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Recommendation System: Real Applications

Recommendation systems are anywhere!
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Recommendation System: Methods

Methods for recommendation system
Collaborative filtering methods
Content based methods
Hybrid methods
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Collaborative Filtering: User-Item Interaction

User-item interaction/utility
explicit feedback (e.g., purchase or not purchase, rating)
implicit feedback (e.g., click or not click, time spent)

User-item rating matrix
highly incomplete (why?)
very large (why?)
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Collaborative Filtering: Examples of Benchmark

MovieLens-1M: 4000×6000
MovieLens-20M: 27,000×138,000
Netflix 2009: 18,000×480,000
Doban: 58,000×129,000
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Collaborative Filtering: Examples of Benchmark

MovieLens-1M: 4000×6000, missing rate>0.95
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Collaborative Filtering: Classic Method

Rating matrix is a special case of user-item utility

Image from Eric Eaton
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User-Item Utilities

Image from Eric Eaton
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Identify Similar Users

Image from Eric Eaton
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Identify Similar Users

Open issues
Choice of distance metric
Dealing with sparse data
How to combine known user utilities to do the prediction

Image from Eric Eaton
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Distance/Similarity Measurement

Euclidean distance:

similarity(useri ,userj) =
1

1 +
∥∥xi − xj

∥∥
2

Cosine similarity:

similarity(useri ,userj) =
xi · xj

∥xi∥
∥∥xj

∥∥
Pearson correlation coefficient

ρX ,Y =
cov(X ,Y )

σXσY

Spearman’s rank correlation coefficient

rs = 1 −
6
∑

d2
i

n(n2 − 1)

di = R(Xi)− R(Yi): difference between the two ranks of each observation
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Distance/Similarity Measurement

Image from Eric Eaton
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Nearest-Neighbor Collaborative Filtering

Idea: predict utility of item i based on the most-similar users who
recorded a utility for that item

Image from Eric Eaton
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Nearest-Neighbor Collaborative Filtering

Idea: predict utility of item i based on the most-similar users who
recorded a utility for that item

Let N be the neighborhood set: the most similar users to user u
who have rated item i
Let wuv be a weight ∈ [0,1] based on the similarity of users u and
v
Predict user u’s utility for item i as

x̂ui = x̄u +
∑
v∈N

(
(xvi − x̄v )×

wuv∑
v ′∈N wuv ′

)

- x̄u: average rating of user u
- x̄v : average rating of user v
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Matrix Factorization Collaborative Filtering

Low-rank matrix factorization

Low-rank matrix completion
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Matrix Factorization Collaborative Filtering

Notations
- R = [rui ] ∈ Rm×n: incomplete user-item rating matrix
- Ω: the set of indices of observed entries (e.g. known ratings)
- P = [p1, . . . ,pu, . . . ,pm] ∈ Rf×m, Q = [q1, . . . ,qi , . . . ,qn] ∈ Rf×n

SVD-based recommendation (R ≈ P⊤Q)

minimize
P,Q

∑
(u,i)∈Ω

{(
rui − p⊤

u qi

)2
+ λ

(
∥pu∥2 + ∥qi∥2

)}
(1)

Optimization
Gradient descent (GD) or SGD
Alternating least squares
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Matrix Factorization Collaborative Filtering

SVD with bias (bui = µ+ bu + bi )

minimize
P,Q,B

∑
(u,i)∈Ω

{(
rui − µ− bu − bi − p⊤

u qi

)2

+ λ
(
∥pu∥2 + ∥qi∥2 + b2

u + b2
i

)} (2)

- B = {µ, {bu}, {bi}}
- What are the meanings of µ, bu, and bi?

Koren, Y., Bell, R., Volinsky, C. (2009). Matrix factorization techniques for recommender

systems. Computer, 42(8), 30-37.
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Collaborative Filtering: Advantage and Disadvantage

Advantages
No domain knowledge needed

- Item details are irrelevant, only user behavior matters
Heterogeneous preferences

- Capture that users may have diverse preferences

Disadvantages
Cannot handle new items and new users (cold start problem)

- New items have no user feedback and new users have no rating
records

- So the system cannot make recommendations for them
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Content-Based Methods

Collaborative filtering doesn’t consider user or item
attributes/content
Content-based methods do!

