DDA4210/AIR6002 Advanced Machine Learning Lecture 02 Advanced Ensemble Learning

Tongxin Li

School of Data Science, CUHK-Shenzhen

Spring 2024

Overview

Introduction

- More boosting methods

Stacking

Summary

2 Boosting

3 Stacking

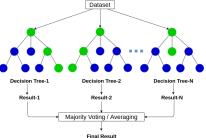
4 Summary

Ensemble Learning

- Ensemble Learning is the process where multiple machine learning models are combined to get better results
 - Example: Suppose classifier 1 predicts Class A, classifier 2 predicts Class B, and classifier 3 predicts Class B, then the final prediction result is Class B. Aggregate(1.2.3) -> B
- Ensemble learning methods achieved SOTA performance in many real cases (e.g. Kaggle competitions, Netflix competition, and many categorical datasets)

Ensemble Learning

- Ensemble Learning is the process where multiple machine learning models are combined to get better results
 - Example: Suppose classifier 1 predicts Class A, classifier 2 predicts Class B, and classifier 3 predicts Class B, then the final prediction result is Class B.
- Ensemble learning methods achieved SOTA performance in many real cases (e.g. Kaggle competitions, Netflix competition, and many categorical datasets)
- What have we learned in basic machine learning courses?
 - Bagging (bootstrap aggregation)
 - Random forest (right figure)
 - * Connection and difference?
 - * Strength and weakness?



Spring 2024

Strength and weakness of random forest (RF)

Q: What are the key hyperparameters in a RF? Strength of RF 1. # of tices. Do not require a lot of tuning. 2. depth of a rice. Typically very accurate. Handle heterogeneous features well.
 Pr = # of features Implicitly select the most relevant features. Why? elected the code • Weakness of RF 🔏 PT tice. Less interpretable, slower to train (but parallelizable) Do not work well on high dimensional sparse data (e.g. text) Example of here-ogeneous data Students | Gender | Height | Age 10-223

Strength of RF

- Do not require a lot of tuning.
- Typically very accurate.
- Handle heterogeneous features well.
- Implicitly select the most relevant features. Why?
- Weakness of RF
 - Less interpretable, slower to train (but parallelizable)
 - Do not work well on high dimensional sparse data (e.g. text)
- The view of bias-variance trade-off for bagging and RF
 - Recall: Expected test error = Bias Variance Noise²
 - Bagging reduces variance by averaging
 - Bagging has little effect on bias
 - How can we reduce bias?



2 Boosting

- Gradient Boosting
- AdaBoost
- More boosting methods

3 Stacking

Can <u>weak learners</u> be combined to generate a strong learner with low bias?

---Michael Kearns,1988

- "weak learner" (also called base learner): a learner (e.g. classifier, predictor, etc) that performs relatively poorly–its accuracy is above chance.
 - e.g., shallow decision trees, small neural networks
- "strong learner": a learner (e.g. classifier, predictor, etc) that achieves arbitrarily good performance, much better than random guessing.

0.95

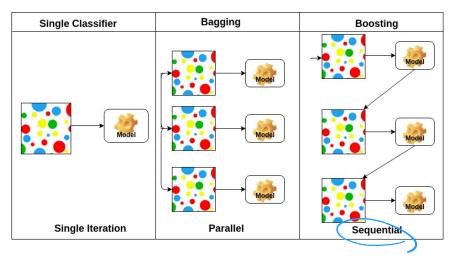
Can <u>weak learners</u> be combined to generate a strong learner with low bias?

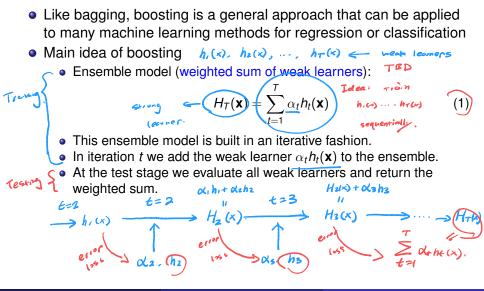
---Michael Kearns,1988

- "weak learner" (also called base learner): a learner (e.g. classifier, predictor, etc) that performs relatively poorly–its accuracy is above chance.
 - e.g., shallow decision trees, small neural networks
- "strong learner": a learner (e.g. classifier, predictor, etc) that achieves arbitrarily good performance, much better than random guessing.
- Boosting can reduce bias!

