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@ Introduction
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What is machine learning theory

@ Machine Learning Theory is also known as Computational
Learning Theory.

@ It aims to understand the fundamental principles of learning as a
computational process and combines tools from Computer
Science and Statistics.

o Create mathematical models of machine learning and analyze the
inherent ease or difficulty of different types of learning problems.

e Proving guarantees for algorithms (e.g., under what conditions will
they succeed, how much data and computation time is needed)

e Developing machine learning algorithms that provably meet desired
criteria.

e Mathematically analyzing general issues (e.g., "When can one be
confident about predictions made from limited data?", "What kinds
of methods can learn even in the presence of large quantities of
distracting information?")
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@ Input space/feature space : X
e Feature is a numerical description for a sample or object.
o Feature extraction is an art.
@ Output space/label space: Y
e E.g.: {+1,—-1}, {1,2,..., K}, R-valued output, structured output.
@ Lossfunction: /: Y x Y — R
e E.g.:0—1loss {(y,y) =1{y # ¥}, square loss {(y, ¥) = (y — ¥)?,
absolute loss 4(y, ¥) = |y — ¥|, cross-entropy loss
Uy.y)=—ylogy —(1—y)log(1 7).
o It measures performance/cost per instance (e.g., inaccuracy or
error of prediction).
@ Model class/hypothesis class: F ¢ Y% (or H or H)

o Eg:F={x—fx:|fla<1}, F={xrsign(fTx)}
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Probably approximately correct (PAC) learning

@ Learner only observes training samples

S= {(X1,}’1), (X23y2)a SRR (Xn,yn)}

“X1,Xo,...,Xn~ Dx, yi = (x),i=1,2,...,n, where f* € F.
@ Goal: find f € V¥ to minimize

Pay () # ()]

@ Probably approximately correct (PAC) [Valiant 1984] learning is a
framework for mathematical analysis of machine learning.
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Probably Approximately Correct (PAC) Learning

@ In PAC learning, the learner receives samples and must select a
generalization function (called the hypothesis) from a certain class
of possible functions. The goal is that, with high probability
("probably™), the selected function will have low generalization
error ("approximately correct"). The learner must be able to learn
the concept given any arbitrary approximation ratio, probability of
success, or distribution of the samples.

@ Sample complexity (definition):

Given § > 0, e > 0, and sample complexity n(e, ) is the smallest n
such that we can always find forecaster f s.t. with probability at
least1 — 6,

Py.p, [?(x) ” f*(x)] <e

* The learner knows that there exists a perfect f* that generates the label.
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Statistical Learning (agnostic PAC)

@ Learner only observes training samples

S= {(X1,}’1 )7 (X27 }’2)7 SR (Xm}/n)}
drawn i.i.d. from joint distribution D on X x Y
@ Goal: find  to minimize expected loss over future instances

Exy)~0ll(F(), 9)] = inf B yyplt(f(x). )]

@ Sample complexity (definition, denote L(g) = E[¢(g, -)]):
Given > 0, e > 0, and sample complexity n(e, 6) is the smallest n
such that we can always find forecaster f s.t. with probability at
least1 — ¢,

Lp(f) — inf Lp(f) < e
feF
* The learner doesn’t assume that F contains an error free hypothesis f.
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Online learning (optional)

@ Online learning

Fort=1ton
Learner receives x; € X .
Learner predicts output y: € ), i = f(x;)
True output y; € ) is revealed

EndFor

@ Goal: minimize regret

n

Reg,(F) = ,172 (Ve y2) — inf *Zf (xt), yt)

t=1

This course will only introduce the learning theory of offline and supervised
learning.
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@ How well does the best learning algorithm do in the worst case
scenario?