Image from Eric Eaton
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Content-Based Methods

Content analysis: characterize item
as feature vector (e.g., TF-IDF
features of text description, image
features)

Image from Eric Eaton
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Content-Based Methods

Content analysis: characterize item
as feature vector (e.g., TF-IDF
features of text description, image
features)
Profile learning: characterize user as
feature vector (e.g., age, sex,
education)
Filtering module: train
classification/regression model for
predicting users utility for an item

Image from Eric Eaton
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Content-Based Methods

Consider the following notations
- ℓ: a loss function (e.g. squared loss)
- g : RdI → RnU , h : RdU → RnI

- dU (dI): # of user (item) features
- nU (nI): # of users (items)
- gu: u-th output of g

Recommendation for item

minimize
g

∑
(u,i)∈Ω

ℓ(rui ,gu(zi))

Recommendation for user

minimize
h

∑
(u,i)∈Ω

ℓ(rui ,hi(zu))

Question: How do they handle new users or items?

Image from Eric Eaton
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Content-Based Methods

Advantages
User-independent: only relies on user’s profile to make
recommendations
Explainable: recommendations are based on concrete interacting
features
Handles new items well: item features are from content
Handles new users well: user features are from content

Disadvantages
Content-analysis is limited: relies on discrete features, often
needs domain knowledge
Narrow recommendations: often recommends similar items to a
user, since those have highest scores
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Hybrid Methods

Image from Eric Eaton
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Hybrid Methods

Example: matrix factorization with side information

Most systems that we use nowadays are hybrid recommenders.
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Evaluation Metric for Recommendation System

Predictive metrics

RMSE (root mean square error)

RMSE =

√√√√ 1
|R̂|

∑
r̂ui∈R̂

(rui − r̂ui)
2

- R̂: the set of ratings we predicted

MAE (mean absolute error)

MAE =
1
|R̂|

∑
r̂ui∈R̂

|rui − r̂ui |

Question: Given the rating matrix, how to define/construct training data and test data?

Recommender Systems Handbook

https://link.springer.com/book/10.1007/978-0-387-85820-3

Tongxin Li (SDS, CUHK-SZ) Lecture 04 Advanced Applications Spring 2024 27 / 44

https://link.springer.com/book/10.1007/978-0-387-85820-3


Evaluation Metric for Recommendation System

Ranking-based metrics
Precision@k (fraction of top k recommended items that are
relevant to the user)

Prec(R)k =
|{r ∈ R : r ≤ k}|

k

- R: the set of relevant items; r : a recommended item
- k : # of recommended items; Precision = TP/(TP + FP)

Recall@k (fraction of top k recommended items that are in a set of
items relevant to the user; also known as HitRatio@k)

Recall(R)k =
|{r ∈ R : r ≤ k}|

|R|
. (3)

- Recall = TP/(TP + FN)
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Evaluation Metric for Recommendation System

Ranking-based metrics
Average Precision

AP@N =
1
m

N∑
k=1

(
P(k) if k th item was relevant

)
=

1
m

N∑
k=1

P(k)·rel(k)

- P(k): precision at k
- N: number of recommended items
- m: total number of relevant items in the full space of items
- rel(k): an indicator function

Example:

AP@6 =
1
2
× (0 · 0 + 0.5 · 1 + 0.33 · 0 + 0.5 · 1 + 0.4 · 0 + 0.33 · 0) = 0.5

Image from https://towardsdatascience.com/mean-average-precision-at-k-map-k-clearly-explained-538d8e032d2
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Evaluation Metric for Recommendation System

Ranking-based metrics
Mean Average Precision (MAP, mean of APs over Q users):

MAP =

∑Q
q=1 AP(q)

