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0 Recommendation System
@ Introduction
@ Collaborative Filtering Methods
@ Content-Based Methods
@ Hybrid Methods
@ Evaluation Metrics for RS
@ Examples

Tongxin Li (SDS, CUHK-SZ) Lecture 04 Advanced Applications Spring 2024 3/44



Recommendation System: Real Applications

Recommendation systems are anywhere!
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Recommendation System: Methods

Methods for recommendation system
e Collaborative filtering methods
e Content based methods
e Hybrid methods
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Collaborative Filtering: User-ltem Interaction

e User-item interaction/utility

o explicit feedback (e.g., purchase or not purchase, rating)
e implicit feedback (e.g., click or not click, time spent)
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Collaborative Filtering: User-ltem Interaction

e User-item interaction/utility
o explicit feedback (e.g., purchase or not purchase, rating)
e implicit feedback (e.g., click or not click, time spent)
e User-item rating matrix
o highly incomplete  (why?)
o very large (why?)
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Collaborative Filtering: Examples of Benchmark

@ MovieLens-1M: 4000x 6000

@ MovielLens-20M: 27,000 138,000
@ Netflix 2009: 18,000x480,000

@ Doban: 58,000x 129,000

Movies like Castle in the Sky
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Collaborative Filtering: Examples of Benchmark

MovielLens-1M: 4000x 6000, missing rate>0.95

MovieLens-1M 5

2000 3000 4000 5000
user
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Collaborative Filtering: Classic Method

°_
Collect user-item utilities @ g —
8 UF

Identify similar users ;

gt

Predict unknown item utilities " o—
based on other similar users

. o—
Q—

Rating matrix is a special case of user-item utility
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User-ltem Utilities

Gossm The The Criminal | The Good
Girl | Office | Mandalorian | Minds Place Anatomy
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Identify Similar Use
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Identify Similar Users

User-ltem Utility Matrix User Similarities

Gossip | The The Criminal | The Good | Grey's G
Girl | Office | Mandalorian | Minds Place Anatomv race

— 0944 ‘
P ; : : 1 Z 4 distance =g 260 Felix
S O O O MR 09/ [ |\

Nikhil 2 3 4 2 2 2 ' | 1 0.93"

Felix 1 1 1 5 2 2 . Haren 0.79, \ Nikhil
We could then predict unknown item utilities # 0‘79‘

for Grace based on other similar users Sai Siyan
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Identify Similar Users

User-ltem Utility Matrix User Similarities

Gossip | The The Criminal | The Good | Grey's G
Girl | Office | Mandalorian | Minds Place Anatomy race
4 5 4 5 < o

Grace T
) . 094 ' - 0.60 "

Eric il 4 5 1 5 2 !

il I S S O I distance RRLIg el

Sai 1 2 5 4 3 5 metric

Siyan 3 1 1 3 4 5 096

Nikhil 2 3 4 2 2 2 ' 1 0.93"

Felix 1 1 1 5 2 2 = Haren 0.79 o 79- Nikhil

We could then predict unknown item utilities it

for Grace based on other similar users Sai Siyan
Open issues

e Choice of distance metric
@ Dealing with sparse data
e How to combine known user utilities to do the prediction

Image from Eric Eaton
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Distance/Similarity Measurement

@ Euclidean distance:
similarity(user;, user;) 1
s V)= T
1+ [|xi = xj],

@ Cosine similarity:

similarity(user;, user;) =

X :H HXIH

@ Pearson correlation coefficient

@ Spearman’s rank correlation coefficient

65 P

— 1 e
's n(n? —1)

@ d = R(Xi) — R(Y)): difference between the two ranks of each observation
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Distance/Similarity Measurement
it

The Goad Pl

Can only measure similarity
between users using their

[ iXe’ B . So0d Placo er s
[ : |
overlapping items The iminal | The Good | Grey’s
: Mandalorian | Minds Place Anatomy
1 5 1-\'7

i Grace 5
§ Eric 4 5 5 3 .t
§ Haren 5 5 3 4
{ sai
§ sivan 3 1 3 5
Nikhil 2 2
§ Felix 1 1 2