Minimax Rate = “Best Possible Guarantee"

@ PAC framework

VIO(F) i=inf sup Egisien |Pen, (F00) £ F(0))] (1)
? Dy, frer

A problem is “PAC learnable" if V/AC — 0as n — oc.
@ Statistical learning

VU F) := infsupEg.g/=n [LD(IA‘) — inf LD(f)] (2)
syl feF

A problem is “statistically learnable" if VS — 0 as n — oc.
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e Empirical Risk Minimization
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Empirical Risk Minimization

@ Empirical Risk Minimization (ERM): pick the hypothesis from
model class F that best fits the sample, i.e.,

form = argmlnf Z€ (xt), ¥t) = Remp(f) (3)
feF t—1

@ For a fixed function f, according to the law of large numbers, we
have
Remp(f) — Ry = E[((f(x),y)] forn — oo
e e g

true risk
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Empirical Risk Minimization

@ Empirical Risk Minimization (ERM): pick the hypothesis from
model class F that best fits the sample, i.e.,

form = argmlnf Z€ (xt), ¥t) = Remp(f) (3)
feF t—1

@ For a fixed function f, according to the law of large numbers, we
have

Remp(f) — Ry = E[((f(x),y)]  forn—s oo

true risk

@ Generalization error bound

E[¢(f( ]—725 (xt), )

test error

trammg error

* Connection with Statistical Learning?
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Empirical Risk Minimization

@ Hoeffding inequality
- Let Xi, X, ..., X, be independent random variables.
- Suppose S, = X1+ Xo+---+ Xpand a; < X; < b; Vi.

62
P(1Sh —E[Snl| > €) < 2exp (—2_1(2;9_3)2>
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Empirical Risk Minimization

@ Hoeffding inequality

- Let Xi, X, ..., X, be independent random variables.
- Suppose S, = X1+ Xo+---+ Xpand a; < X; < b; Vi.

62
P(1Sh —E[Snl| > €) < 2exp <_Z_1(2b—a)2>

@ Hoeffding inequality for ERM (bound 1)
- Suppose SUPy y ey [y, y' ) <1

P < E[¢(f(x), y)] — 15 > L(f(x) . )
t=1

* What'’s the drawback of this bound?

> ) < 2exp (—Z”) (@)
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Empirical Risk Minimization

@ ERM with finite class (bound 2)
Proposition 1

Consider the case when the hypothesis F has finite cardinality, that is
| F| < oo. For any loss ¢ satisfies sup, ,.cy |¢(y,y')| <1, we have

/Iog n|F|?
n

ViEl(F) < Es

sup
feF

E[¢(f(x), y)] ——ZE ) Yt)

n

The minimax rate is O < '°g|f>.
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Empirical Risk Minimization (optional)

Proof (partl):
Es LD(?erm) - inf LD(f)]

=Es _LD(?erm } - 'mc IE:S [Zf (Xt), yt ]

<Es | Lp(ferm) — ;2;5 Ze(f(xt) ,}’t)]
=1
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Empirical Risk Minimization (optional)

Proof (partl):
Es LD(?erm) - inf LD(f)]

<Es | Lp(ferm) — o Z C(f (xt) a}’t)]

<Eg [ (ferm(X - = Zf (ferm (xt) Yt)]
<Bs s o100, - 151100 1)
<Eg ?g]rg E[((f(x),y)] — - ;E(f(xt) V1) ]
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Empirical Risk Minimization (optional)

Proof (part Il):
VSl F) =infsupEg [LD(?) — inf LD(f)]
t D feF

<supEg [LD(?erm) — inf LD(f)]
D feF

1 n
SS%PES [?g]g E[((f(x),y)] — n ;f(f(xt) V) ]
1 n
<EEs | sup |E[(f(x),) —ntz;ﬁ(f(Xr),yt)

test error

training error

Tongxin Li (SDS, CUHK-SZ) Lecture 03 Learning Theory Spring 2024 16/35



Empirical Risk Minimization (optional)

Proof (part Ill):

1 n
Es [sup |E|£(f(x), - = £(f(xt),
s |sup [(f(x), y)] n;((t)%)]
1 n

=Es|1 L(f(x), - — £(f(xt),

* | Pswrer [0 -1 i o< rex E[(f(x). )] nZ (7 (%) y‘)}

Es|1 L(f(x) - = £(f (xt)
R e [0 )] =1 50, )| > oo EL(F0).5)] Z (x) y’)]
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Empirical Risk Minimization (optional)

Proof (part Ill):