In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Wikipedia

Single classifier vs bagging vs boosting



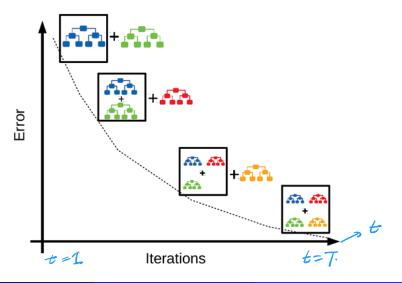


- Like bagging, boosting is a general approach that can be applied to many machine learning methods for regression or classification
- Main idea of boosting
 - Ensemble model (weighted sum of weak learners):

$$H_T(\mathbf{x}) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x})$$
(1)

- This ensemble model is built in an iterative fashion.
- In iteration *t* we add the weak learner $\alpha_t h_t(\mathbf{x})$ to the ensemble.
- At the test stage we evaluate all weak learners and return the weighted sum.
- Comparing boosting with bagging (suppose *h* is a tree)
 - Bagging constructs all trees independently
 - Boosting constructs all trees sequentially

An intuitive example



- Ensemble model: $H_T(\mathbf{x}) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x})$; data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$
- Details of constructing the ensemble model
 - Very similar to gradient descent.
 - However, instead of updating the model parameters in each iteration, we add functions to our ensemble.

Go aL : Find / optimize { at (no) T sequentially !

• Ensemble model: $H_T(\mathbf{x}) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x})$; data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Details of constructing the ensemble model

- Very similar to gradient descent.
- However, instead of updating the model parameters in each iteration, we add functions to our ensemble.
- Let ℓ denote a loss function and write
 eg
 ℓ(x,y)=(x-y)²

$$\mathcal{L}(H) := \frac{1}{n} \sum_{i=1}^{n} \ell(H(\mathbf{x}_{i}), y_{i}) \quad \mathcal{L}(H) = \mathcal{L}_{MSE}(H)^{(2)}$$
• We compute h_{t+1} has well as α_{t+1} via
$$A_{t} \quad time \quad t = 1 \quad time \quad H_{t-1} \quad current \quad model.$$

$$h_{t+1}, \alpha_{t+1} = \underset{h \in \mathbb{H}, \alpha}{\operatorname{argmin}} \mathcal{L}(H_{t} + \alpha h) \quad (3)$$

$$- \operatorname{\mathbb{H}}: \text{ hypothesis set} \quad f_{t+1} \quad h_{t+1} \quad to our ensemble, i.e.,$$

$$H_{t+1} := H_t + \alpha_{t+1} h_{t+1}.$$

How to solve (3)?

• Taylor approximation on $\mathcal{L}(H + \alpha h)$

$$\mathcal{L}(H + \alpha h) \approx \mathcal{L}(H) + \alpha (\nabla \mathcal{L}(H), h)$$
(4)

 α should be small enough; suppose α is fixed.

• Taylor approximation on $\mathcal{L}(H + \alpha h)$ deen't depend $\mathcal{L}(H + \alpha h) \approx \mathcal{L}(H) + \alpha \langle \nabla \mathcal{L}(H), h \rangle$

* α should be small enough; suppose α is fixed.

Find h via

$$h = \operatorname{argmin}_{h \in \mathbb{H}} \mathcal{L}(H + \alpha h)$$

$$\approx \operatorname{argmin}_{h \in \mathbb{H}} \langle \nabla \mathcal{L}(H), h \rangle \quad \text{so the of dots samples.}$$

$$= \operatorname{argmin}_{h \in \mathbb{H}} \sum_{i=1}^{n} \frac{\partial \mathcal{L}}{\partial [H(\mathbf{x}_{i})]} h(\mathbf{x}_{i}) \quad \text{(Gradient Boosting)}$$

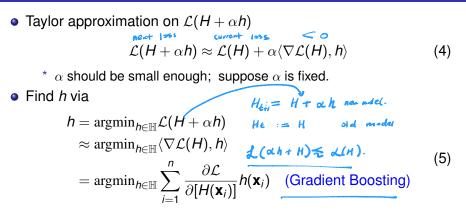
$$\nabla \mathcal{L}(H) = \begin{bmatrix} \partial \mathcal{L} \\ \partial [H(\mathbf{x}_{i})] \\ \vdots \\ \partial \mathcal{L} \\ \partial [H(\mathbf{x}_{i})] \end{bmatrix} \quad h = \begin{bmatrix} h(x_{i}) \\ \vdots \\ h(x_{i}) \end{bmatrix}$$

$$(5)$$

fixed.