Image from Eric Eaton
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Nearest-Neighbor Collaborative Filtering

Can only measure similarity
between users using their
overlapping items

' Grace
’ Eric 4

5] 3 «’
§ Haren 5 5 3 4
i sai % @]
§ Siyan 3 Al 3 5
Nikhil 2 2
f Felix 1 1 2

Idea: predict utility of item / based on the most-similar users who
recorded a utility for that item

Image from Eric Eaton
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Nearest-Neighbor Collaborative Filtering

Idea: predict utility of item / based on the most-similar users who
recorded a utility for that item

@ Let \V be the neighborhood set: the most similar users to user u
who have rated item i

@ Let wy, be a weight € [0, 1] based on the similarity of users u and
v

@ Predict user u’s utility for item i as

N — _ 4
Xui = Xy + Z <(Xvi — Xv) X uv>

veN 2vien Wy

- X,: average rating of user u
- X, average rating of user v
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Matrix Factorization Collaborative Filtering

@ Low-rank matrix factorization
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Matrix Factorization Collaborative Filtering

@ Low-rank matrix factorization

T
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Matrix Factorization Collaborative Filtering
B B
5 1 3
g8 2 ? ? 2

B 4 ? 3 ?

jobn

8

Tom

@ Notations
- R = [r,] € R™": incomplete user-item rating matrix
- Q: the set of indices of observed entries (e.g. known ratings)
- P=[p1,.- s Pus-- - Pm] ERX™ Q= [ah,...,Q,...,Qn] € RT*"
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Matrix Factorization Collaborative Filtering
E R E
| b 1 3
g8 2 ? ? 2

B 4 ? 3 ?

jobn

8

Tom

@ Notations

- R =[ri] € R™": incomplete user-item rating matrix

- Q: the set of indices of observed entries (e.g. known ratings)

- P=[p1,.- s Pus-- - Pm] ERX™ Q= [ah,...,Q,...,Qn] € RT*"
@ SVD-based recommendation (R~ P Q)

minmize 3 { (ra—pia)” 2 (Ipulf + lailf) | ()
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Matrix Factorization Collaborative Filtering
B B
5 1 3
g8 2 ? ? 2

B 4 ? 3 ?

jobn

8

Tom

@ Notations

- R =[ri] € R™": incomplete user-item rating matrix

- Q: the set of indices of observed entries (e.g. known ratings)

- P=[p1,.- s Pus-- - Pm] ERX™ Q= [ah,...,Q,...,Qn] € RT*"
@ SVD-based recommendation (R~ P Q)

minmize 3 { (ra—pia)” 2 (Ipulf + lailf) | ()

@ Optimization
o Gradient descent (GD) or SGD
o Alternating least squares
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Matrix Factorization Collaborative Filtering
E R E
8 5 1|3 5

Bl » | 2| 2 2

B 4 ? 3 ?

John

@ SVD with bias (by; = i + by + b;)

P,Q,B

2
minimize { (ru,- —u—by— b — PI@)
(u,i)eQ

@)
+ A (lIpoll® + llal® + &2 + 67) }
- B={u,{b}, {b}}

- What are the meanings of u, b,, and b;?

Koren, Y., Bell, R., Volinsky, C. (2009). Matrix factorization techniques for recommender
systems. Computer, 42(8), 30-37.
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Collaborative Filtering: Advantage and Disadvantage

Advantages
@ No domain knowledge needed
- Item details are irrelevant, only user behavior matters
@ Heterogeneous preferences
- Capture that users may have diverse preferences
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Collaborative Filtering: Advantage and Disadvantage

Advantages
@ No domain knowledge needed
- Item details are irrelevant, only user behavior matters
@ Heterogeneous preferences
- Capture that users may have diverse preferences

Disadvantages
@ Cannot handle new items and new users (cold start problem)

- New items have no user feedback and new users have no rating
records
- So the system cannot make recommendations for them
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Content-Based Methods

@ Collaborative filtering doesn’t consider user or item
attributes/content

@ Content-based methods do!

