Shapley value of a feature value is its contribution to the
payout, weighted and summed over all possible feature value
combinations:

o= Y2 By s ) - vis)

SCD\i

@ Interpretation

e Intuitive meaning in terms of player orderings

e Given an ordering w, each player contributes when added to the
preceding ones

e SV is the average contribution across all orderings

o) =g S (im0 <0} - v({i1= 0 <7 0})]
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SHAP

ML model

SHapley Additive exPlanations
@ Consider features as players

@ Consider model behavior as
profit

Company

() USG Shapley Values to Employees
quantify each feature’s impact

predictions - 3 - I”Ill %
nnn

Profits

e

<6 |
<6 |

Change the notation from game to ML model:

S|N(d—|S|—1)!
di= > ISIK dl! =) [fsugiy (Xsugiy) — fs (xs)]
SCD\{i}

Require retraining the model on all feature subsets S C D
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Other Shapley Value-based Methods

@ Shapley Net Effects: Owen, "Sobol’ indices and Shapley value" (2014)

@ QIl: Datta et al., "Algorithmic transparency via quantitative input
influence: Theory and experiments with learning systems" (2016)

@ IME: Strumbelj & Kononenko, "Explaining instance classifications with
interactions of subsets of feature values" (2009)

@ SAGE: Covert et al., "Understanding global feature contributions with
additive importance measures” (2020)

@ Causal Shapley values: Heskes et al., "Causal Shapley values:
Exploiting causal knowledge to explain individual predictions of complex
models" (2020)

@ ASV: Frye et al., "Asymmetric Shapley values: incorporating causal
knowledge into modelagnostic explainability" (2020)

@ SP-VIM: Williamson & Feng, "Efficient nonparametric statistical
inference on population feature importance using Shapley values" (2020)
¢+ Zhepley Flow . G-'arkévx, /\s)«mnzﬂ(. anly
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SHAP: Computation Complexity

sy = Y2 BB ysu) - vis)

@ Exponential running time O (2%)

@ Intractable for even moderate d (e.g., d > 20) (Universe has about
1082 atoms (current estimate))

@ Approximation methods exist
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SHAP: Connection with LIME

@ LIME has a weighting kernel =(S) on feature subsets. It fits
linear/additive proxy/surrogate model

2
aomina ZW(S) <a0+2a,-f(xs)> +Q(ay,...,aq)

""" €S

@ Shapley values minimize the following objective:

2
d—1
min >~ u(S){ o + ﬁi—V(S)> CHS) = g
for--Po &t ( )< ° %:; BEEEE)
@ SHAP is a special case of LIME with 7(S) = u(S) and Q2 =0

Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model predictions. (2017).
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Case Study: Boston Housing Dataset

@ Predict median house price in a neighborhood using 14 features: mean
number of rooms, crime rate, distance to employment centers, etc.

@ Trained an XGBoost model (gradient boosted decision tree)

Actual prediction

Feature names/values Shapley values l

! | .

Directionality  _, T

matters m

1~ RAD 0.49

Tax ’. SHAP values add

crM oo @] <— up to the difference
5o o ] (efficiency property)
PTRATIO ' 4026

AGE . +0.19

4 other features o 34{
19 20 21 %4

Base prediction

Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model predictions. (2017).
Tongxin Li Lecture 12 Explainable Al Spring 2024 35/43


Mobile User


Case Study: Boston Housing Dataset

@ Predict median house price in a neighborhood using 14 features: mean
number of rooms, crime rate, distance to employment centers, etc.

@ Trained an XGBoost model (gradient boosted decision tree)

+3.87

Features with largest LSTAT
. —
impact, on average e

Sum of 4 other features

0.0 05 10 15 2.0 25 3.0 35 40
mean(|SHAP value|)

1

Aggregating local SHAP values

Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model predictions. (2017).
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Case Study: Boston Housing Dataset

@ Predict median house price in a neighborhood using 14 features: mean
number of rooms, crime rate, distance to employment centers, etc.