2o [sp [EIA109.9)] = 3310, ]
=T onn] 3 e 2B FEOOO] L3000 }
Rl [ S e B T R B[00, 5] - 726 Fa). ) ]
<e+2P (sup E[((f(x),y)] — l;f(f()«) Y| > e>
<e+2|FIP ( E[(f(x),y)] - :)tzn;é(f(x,) A e>

2
< e+ 4|F|exp (—%)

Let e = y/log(n|F|2)/n, we have V& (F) < 84/ '°g"m . This finished the proof.
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Empirical Risk Minimization

E[(/(0).9)] — 3" €(F(x) . p1)

t=1

Eg |sup

feF

2
] <8 [log n| F|
n

- It shows the connection to

E[U((x), )] — =307 (%), )

t=1

sup
feF

- It requires that F is finite, i.e., | F| < oo
- How about |F| = 00?
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e Growth Function and VC dimension
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Growth Function

@ Growth function (also known as shattering coefficient)
Given {(x;, yi) }1<i<n and define S = {x1, X2, ..., Xn}. Let
Fs = Fxy,.xn = 1f(X1),...,f(Xn) : f € F} and suppose
f(x) € {0,1}. The growth function is the maximum number of
ways into which n points can be classified by the function class:

G(F,n) = sup |Fg]
o When F is finite, G(F, n) < |F|.

o It always holds that G(F, n) < 2".
e We say F shatters S if | Fg| = 2/SI.
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Growth Function

@ Growth function (also known as shattering coefficient)
Given {(x;, yi) }1<i<n and define S = {x1, X2, ..., Xn}. Let
Fs = Fxy,.xn = 1f(X1),...,f(Xn) : f € F} and suppose
f(x) € {0,1}. The growth function is the maximum number of
ways into which n points can be classified by the function class:

G(F,n) = sup |Fg]
o When F is finite, G(F, n) < |F|.
o It always holds that G(F, n) < 2".

e We say F shatters Siif | Fg| = 2!9.
@ Uniform convergence bound

P | sup
feF

* Connection with bound of V52

EI(T(6), 9)] — S €(F (), )

> e> < 2G(F,2n) exp (_ean) (5)
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@ VC (Vapnik-Chervonenkis) dimension
The VC dimension of a class F is the largest n such that G(F, n) = 2". In other
words, VC dimension of a function class F is the cardinality of the largest set
that it can shatters. It is a measure of the capacity (complexity, expressive
power, richness, or flexibility) of a set of functions.

@ Examples

o F = {f(x)=1I(x <86),0 € R}. Then it can shatter 1 point but for any 2
points it cannot shatter. VC(F) = 1.
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@ VC (Vapnik-Chervonenkis) dimension
The VC dimension of a class F is the largest n such that G(F, n) = 2". In other
words, VC dimension of a function class F is the cardinality of the largest set
that it can shatters. It is a measure of the capacity (complexity, expressive
power, richness, or flexibility) of a set of functions.

@ Examples

o F={f(x)=1I(x <0),6 € R}. Then it can shatter 1 point but for any 2
points it cannot shatter. VC(F) = 1.

@ Fis asetoflinesin 2-D space: VC(F) = 3. (What if 3 points are
co-linear?)
_ + / - +
* y B
— — — + -
3 points shattered 4 points impossible

@ Linear function in R?: VC(F) =?
e How about rectangles and circles in 2-D space?
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VC dimension

@ Sauer’s lemma

Lemma 1 (Vapnik,Chervonenkis,Sauer,Shelah)

Let F be a function class with finite VC dimension d. Then

G(F,n) < i}; (7)

for all n € N. In particular, for all n > d, we have

G(F.n) < (%”)d.
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VC generalization bound

@ Recall that
2
> ) < 2G(F,2n) exp <7%7)

P <sup

Let the RHS be some ¢ > 0 and then solve it for e. We have

E[¢(f(x), y)] Z o \/ 4 ((log(2G(F, 2n)) — log 0))

n

E[(F(x). y)] - Zé(f(xt )
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VC generalization bound

@ Recall that
2
> ) < 2G(F,2n) exp <7%7)

P (sup

Let the RHS be some ¢ > 0 and then solve it for e. We have

E[¢(f(x), y)] Z o \/ 4 ((log(2G(F, 2n)) — log 0))

n

E[(F(x). y)] - Zé(f(xf )