Q

Mean Reciprocal Rank (MRR, used when there is only one relevant item
or only the first recommended item is the essential one; over Q users)

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

Normalized Discounted Cummulative Gain (NDCG, optional in this
course)
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Examples
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Examples
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1 Recommendation System

2 Learning to Rank
Introduction
Point-wise/Pair-wise/List-wise Modeling
Evaluation for L2R
Examples
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Information Retrieval and Ranking

Information Retrieval (IR)
- Query: formal statement of information needs (e.g., search strings

in web search engines)
- In IR, a query does not uniquely identify a single object in the

collection. Instead, several objects may match the query, perhaps
with different degrees of relevance (ranking).

Application of ranking: Search Engine (Google, Baidu, Bing, etc)
Big data
Many available features: anchor texts, PageRank score, click
through data
Using machine learning to rank queries is effective and popular

Other applications: collaborative filtering, key term extraction,
sentiment analysis, etc
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Learning to Rank

Learning to rank (L2R) is a supervised learning problem
Training data of L2R

- A set of queries Q = {q1, . . . ,qm}
- A set of documents D
- Documents relevant to the i-th query Di = {di,1, . . . ,di,ni} ⊆ D
- A vector of relevance scores yi = (yi,1, . . . , yi,ni ) for each document

relevant to query i

Goal of L2R: given a new query q, output a sorted list of (a
permutation) of relevant documents

Image from Jannik Strötgen
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Pointwise Modeling

- Predict for every document separately
- x is the feature vector extracted from one query and one

document
- y is the response (document goodness, e.g. label or measure of

engagement)
- Learn a model f with parameters θ

Disadvantage: as the input is a single document, the relative order
between documents cannot be naturally considered in the learning
process.

Slide adapted from Jannik Strötgen
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Pair-wise Modeling

- Predict for every pair of documents jointly
- x is the feature vector extracted from one query and two

documents
- y is the user’s relative preference regarding the documents (+1

shows preference for document 1; −1 for document 2)

Disadvantage: no distinction between excellent-bad and fair-bad

Slide adapted from Jannik Strötgen
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List-wise Modeling

- Predict for each ranked list of documents

Advantage: positional information visible to loss function
Disadvantage: high training complexity

Slide adapted from Jannik Strötgen
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Evaluation for L2R

Benchmark dataset
LETOR 2.0, 3.0, 4.0 (2007-2009) by Microsoft Research Asia

- based on publicly available document collections
- come with precomputed low-level features and relevance

assessments
Yahoo! Learning to Rank Challenge (2010) by Yahoo! Labs

- comes with precomputed low-level features and relevance
assessments

Microsoft Learning to Rank Datasets by Microsoft Research U.S.
- comes with precomputed low-level features and relevance

assessments

Evaluation metric: MAP, NDCG, etc

Slide adapted from Jannik Strötgen
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Examples

Learning to Rank Algorithms

Chart from http://ltr-tutorial-sigir19.isti.cnr.it/
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Examples

Ranking SVM
Goal: learn h from {(xi1 ,xi2 , yi1 , yi2) : (i1, i2) ∈ P} such that

h (xi) > h
(
xj
)
⇐⇒ yi > yj

Optimization problem:

minimize
w,ξij≥0

1
2

wT w +
C
m

∑
(i,j)∈P

ξij

subject to
(

wT xi

)
≥

(
wT xj

)
+ 1 − ξij , ∀(i , j) ∈ P

More about ranking SVM:

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html#References

https://arxiv.org/pdf/0704.3359.pdf
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Examples

NDCG@10 on public LtR Datasets

Table from http://ltr-tutorial-sigir19.isti.cnr.it/
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Learning Outcomes

Know the types of recommendation system methods

Know the two basic methods of collaborative filtering

Understand the advantages and disadvantages of CF and CB

Know the evaluation metrics for recommendation systems

Be able to conduct CF and CB on some benchmark datasets

Know the main ideas in learning to rank

Be able to implement an algorithm of learning to rank
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