. Recommend
*~_ similar items
*

*

Users
rate/watch/buy
items

Image from Eric Eaton
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Content-Based Methods

content
analyzer

@ Content analysis: characterize item profile
as feature vector (e.g., TF-IDF learner
features of text description, image

features)

filtering
module

training
data

L lr ey

Image from Eric Eaton
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Content-Based Methods

content
analyzer

@ Content analysis: characterize item
as feature vector (e.g., TF-IDF

features of text description, image @ Iprofile >
earner
features)

@ Profile learning: characterize user as
feature vector (e.g., age, sex, filtering
education) eTlIE

training
data

Image from Eric Eaton
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Content-Based Methods

content
analyzer

@ Content analysis: characterize item
as feature vector (e.g., TF-IDF
features of text description, image

features) profile
@ Profile learning: characterize user as learner

feature vector (e.g., age, sex,

education) T
@ Filtering module: train module
classification/regression model for T
predicting users utility for an item
o O i)

Image from Eric Eaton
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Content-Based Methods

@ Consider the following notations
- ¢: aloss function (e.g. squared loss)
- g:RY 5 RW, h:RY — R
- dy (d)): # of user (item) features
- ny (ny): # of users (items)

- gu: u-th output of g i
rorie
@ Recommendation for item @ P >

content
analyzer

learner

minimize > Ui 9u(2))

(u,)eQ filtedril?g
moaule
@ Recommendation for user tra;r;iang
L Vo
m/n/,/;mze(u%;Q U ryi, hi(zy)) @@ E)@

Question: How do they handle new users or items?

Image from Eric Eaton
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Content-Based Methods

Advantages

@ User-independent: only relies on user’s profile to make
recommendations

@ Explainable: recommendations are based on concrete interacting
features

@ Handles new items well: item features are from content
@ Handles new users well: user features are from content
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Content-Based Methods

Advantages

@ User-independent: only relies on user’s profile to make
recommendations

@ Explainable: recommendations are based on concrete interacting
features

@ Handles new items well: item features are from content
@ Handles new users well: user features are from content
Disadvantages

@ Content-analysis is limited: relies on discrete features, often
needs domain knowledge

@ Narrow recommendations: often recommends similar items to a
user, since those have highest scores
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Hybrid Methods

Combining separate recommenders
@ o Canuse any ensemble technique: linear weighting, stacking, etc.
o Recall - the Netflix prize winner was a blend of over 800+ recommenders

Leaderboa rd Display top| 20 | v |leaders.

eam Name

est Scorel’: Improvement Last Submit Time
0.8553 10.10 2009-07-26 18:38:22
10.09 200! 6 18:18:28

0.8571 9.91

0.8573 989
0.8579 9.83
0.8582 9.80
0.8590 971
0.8603 9.58
08611 949
0.8612 9.48
0.8613 947
0.8613 947
13 0.8633 9.26
14 08634 925

Image from Eric Eaton
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Hybrid Methods

& Combining separate recommenders
@ @ @ o Canuse any ensemble technique: linear weighting, stacking, etc.

o Recall - the Netflix prize winner was a blend of over 800+ recommenders

Adding content-based aspects to collaborative models

o e.g., content-based user profiles, add content agents as collaborators

Example: matrix factorization with side information

Most systems that we use nowadays are hybrid recommenders.

Tongxin Li (SDS, CUHK-SZ) Lecture 04 Advanced Applications Spring 2024 26/44



Evaluation Metric for Recommendation System

Predictive metrics

@ RMSE (root mean square error)

1 A
RMSE = El 7 (ri = Fui)?

?u,'E ﬁ?

- R: the set of ratings we predicted
@ MAE (mean absolute error)

1 X
MAE = = > Iri = Tul
| | ?u,-ef?

Question: Given the rating matrix, how to define/construct training data and test data?