@ Using Lemma 1 (suppose n > d), we have (bound 3)

<dvc log(42) — log 5))

dve
E[((f(x), y)] < — Ze J -

The bound is very general (loose) since VC dimension only depends
on function space but not the dataset.
Can we tighten the bound?
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e Rademacher Complexity
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Rademacher complexity

e Rademacher variable o;: P(0; =1) = P(o;j = —1) =}
@ Empirical Rademacher complexity

n

sup 1 Z U,‘f(X;)]

R(F) :=E,
fer N

o It is a measure of the capacity of function space and depends on
both dataset and 7
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Rademacher complexity

e Rademacher variable o;: P(0; =1) = P(o;j = —1) =}
@ Empirical Rademacher complexity

n

sup 1 Z U,‘f(X;)]

R(F) :=E,
fer N

o It is a measure of the capacity of function space and depends on
both dataset and 7

@ Uniform convergence bound

< 2EgR({ o F)

Es [sup {E[ﬁ(f(x)m)} ~ Iy a0 ,yt)}
t=1

feF
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Rademacher complexity (optional)

Proof (part I):

Es sup{E[ﬁ ]—*Zf (f(xt), yt }]

_fe]—‘

i 1 g / /
=Es ?gjg{ES/ [ntZ/ (f(x) »%)} - EZé(f(x,) »%)H
- L
<Eg |Eg ?Eﬁ{nge( Ze yx)}”
=Es,s |sup {,17 e (x).v) - %Zﬁ(f(x,) JG)}]
fer U =1 t=1

We have introduced a dummy dataset S'.
What does this inequality mean?
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Rademacher complexity (optional)
Proof (part Il):

Es s [sup{ Z Zf }’t)}]
=Ess lsu {,17( (F(x), ) f()q)yy/)+2(f(f(xf’)m’)—E(f(xf),y/))) }]
i#
=F., [;;g{ (0; 04). ) = €F05).3) ) + ;( (F(x7), yi) = £(F(x), yJ)) }]
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Rademacher complexity (optional)

Proof (part Il):

sos [ 5 S 0000 - {0000
=Ess lfgg{; ( (). ¥7) = f()q)yy/)+§(f(f(x{)m’) —ﬁ(f(Xf)»yf‘))> }]
=k, [?:2{ (a, ()).3)) = (%), ) ) + ;( (FO). 1) = U(F(x), m)) }]
=k -fé‘ﬁ{:; ]_: Uf(ﬁ (f): %) —f(f(Xj)J/)) H
<E, -552{27 /: oyt (f(Xf)»y/')} + sup {;é(—of)ﬁ(f()q)»w)}]
=,k _22{; jn1 ol (f(x,’),y,-’)} +sup{ Za, (f(x), y/)}]
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Rademacher complexity (optional)

Proof (part Ill):

Es [SUP {E[f(f(x)»}/)] - lZé(f(Xt),yt)H
1
<Ess [SUP{ Zf {)—lZf(f(Xf),yt)}]
=1

< E [?:“E{ Zo, }+sup{;2cr,é(f(x,),y,)}]

= ]ES/RSI(E o ]:) + EsRs(ﬁ o .7:)
= 2E5R3(Z o ]:)

This finished the proof.
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Rademacher complexity bound (optional)

Combining Es [supse » {E[¢(f(X), ¥)] — 2 Sr 4 €(f(xt), y)}] < 2EsRs(£ o F) with
Lemma 3 (McDiarmid Inequality)

Let x4, ..., Xn be independent random variables taking on values in a set A and let
c1,...,Cn be positive real constants. If o : A” — R satisfies
sup o (Xt, .. X X)) — o (Xa, .. X xn) | < G
Xg 53 Xn,X] EA

for1 <i < n, then
Ple(X1,....xn) —Elp(x1,...,Xn)] > €) < e
P(p(X,..., X)) —E[p(%,...,%)] < —¢) < e 2¢/ELi &
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Rademacher complexity bound (optional)
Combining Es [supse» {EIL(f(x), )] — 5 527, £(F(
Lemma 3 (McDiarmid Inequality)

xt), y1)}] < 2EsRs({ o F) with

Let x4, ..., Xn be independent random variables taking on values in a set A and let
c1,...,Cn be positive real constants. If o : A” — R satisfies
sup o (Xt, .. X X)) — o (Xa, .. X xn) | < G
Xg 53 Xn,X] EA

for1 <i < n, then
2 n
P (X, Xa) —E[p(x1,...,X)] =€) < e 2/ T &
P(o(Xt,..  Xn) —E[p(X1,...,X%n)] < —¢) < @2/ XL o