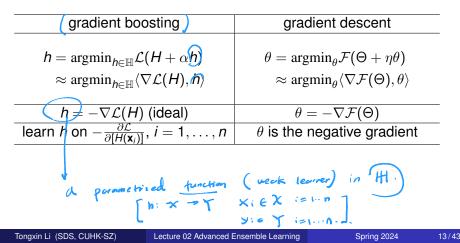
(4)

12/43



• Thus we can do boosting if we have an algorithm to compute $h_{t+1} = \arg\min_{h \in \mathbb{H}} \sum_{i=1}^{n} q_i h(\mathbf{x}_i)$, where $q_i = \frac{\partial \mathcal{L}}{\partial [H_t(\mathbf{x}_i)]}$, irrelevant to h. • q_i is the weight for the training data i. • n does not need to be perfect. • We make progress as long as $\sum_{i=1}^{n} q_i h(\mathbf{x}_i) < 0$ Why? Tonoxin Li (SDS, CUHK-SZ)

- Suppose *F* is the objective function we want to minimize to find the parameters ⊖ for a model (e.g., linear regression, neural network).
- We compare gradient boosting with gradient descent.



- Suppose *F* is the objective function we want to minimize to find the parameters ⊖ for a model (e.g., linear regression, neural network).
- We compare gradient boosting with gradient descent.

gradient boosting	gradient descent
$egin{aligned} h &= \mathrm{argmin}_{h \in \mathbb{H}} \mathcal{L}(H + lpha h) \ &pprox \mathrm{argmin}_{h \in \mathbb{H}} \langle abla \mathcal{L}(H), h angle \end{aligned}$	$egin{aligned} & heta = \mathrm{argmin}_{ heta} \mathcal{F}(\Theta + \eta heta) \ & pprox \mathrm{argmin}_{ heta} \langle abla \mathcal{F}(\Theta), heta angle \end{aligned}$
$h = - abla \mathcal{L}(H)$ (ideal)	$ heta = - abla \mathcal{F}(\Theta)$
learn <i>h</i> on $-\frac{\partial \mathcal{L}}{\partial [H(\mathbf{x}_i)]}$, $i = 1,, n$	θ is the negative gradient

• In gradient boosting, we require $h(\mathbf{x}_i) \approx -\frac{\partial \mathcal{L}}{\partial [H(\mathbf{x}_i)]}$ such that $\sum_{i=1}^{n} q_i h(\mathbf{x}_i) < 0$. For instance, when $h(\mathbf{x}_i) = -\frac{\partial \mathcal{L}}{\partial [H(\mathbf{x}_i)]}$, $\mathcal{L}(H + \alpha h) \approx \mathcal{L}(H) + \frac{\partial \mathcal{L}}{\partial [\nabla \mathcal{L}(H)]^2}$, which ensures a decreasing \mathcal{L} .

Tongxin Li (SDS, CUHK-SZ)

Generic algorithm of Gradient Boosting

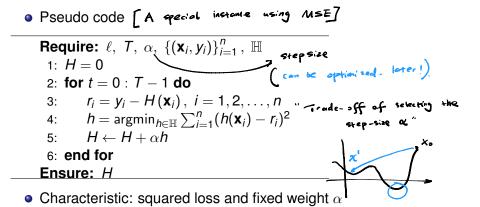
Also called AnyBoost [Llew Mason et al. 2000]
Input:
$$\ell$$
, α , T , $\{(\mathbf{x}_i, y_i)\}$, \mathbb{H} , \mathbb{A} (an algorithm)
1: $H_0 = 0$
2: for $t = 0$: $T - 1$ do
3: $q_i = \frac{\partial \mathcal{L}}{\partial H_t(\mathbf{x}_i)}$, $i = 1, 2, ..., n$
4: $h_{t+1} = \operatorname{argmin}_{h \in \mathbb{H}} \sum_{i=1}^{n} q_i h(\mathbf{x}_i)$ via Algorithm \mathbb{A}
5: if $\sum_{i=1}^{n} q_i h_{t+1}(\mathbf{x}_i) < 0$ then
6: $H_{t+1} = H_t + \alpha h_{t+1}$ (α may also be optimized)
7: else
8: return (H_t)
9: end if
10: end for
Output: H_T