Recommender Systems Handbook

https://link.springer.com/book/10.1007/978-0-387-85820-3
Tongxin Li (SDS, CUHK-SZ) Lecture 04 Advanced Applications Spring 2024 27/44


https://link.springer.com/book/10.1007/978-0-387-85820-3

Evaluation Metric for Recommendation System

Ranking-based metrics

@ Precision@k (fraction of top k recommended items that are
relevant to the user)
r<
Prec(R)x = {reR:rs kil

k

- R: the set of relevant items; r: a recommended item
- k: # of recommended items; Precision = TP/(TP + FP)
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Evaluation Metric for Recommendation System

Ranking-based metrics

@ Precision@k (fraction of top k recommended items that are
relevant to the user)
R:r<k
Prec(R)x = ire r< kil

k

- R: the set of relevant items; r: a recommended item
- k: # of recommended items; Precision = TP/(TP + FP)

@ Recall@k (fraction of top k recommended items that are in a set of
items relevant to the user; also known as HitRatio@k)

B {re R:r <k}
IR

Recall(R)k 3)

- Recall = TP/(TP + FN)
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Evaluation Metric for Recommendation System

Ranking-based metrics

@ Average Preq\i,sion

N
1 o Lth - 1
APON = — > <P(k) if k™ item was relevant) = ; P(k)-rel(k

k=1
P(k): precision at k
- N: number of recommended items
- m: total number of relevant items in the full space of items
- rel(k): an indicator function
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Evaluation Metric for Recommendation System

Ranking-based metrics

@ Average Prec,‘\ilsion

N
1 o Lth - 1
APON = — > <P(k) if k™ item was relevant) = ; P(k)-rel(k

k=1
P(k): precision at k
- N: number of recommended items
- m: total number of relevant items in the full space of items
- rel(k): an indicator function

Example:
Rank 1
D Relevant item
Precision@K 2/6 O Irrelevant item

AP@G:1 x(0-04+05-14+0.33-04+05-1 +0.4-0+O.33~0):0.5
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Evaluation Metric for Recommendation System

Ranking-based metrics
@ Mean Average Precision (MAP, mean of APs over Q users):

> AP(q)

MAP =
Q
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Evaluation Metric for Recommendation System

Ranking-based metrics
@ Mean Average Precision (MAP, mean of APs over Q users):

> AP(q)

MAP =
Q

@ Mean Reciprocal Rank (MRR, used when there is only one relevant item
or only the first recommended item is the essential one; over Q users)

180
MRR = -
Q| ; rank;

@ Normalized Discounted Cummulative Gain (NDCG, optional in this
course)
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Examples

Benchmarks © Add a Result
TREND DATASET BEST METHOD PAPER TITLE PAPER CODE COMPARE
Movielens On the Difficulty of Evaluating Baselines: A Study on N
L Bayesian timeSVD++ flipped S o e SN Bt B 0 @
1M Recommender Systems
e MovieLens T’ Bayesian timeSVD++ flipped +  On the Difficulty of Evaluating Baselines: A Study on o & m
100K Feat w/ Ordered Probit Regression  Recommender Systems
Moviel. On the Difficulty of Evaluating Baselines: A Stud "
] lovieLens T Bayesian timeSVD++ flipped n the Difficulty of Evaluating Baselines: udy on 5 o m
10M Recommender Systems
/ MovieLens Enhancing VAES for Collaborative Filtering: Flexible Priors "
: ® Hivamp Gansd » o @D
: 20M L s & Gating Mechanisms
idp B Vamp Gated Enhancing VAEs for Collaborative Filtering: Flexible Priors > & @
& Gating Mechanisms
Dnublan 2 I6MC Inductive Matrix Completion Based on Graph Neural s o @
Monti Networks
Flixster Monti 2 I6MC Inductive Matrix Completion Based on Graph Neural s o
Networks
Million Son: .
Dot B EASE Embarrassingly Shallow Autoencoders for Sparse Data b o
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Recommendation Systems on MovielLens TM