Assume 0 < ¢ < 1, thus with probability at least 1 — ¢, we have

sup {E[E(f(x) )k *Zf(f (%), yf)}

<Eg [sup {E[é(f(x) 12— Zé }/t)} log(1/6)

2n
t=1

< 2EsRs(fo F) + %
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Rademacher complexity bound

We have got
sup {E[e )V -~ Ze yt)}
feF

< 2EsRs(lLo F) + 'Ogén/ 0)

Apply McDiarmid’s inequality again on Rademacher complexity itself.
The bounded difference of Rg(¢ o F) := E, supser + o714 oif (X;) is still
1/n. Then with probability of at least 1 — 6, we have (bound 4)
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Rademacher complexity bound

We have got
sup {E[e )V -~ Ze yt)}
feF

< 2EsRs(lLo F) + 'Ogén/ 0)

Apply McDiarmid’s inequality again on Rademacher complexity itself.
The bounded difference of Rg(¢ o F) := E, supser + o714 oif (X;) is still
1/n. Then with probability of at least 1 — 6, we have (bound 4)

sup {E[e ), ¥)] — — Ze YI)}

eF

log (2
< 2Rs(fo F) +3 Ogén/é)

*Note that EsRs(f o F) < /2880,
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Rademacher complexity of linear function class

Linear function space: F» = {x — (w,x) : [[w| <1}

Let S = (x4,X2,...,X,) be vectors in a Hilbert space. Suppose
x| < B,i=1,2,...,n. Define:

FooS={((W,Xx1),...,(W,Xp)) : [[W] <w}.

ThenR (F20 S) < “\’/—%
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Rademacher complexity of linear function class

Proof (part I):

R(]:QOS):EG-[ sup Za,a,]

aE]-_goS

1 n
= EEU sup ZJ/ (w, X,->:|

| w:[wlj <o 45

1 M n
=-E sup w, oiXi
n _w:||w|<w< Z ' I>]

< 1k, sup ||w| Za,x, } (Cauchy-Schwarz inequality)
n | w:|[w]| <w
w n
< EEO- |: Za’,‘x, = Zalxl
=

iXi

] ) (Jensen’s inequality)
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Rademacher complexity of linear function class

Proof (part Il):

R(F208)=Es | sup — oid
G209 sp 15l

(-[E])

n
> o
i=1
]Eo' ZO’,‘O’I‘ <X,‘,Xj>]
i

IN
SIE

SIE

— % (Z (xi, X/'> Es [Uin] + Z (Xi, X;) Eo [gﬂ)

i#f i=1

w 4 wB
== 2 < 22
n\gnx’” _\/ﬁ

This finished the proof.
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Generalization bound of linear models

If the loss function ¢ is n-Lipschitz, we have

R(loF) <nR(F)
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Generalization bound of linear models

If the loss function ¢ is n-Lipschitz, we have

R(loF) <nR(F)

Linear function space: Fo = {x — (w, x) : |w|| < w}. Suppose
x| < B,i=1,2,...,n. Then with probability of at least 1 — §, we have

sup {IE[E f(x),y)] — —ZE }

f€.7:2
2nwB log(2/9)
<
= /n +3 5n
Or equivalently, suppose f € F», then with probability of at least 1 — 6,
217wB log(2/9)
E[¢(f(x), y)] ZE f +3 T
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Learning outcomes

@ Understand the concepts of PAC, minimax rate, ERM,
generalization bound, growth function, VC dimension, and
Rademacher complexity.

@ Understand the properties of the four generalization error bounds
we have learned.

@ Be able to compute the Rademacher complexities for some simple
function classes.

@ Be able to derive the generalization bounds for some simple
machine learning models.
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