- [Schapire, 1989] first provable boosting algorithm
- [Freund, 1990] "optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard, 1992] first experiments using boosting, limited by practical drawbacks
- [Freund et al., 1996, Freund and Schapire, 1997] invent AdaBoost (to be introduced later), the first successful boosting algorithm
- [Breiman et al., 1998, Breiman, 1999] formulate AdaBoost as gradient descent with a special loss function
- [Friedman et al., 2000, Friedman, 2001] generalize Adaboost to Gradient Boosting in order to handle a variety of loss functions

• Solve $h_{t+1} = \operatorname{argmin}_{h \in \mathbb{H}} \sum_{i=1}^{n} q_i h(\mathbf{x}_i)$, where $q_i = \frac{\partial \mathcal{L}}{\partial [H(\mathbf{x}_i)]}$

• Solve $h_{t+1} = \operatorname{argmin}_{h \in \mathbb{H}} \sum_{i=1}^{n} q_i h(\mathbf{x}_i)$, where $q_i \notin \frac{\partial \mathcal{L}}{\partial [H(\mathbf{x}_i)]}$ • Let $\sum_{i=1}^{n} h^2(\mathbf{x}_i) = \text{constant}$ (we can always normalize the predictions) and replace q_i with $-2r_i$. We have Original base $h_{t+1} = \operatorname{argmin}_{h \in \mathbb{H}} \sum q_i h(\mathbf{x}_i)$ \$x1-yilie $= \operatorname{argmin}_{h \in \mathbb{H}} \left(2 \sum_{i=1}^{n} r_i h(\mathbf{x}_i) \right)$ (6)weished Pora. = $\operatorname{argmin}_{h \in \mathbb{H}} \sum_{i=1}^{n} \left(r_i^2 - 2r_i h(\mathbf{x}_i) + (h(\mathbf{x}_i))^2 \right)$ $= \operatorname{argmin}_{h \in \mathbb{H}} \sum_{i=1}^{n} (h(\mathbf{x}_i) - (r_i)^2) = \operatorname{train}_{h \in \mathbb{H}} h \text{ or } h$ We train h_{t+1} to predict r_i , which are from the old model H_t . Tongxin Li (SDS, CU<u>HK-SZ)</u> Lecture 02 Advanced Ensemble Learning Spring 2024

• Note that $h_{t+1} = \operatorname{argmin}_{h \in \mathbb{H}} \sum_{i=1}^{n} (h(\mathbf{x}_i) - \mathbf{y}_i)^2$, where $r_i = -q_i/2$. • Let ℓ be the squared loss, i.e., $\mathcal{L}(H) = \sum_{i=1}^{n} (H(\mathbf{x}_i) - y_i)^2$, then $r_{i} = \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix} \frac{\partial \mathcal{L}}{\partial [H(\mathbf{x}_{i})]} = y_{i} - H(\mathbf{x}_{i})$ could "pseud--residuals" • r_i are just the residuals given by the old model. $^{\vee}H_{1} = H_{3} + \alpha \cdot h_{1} \longrightarrow (h_{2})^{-1}$ ---> Ho error 2 ſ.



Tongxin Li (SDS, CUHK-SZ)

Lecture 02 Advanced Ensemble Learning

- Square loss is easy to deal with mathematically but not robust to outliers.
- Absolute loss (more robust to outliers)

$$\ell(\mathbf{y}, \hat{\mathbf{y}}) = |\mathbf{y} - \hat{\mathbf{y}}|$$

h(x)

ownier

- Square loss is easy to deal with mathematically but not robust to outliers.
- Absolute loss (more robust to outliers)

$$\ell(y, \hat{y}) = |y - \hat{y}|$$
"Scb-good:ent."