Leaderboard Dataset

RMSE

—_— Sparse FC
————s

Sep'15 0 '16 Moy '16 Sep'16 0 '17 May"17 Sep'17 an'18 May'18 Sep'18 Jan"19 May 19

Other models -8~ Models with lowest RMSE

Tongxin Li (SDS, CUHK-SZ) Lecture 04 Advanced Applications Spring 2024 32/44



Examples

View  RMSE v

RANK  MODEL RMSE ¥ NDCG®10  HR®10  NDCG  PAPER CODE  RESULT  YEAR
1 Sparse FC 0.824 Kernelized Synaptic Weight Matrices (9} 3 2018
) CF-NADE e {\.NcuraLAutamqrmswE Approach to Collaborative o s Shie

Filtering
3 I-AutoRec 0.831 AutoRec: Autoencoders Meet Collaborative Filtering [w] 3 2015
4 GC-MC 0.832 Graph Convolutional Matrix Completion 5] 3 2017
3 I-CFN 0.8321 Hybrid Recommender System based on Autoencoders O 2] 2016
6 NNMF 0.843 Neural Network Matrix Factorization (] 3 2015
. iciic _ Inductive Matrix Completion Based on Graph Neural o - .
Networks
8 U-CFN 0.8574 Hybrid Recommender System based on Autoencoders Q 2 2016
Factorized —
9 E;Emlze 0.860 Deep Models of Interactions Across Sets (9} 2) 2018
Factorization
o with nocs R AR A G P ) : anie
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9 Learning to Rank
@ Introduction
@ Point-wise/Pair-wise/List-wise Modeling
@ Evaluation for L2R
@ Examples
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Information Retrieval and Ranking

@ Information Retrieval (IR)
- Query: formal statement of information needs (e.g., search strings
in web search engines)
- In IR, a query does not uniquely identify a single object in the
collection. Instead, several objects may match the query, perhaps
with different degrees of relevance (ranking).

Tongxin Li (SDS, CUHK-SZ) Lecture 04 Advanced Applications Spring 2024 35/44



Information Retrieval and Ranking

@ Information Retrieval (IR)

- Query: formal statement of information needs (e.g., search strings
in web search engines)

- In IR, a query does not uniquely identify a single object in the
collection. Instead, several objects may match the query, perhaps
with different degrees of relevance (ranking).

@ Application of ranking: Search Engine (Google, Baidu, Bing, etc)

e Big data

e Many available features: anchor texts, PageRank score, click
through data

e Using machine learning to rank queries is effective and popular

@ Other applications: collaborative filtering, key term extraction,
sentiment analysis, etc
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Learning to Rank

@ Learning to rank (L2R) is a supervised learning problem
@ Training data of L2R
- A setof queries Q={q1,...,qm}
- A set of documents D
- Documents relevant to the i-th query D; = {d;1,...,di5} C D
- A vector of relevance scores y; = (¥i1,. .., Yin) for each document
relevant to query i
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Learning to Rank

@ Learning to rank (L2R) is a supervised learning problem
@ Training data of L2R
- A setof queries Q={q1,...,qm}
- A set of documents D
- Documents relevant to the i-th query D; = {d;1,...,di5} C D
- A vector of relevance scores y; = (¥i1,. .., Yin) for each document
relevant to query i
@ Goal of L2R: given a new query q, output a sorted list of (a
permutation) of relevant documents

query

learning
method

. ranked
results

documents

user

Image from Jannik Strétgen
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Pointwise Modeling
yes / no
( query , document )—)-
(_OO:+OO)

X f(x,0) y

b

- Predict for every document separately

- x is the feature vector extracted from one query and one
document

- y is the response (document goodness, e.g. label or measure of
engagement)

- Learn a model f with parameters 6

Disadvantage: as the input is a single document, the relative order
between documents cannot be naturally considered in the learning

process.
Slide adapted from Jannik Strétgen
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Pair-wise Modeling
( query | document 1  document 2 )_;-_) {-1, +1}

X f(x,0) y

- Predict for every pair of documents jointly
- x is the feature vector extracted from one query and two
documents