@ Trained an XGBoost model (gradient boosted decision tree)

High crime
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decreases cost NOX

Tongxin Li
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Each point colored
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@ Removal-based methods are very common in XAl

@ Other structural based approaches exist
o Gradient-based Methods (e.g. Grad-CAM, Gradientx Input)
@ Consider the gradient of the network output w.r.t. each input variable
e Propagation-based Methods (e.g. Deep Taylor, Deep SHAP)

@ Use backpropagation idea to quantify feature importance
@ Estimate attributions of intermediate features at a layer and then
back-propagate these attributions to the previous layer
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e Interpretable ML
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Interpretable ML vs XAl

@ Interpretable ML: when you use a model that is not a blackbox
@ Explainable Al: when you use a black-box model and use another
model to explain afterwards
o Start with a black-box
o Create another model that approximates it
e Compute derivatives of the proxy model
e Visualize what part of the input the model is paying attention to

nature machine intelligence

Explore content v  About the journal v Publish withus v Subscribe

nature > nature machine intelligence > perspectives > article

Perspective | Published: 13 May 2019

Stop explaining black box machine learning models for
high stakes decisions and use interpretable models
instead

Cynthia Rudin &3

Nature Machine Intelligence 1, 206-215 (2019) | Cite this article

61k Accesses | 1957 Citations | 470 Altmetric | Metrics
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Interpretable ML vs XAl

@ Interpretable ML: when you use a model that is not a blackbox

@ Explainable Al: when you use a black-box model and use another
model to explain afterwards

Start with a black-box

o Create another model that approximates it

o Compute derivatives of the proxy model

e Visualize what part of the input the model is paying attention to

Evidence for Animal Being a Evidence for Animal Being a
Test Image C
Siberian Husky Transverse Flute

Explanations Using
Attention Maps

Figure 2: Saliency does not explain anything except where the network is looking. We have no idea why this
image is labeled as either a dog or a musical instrument when considering only saliency. The explanations look
essentially the same for both classes. Figure credit: Chaofan Chen and [28].
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Interpretable ML vs XAl

@ Interpretable ML # XAI
e Trusting a black-box means you trust the database it was built from
@ Double Trouble: Need to rely on two models, instead of one
e Those models may make mistakes and may disagree with each
other
If we can produce an interpretable ML model, why explain a
black-box?
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Interpretable ML vs XAl

@ Interpretable ML # XAI
e Trusting a black-box means you trust the database it was built from
@ Double Trouble: Need to rely on two models, instead of one
e Those models may make mistakes and may disagree with each

other
e If we can produce an interpretable ML model, why explain a
black-box?
@ Example: COMPAS vs CORELS
COMPAS CORELS
Correctional Offender Management Profiling for Alternative Sanctions Learning Certifiably Optimal RulE List§

~—

%

Based on Prof. Cynthia Rudin’s Introduction to Interpretable Machine Learning
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COMPAS vs CORELS

Building Predictive Models with Rule Lists

Click here to enter the CORELS website

Transparent Optimized Accurate Free!
Rule lists are fully human- Our algorithms utilize On many datasets, rule All our code is free, open
interpretable, giving them highly optimized vector lists have been shown to source, and under the
distinct advantages over operations, allowing them be comparable in GNU General Public
black box models. to run in reasonable time accuracy to much more License v3.0. You can find
on commodity laptops. complex black box it on GitHub.
models.

More information about CORELS can be found in the following papers:

« Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning Certifiably Optimal
Rule Lists for Categorical Data. KDD 2017. Journal of Machine Learning Research, 2018; 19: 1-77. arXiv:1704.01701,
2017.

* Nicholas Larus-Stone, Elaine Angelino, Daniel Alabi, Margo Seltzer, Vassilios Kaxiras, Aditya Saligrama, and Cynthia
Rudin. Systems Optimizations for Learning Certifiably Optimal Rule Lists. SysML Conference, 2018.

« Nicholas Larus-Stone. Learning Certifiably Optimal Rule Lists: A Case For Discrete Optimization in the 21st
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COMPAS vs CORELS

COMPAS CORELS
black box
130+ factors
might include socio-economic info
expensive (software license),
within software used in U.S. Justice System

full model is in Figure 3
only age, priors, (optiongl) gender
no other informatjon

free, transparent

IF age between 18-20 and sex is male THEN predict arrest (within 2 years)
ELSEIF age between 21-23 and 2-3 prior offenses

THEN predict arrest
ELSEIF more than three priors THEN predict arrest
ELSE predict no arrest.
Tongxin Li
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More Interpretable ML

Are the following models interpretable?
@ Decision trees
@ Linear regression
@ Generalized additive models (GAMs)
@ Attention as explanation

Open question: how to comprehensively evaluate
interpretability/transparency?
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Learning Outcomes

@ Understand why explanations are needed for black-box models
@ Understand the difference between XAl and interpretable ML

@ Be able to list a few removal-based XAl methods and know exactly
what they do

@ Know the definition of Shapley value and how it can be used in XAl
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