- GBR with absolute loss: $s_{cb} g_{i} = d \cdot e_{r}$ • The gradient is $q_i = \frac{\partial \mathcal{L}}{\partial H(\mathbf{x}_i)} = -\text{sign}(y_i - H(\mathbf{x}_i))$.
 - Then fit *h* on $-q_i$, i = 1, 2, ..., n. (no longer the residuals, different from using the squared loss)

- Square loss is easy to deal with mathematically but not robust to outliers.
- Absolute loss (more robust to outliers)

$$\ell(\mathbf{y}, \hat{\mathbf{y}}) = |\mathbf{y} - \hat{\mathbf{y}}|$$

GBR with absolute loss:

- The gradient is $q_i = \frac{\partial \mathcal{L}}{\partial H(\mathbf{x}_i)} = -\text{sign}(y_i H(\mathbf{x}_i)).$
- Then fit h on $-q_i$, i = 1, 2, ..., n. (no longer the residuals, different from using the squared loss)
- Huber loss (more robust to outliers)

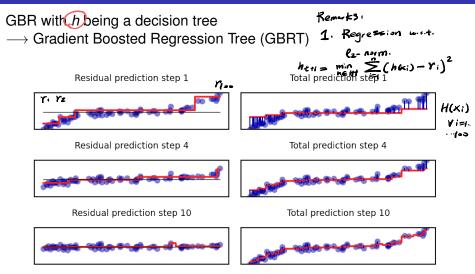
$$\ell(y,\hat{y}) = \begin{cases} \frac{1}{2}(y-\hat{y})^2 \\ \delta(|y-\hat{y}| - \delta) \end{cases} \\ \delta(y-\hat{y}) \end{cases}$$

The gradient is

$$\frac{\partial \mathcal{L}}{\partial \mathcal{H}(\mathbf{x}_i)} = \begin{cases} -(y_i - \mathcal{H}(\mathbf{x}_i)) & |y_i - \mathcal{H}(\mathbf{x}_i)| \le \delta \\ -\delta \operatorname{sign}(y_i - \mathcal{H}(\mathbf{x}_i)) & |y_i - \mathcal{H}(\mathbf{x}_i)| > \delta \end{cases}$$

 $|\boldsymbol{y} - \hat{\boldsymbol{y}}| \leq \boldsymbol{\delta}$ $|\boldsymbol{v} - \hat{\boldsymbol{v}}| > \boldsymbol{\delta}$

Numerical example of GBR



https://ml-course.github.io/master/notebooks/05%20-%20Ensemble%20Learning.html

 Tongxin Li (SDS, CUHK-SZ)
 Lecture 02 Advanced Ensemble Learning
 Spring 2024

Gradient Boosting for Classification

• Predicting probability of each of K classes, namely

$$p_{k}(\mathbf{x}) = \underbrace{\sum_{c=1}^{K} \exp(h^{(c)}(\mathbf{x}))}_{\sum_{c=1}^{K} \exp(h^{(c)}(\mathbf{x}))} \triangleq \hat{y}^{(k)}, \quad k = 1, 2, \dots, K.$$
• Consider the loss $\mathcal{L}(H) = \sum_{i=1}^{n} \ell(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i})$ (e.g. multi-class cross-entropy or KL divergence)
e.g. $\mathbf{y}_{i} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y}_{i} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y}_{i} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y}_{i} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y}_{i} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y}_{i} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf$

Gradient Boosting for Classification

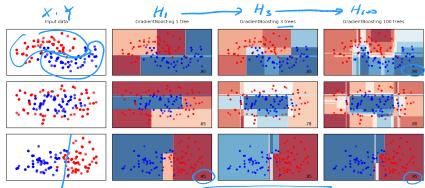
- Predicting probability of each of K classes, namely $p_k(\mathbf{x}) = \frac{\exp(h^{(k)}(\mathbf{x}))}{\sum_{c=1}^{K} \exp(h^{(c)}(\mathbf{x}))} \triangleq \hat{y}^{(k)}, \quad k = 1, 2, \dots, K.$
- Consider the loss $\mathcal{L}(H) = \sum_{i=1}^{n} \ell(\mathbf{y}_i, \hat{\mathbf{y}}_i)$ (e.g. multi-class cross-entropy or KL divergence)
- Model initialization H⁽¹⁾, H⁽²⁾, ..., H^(K) and iterate until converge or reach maximum T
 - 1. Calculate negative gradients for every class:

$$-g_k(\mathbf{x}_i) = -\frac{\partial \mathcal{L}}{\partial [H^{(k)}(\mathbf{x}_i)]}, \ i = 1, 2, \dots, n, \ k = 1, 2, \dots, K$$

- 2. Fit $h^{(k)}$ to the negative gradients $-g_k(\mathbf{x}_i), \underline{k} = 1, 2, \dots, \underline{k}$.
- 3. Update the models via $H^{(k)} \leftarrow H^{(k)} + \alpha h^{(k)}, k = 1, 2, ..., K$.