- y is the user’s relative preference regarding the documents (+1
shows preference for document 1; —1 for document 2)

Disadvantage: no distinction between excellent-bad and fair-bad

Slide adapted from Jannik Strétgen
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List-wise Modeling
( query . doc. 1, ... , doc. k)—)- (—o0, +00)

X f(x,0) y

- Predict for each ranked list of documents

Advantage: positional information visible to loss function
Disadvantage: high training complexity

Slide adapted from Jannik Strotgen
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Evaluation for L2R

Benchmark dataset
@ LETOR 2.0, 3.0, 4.0 (2007-2009) by Microsoft Research Asia

- based on publicly available document collections
- come with precomputed low-level features and relevance
assessments

@ Yahoo! Learning to Rank Challenge (2010) by Yahoo! Labs

- comes with precomputed low-level features and relevance
assessments

@ Microsoft Learning to Rank Datasets by Microsoft Research U.S.

- comes with precomputed low-level features and relevance
assessments

Evaluation metric: MAP, NDCG, etc

Slide adapted from Jannik Strotgen
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Examples

Learning to Rank Algorithms

A Figure from [Liu11]

Decision Theoretic Framework for Ranking [39]
SoftRank [27]

=

8

2

& AdaRank[33] CDN Ranker [16]

< ListNet[4] PermuRank [34]

9 RankGP[35] AppRank [20]

2 ank

z SVM-NDCG [6] BoltzRank [31]

E SVM-MAP[36] ListMLE([32] SmoothRank [7]

'5 Robust Pairwise Ranking with Sigmoid Functions [5]

g RankNet[2] ; i i

S Magnitude-preserving Ranking [9]

& i 5 FRank[28]

2« RankingSVM[15] an OWA for Ranking [29]
o RankBoost[12] P-Norm Push [24] Multiple hyperplane  QBRank[38] i
§ Ordering with preference LambdaRank [1] ranker(19] SortNet [23] Robust sparse ranker [26]
g—f function[8] IRSVM[3] GBRank [37]

'§ Fun}c[ion[ 13] Threshuld-hu.\cd If)ss function

<} for ordinal regression[22]

2. Ranking with large

2- margin principles[25] Subset ranking

o PRanking[11] with regression[10] MCRank[17] A )

2 Logist ‘]i e based Rankine [14 Association Rule Ranking [30]

3 ogistic Regression based Ranking [14] RankCosine [21]

2 SVM-based Ranking [18]

o -
<2005 2005 2006 2007 2008 2009

Chart from http://ltr-tutorial-sigirl9.isti.cnr.it/
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Ranking SVM
@ Goal: learn h from {(x;,, X, ¥i,, Vi) : (i1, l2) € P} such that

h(xj)>h(x) <= yi>y
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https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html##References
https://arxiv.org/pdf/0704.3359.pdf

Ranking SVM
@ Goal: learn h from {(x;,, X, ¥i,, Vi) : (i1, l2) € P} such that

h(xj)>h(x) <= yi>y

@ Optimization problem:

. 1
minimize —w VV —
w,£;>0 2 + Z f’/
(i)eP

subject to (w x,-) > (w x,-) +1 =&, V(i,))€P

More about ranking SVM:
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html#References
https://arxiv.org/pdf/0704.3359.pdf
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NDCG@10 on public LtR Datasets

Algorithm MSNI10K Y!S1 Y!S2 Istella-S
RankingSVM 04012 0.7238 0.7306 N/A
GBRT 0.4602 0.7555 0.7620 0.7313
LambdaMART 0.4618 0.7529 0.7531 0.7537

Table from http://ltr-tutorial-sigirl9.isti.cnr.it/
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Learning Outcomes

@ Know the types of recommendation system methods

@ Know the two basic methods of collaborative filtering

@ Understand the advantages and disadvantages of CF and CB
@ Know the evaluation metrics for recommendation systems

@ Be able to conduct CF and CB on some benchmark datasets
@ Know the main ideas in learning to rank

@ Be able to implement an algorithm of learning to rank
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