GBC with *h* being a decision tree

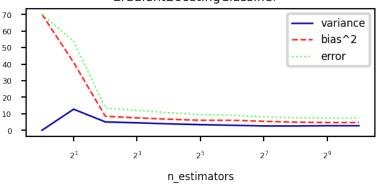
→ Gradient Boosted Classification Tree (GBCT)



https://ml-course.github.io/master/notebooks/05%20-%20Ensemble%20Learning.html

Numerical example of GBC

- Bias-Variance analysis
 - Gradient Boosting reduces bias (and a little variance)
 - Boosting too much will eventually increase variance



GradientBoostingClassifier

https://ml-course.github.io/master/notebooks/05%20-%20Ensemble%20Learning.html Tonaxin Li (SDS, CUHK-SZ)

History of Boosting

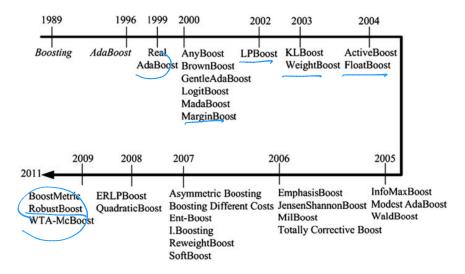


Image from A.J. Ferreira and M.A.T. Figueiredo, in Ensemble Machine Learning: Methods and Applications. 2012.

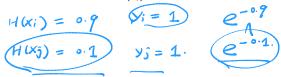
Tongxin Li (SDS, CUHK-SZ)

consider the update X: X X:= (X, ..., Xn)
 of the learning are A: Y: = (Y, ..., Xn)
 AdaBoost (a special case of gradient boosting) uses the exponential loss, i.e., modeL. actputs:

$$\mathcal{L}(H) = \sum_{i=1}^{n} \underline{e}^{-y_i H(\mathbf{x}_i)}$$

and learns α adaptively.

• The gradient is then $q_i = \frac{\partial \mathcal{L}}{\partial H(\mathbf{x}_i)} = -y_i e^{-y_i H(\mathbf{x}_i)}$.



 AdaBoost (a special case of gradient boosting) uses the exponential loss, i.e.,

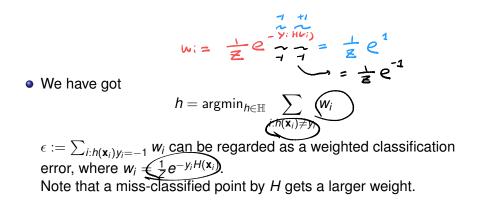
$$\mathcal{L}(H) = \sum_{i=1}^{n} e^{-y_i H(\mathbf{x}_i)}$$

and learns α adaptively.

- The gradient is then $q_i = \frac{\partial \mathcal{L}}{\partial H(\mathbf{x}_i)} = -y_i e^{-y_i H(\mathbf{x}_i)}$
- For convenience, let $w_i = \frac{1}{Z}e^{-y_iH(\mathbf{x}_i)}$, where $Z = \sum_{i=1}^{n} e^{-y_iH(\mathbf{x}_i)}$ (such that $\sum_{i=1}^{n} w_i = 1$). Then w_i is the relative contribution of the training point (\mathbf{x}_i, y_i) to the overall loss.

We here consider a binary classification task, i.e., $y \in \{-1, +1\}$, and let $h(\mathbf{x}) \in \{-1, +1\}, \forall \mathbf{x}$. Q: How to get h based on $\{q; j_{i=1}, r\}$

• Note that
$$\mathcal{L}(H) = \sum_{i=1}^{n} e^{-y_i H(\mathbf{x}_i)}, q_i = \frac{\partial \mathcal{L}}{\partial H(\mathbf{x}_i)} = -y_i e^{-y_i H(\mathbf{x}_i)}, q_i = \frac{\partial \mathcal{L}}{\partial H(\mathbf{x}_i)}, q_i = \frac{\partial \mathcal{L}$$

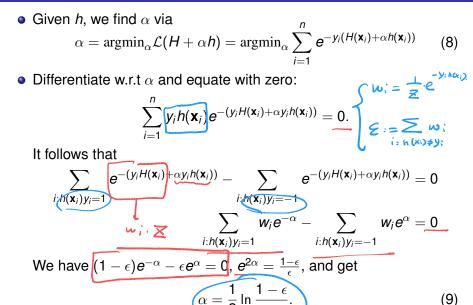


• Given *h*, we find
$$\alpha$$
 via
 $\alpha = \operatorname{argmin}_{\alpha} \mathcal{L}(\mathcal{H} + \alpha h) = \operatorname{argmin}_{\alpha} \sum_{i=1}^{n} \underline{e^{-y_i(\mathcal{H}(\mathbf{x}_i) + \alpha h(\mathbf{x}_i))}}$ (8)

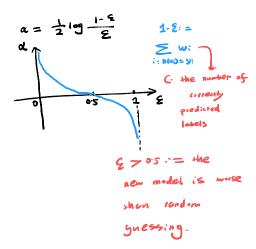
• Differentiate w.r.t α and equate with zero:

$$\sum_{i=1}^{n} y_i h(\mathbf{x}_i) e^{-(y_i H(\mathbf{x}_i) + \mathbf{a}_i) h(\mathbf{x}_i))} = 0.$$

Spring 2024



Tongxin Li (SDS, CUHK-SZ)

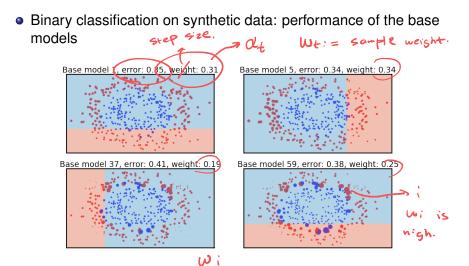


Pseudo code of AdaBoost for binary classification

Require:
$$\ell$$
, $\{(\mathbf{x}_{i}, y_{i})\}_{i=1}^{n}$, \mathbb{H}
1: $H_{0} = 0$
2: $w_{i} = 1/n, i = 1, 2, ..., n$
3: for $t = 0$: $T - 1$ do
4: $h_{t+1} = \operatorname{argmin}_{h \in \mathbb{H}} \sum_{i:h(\mathbf{x}_{i}) \neq y_{i}} w_{i}$
5: $\epsilon = \sum_{i:h(\mathbf{x}_{i}) \neq y_{i}} w_{i}$
6: if $\epsilon < 1/2$ then
7: $\alpha = \frac{1}{2} \ln \frac{1-\epsilon}{\epsilon}$
8: $H_{t+1} \leftarrow H_{t} + \alpha h_{t+1}$
9: $w_{i} = \frac{1}{Z} \exp(-y_{i}H_{t+1}(\mathbf{x}_{i})), i = 1, 2, ..., n$
10: else
11: Return H_{t}
12: end if
13: end for
Ensure: H_{T}

Tongxin Li (SDS, CUHK-SZ) Lecture 02 Advanced Ensemble Learning

Numerical example of AdaBoost



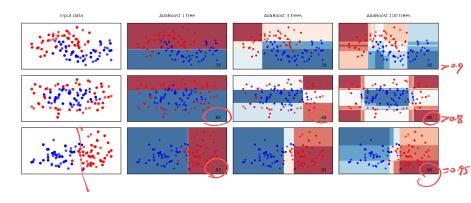
The size of dot indicates the weight of the data point.

https://ml-course.github.io/master/notebooks/05%20-%20Ensemble%20Learning.html

Tongxin Li (SDS, CUHK-SZ)

Numerical example of AdaBoost

 Binary classification on synthetic data: performance of the ensemble classifier

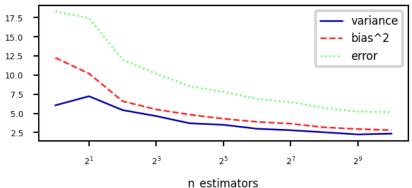


https://ml-course.github.io/master/notebooks/05%20-%20Ensemble%20Learning.html

Tongxin Li (SDS, CUHK-SZ)

Numerical example of AdaBoost

- Bias-Variance analysis
 - AdaBoost reduces bias (and a little variance)
 - Boosting too much will eventually increase variance



AdaBoostClassifier

https://ml-course.github.io/master/notebooks/05%20-%20Ensemble%20Learning.html

Comparison between GradientBoost and AdaBoost

- AdaBoost minimizes the exponential loss function that can make the algorithm sensitive to outliers. With Gradient Boosting, any differentiable loss function can be utilized. Gradient Boosting is more robust to outliers than AdaBoost.
- AdaBoost up-weights observations that were misclassified before. Gradient boosting identifies difficult observations by large residuals computed in the previous iterations.
- AdaBoost was mainly designed for binary classification problems and can be utilized to boost the performance of decision trees. Gradient Boosting is used to solve the differentiable loss function problem. The technique can be used for both classification and regression problems.
- AdaBoost can be regarded as a special case of Gradient Boosting.

special

instance.

- Boosting is a great way to turn a week learner into a strong leaner.
- It defines a whole family of algorithms, including Gradient Boosting, AdaBoost, LogitBoost, and many others.
- Gradient boosted decision tree is very useful for learning to rank (to be introduced in future).
- AdaBoost is an extremely powerful algorithm, that turns any weak learner that can classify any weighted version of the training set with below 0.5 error into a strong learner whose training error decreases exponentially.

A few slides are adapted from https:

//www.cs.cornell.edu/courses/cs4780/2022fa/lectures/lecturenote19.html

Extreme Gradient Boosting (XGBoost)¹²(optional)

"Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink, and DataFlow."

- A faster version of gradient boosting.
- Normal regression trees: split to minimize squared loss of leaf predictions.
- XGBoost trees only fit residuals: split so that residuals in leaf are more similar.
- Gradient descent sped up by using the second derivative of the loss function.
- Strong regularization by pre-pruning the trees.
- Column and row are randomly subsampled when computing splits.

• . . .

²https://xgboost.readthedocs.io/en/stable/

Tongxin Li (SDS, CUHK-SZ)

¹https://github.com/dmlc/xgboost

"A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks."

- Uses gradient-based sampling
- Use all instances with large gradients/residuals
- Randomly sample instances with small gradients, ignore the rest
- Intuition: samples with small gradients are already well-trained.
- Requires adapted information gain criterion
- Does smarter encoding of categorical features

⁴https://github.com/microsoft/LightGBM

Tongxin Li (SDS, CUHK-SZ)

³https://lightgbm.readthedocs.io/en/v3.3.2/

CatBoost⁵⁶(optional)

"A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU."

- Another fast boosting technique
- Optimized for categorical variables
- Uses bagged and smoothed version of target encoding
- Uses symmetric trees: same split for all nodes on a given level aka
- Allows monotonicity constraints for numeric features
- Model must be be a non-decreasing function of these features
- Lots of tooling (e.g. GPU training)
- Focusing on optimizing decision trees for categorical variables

⁶https://github.com/catboost/catboost

Tongxin Li (SDS, CUHK-SZ)

⁵https://catboost.ai/

Stacking

Choose *M* different base-models, generate predictions
 Stacker (meta-model) learns mapping between predictions and correct label

• Stacking is a type of meta-learning⁷

Base-Learners Model 1 (x)Input Model N Model N A generel i nution -f $f(x) = \int_{-\infty}^{\infty} (x + h + (x)) + f(x) + f$

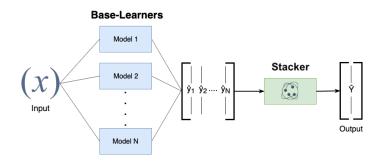
https://ml-course.github.io/master/notebooks/05%20-%20Ensemble%20Learning.html

⁷"meta-learning" is also referred as "learning to learn". See the following materials: [1] Hospedales et al. 2020. Meta-Learning in Neural Networks: A Survey; [2] a blog https://lilianweng.github.io/posts/2018-11-30-meta-learning/

Tongxin Li (SDS, CUHK-SZ)

Lecture 02 Advanced Ensemble Learning

Spring 2024



- Stacking can be repeated: multi-level stacking
- Popular stackers: linear models (fast) and gradient boosting (accurate)
- Models need to be sufficiently different, be experts at different parts of the data
- Can be very accurate, but also very slow to predict

Tongxin Li (SDS, CUHK-SZ)

2 Boosting

3 Stacking

- Bagging
 - Vanilla bagging
 - Random forest
- Boosting
 - Gradient boosting
 - AdaBoost
 - ...
- Stacking
- Other ensemble learning techniques
 - Bayes optimal classifier
 - Bayesian model averaging
 - Any combination of different ensembling techniques
 - Mixture of experts
 - ...

- Understand the main ideas of bagging, boosting, and stacking
- Understand the algorithms of gradient boosting and AdaBoost
- Know the connection and difference between gradient boosting and AdaBoost
- Be able to utilize some packages of ensemble learning such as XGBoost to solve real problems