DDA4210/AIR6002 Advanced Machine Learning Lecture 04 Advanced Applications

Tongxin Li

School of Data Science, CUHK-Shenzhen

Spring 2024

Tongxin Li (SDS, CUHK-SZ)

Lecture 04 Advanced Applications

Overview

Recommendation System

- Introduction
- Collaborative Filtering Methods
- Content-Based Methods
- Hybrid Methods
- Evaluation Metrics for RS
- Examples

Learning to Rank

- Introduction
- Point-wise/Pair-wise/List-wise Modeling
- Evaluation for L2R
- Examples

Recommendation System

- Introduction
- Collaborative Filtering Methods
- Content-Based Methods
- Hybrid Methods
- Evaluation Metrics for RS
- Examples

2 Learning to Rank

Recommendation System: Real Applications

Recommendation systems are anywhere!

Methods for recommendation system

- Collaborative filtering methods
- Content based methods
- Hybrid methods

Collaborative Filtering: User-Item Interaction

User-item interaction/utility

- explicit feedback (e.g., purchase or not purchase, rating)
- implicit feedback (e.g., click or not click, time spent)

Collaborative Filtering: User-Item Interaction

- User-item interaction/utility
 - explicit feedback (e.g., purchase or not purchase, rating)
 - implicit feedback (e.g., click or not click, time spent)
- User-item rating matrix
 - highly incomplete (why?)
 - very large (why?)

Collaborative Filtering: Examples of Benchmark

- MovieLens-1M: 4000×6000
- MovieLens-20M: 27,000×138,000
- Netflix 2009: 18,000×480,000
- Doban: 58,000×129,000

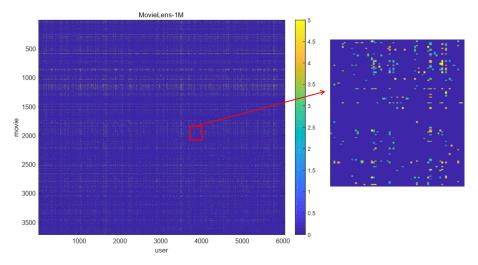
Movies like Castle in the Sky

Tongxin Li (SDS, CUHK-SZ)

Lecture 04 Advanced Applications

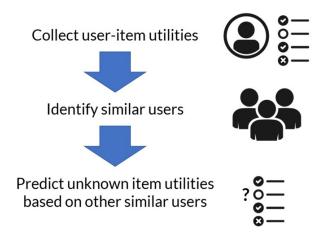
Collaborative Filtering: Examples of Benchmark

MovieLens-1M: 4000×6000, missing rate>0.95



Tongxin Li (SDS, CUHK-SZ)

Collaborative Filtering: Classic Method



Rating matrix is a special case of user-item utility

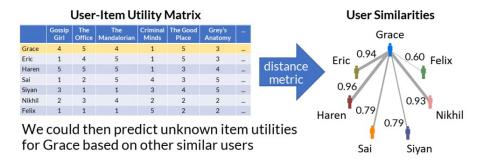
User-Item Utilities

			the office	MANDALORIAN	CRIMINAL	The Good Place	TET Autor	
		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	
t	Grace	4	5	4	1	5	3	
ŧ	Eric	1	4	5	1	5	3	
ŧ	Haren	5	5	5	1	3	4	
1	Sai	1	2	5	4	3	5	
ŧ	Siyan	3	1	1	3	4	5	
ŧ.	Nikhil	2	3	4	2	2	2	
ŧ.	Felix	1	1	1	5	2	2	

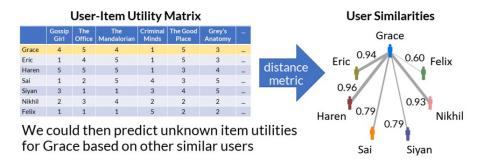
Identify Similar Users

Similar	Isers		the office	MANDALDRIAN	CRIMINAL		RYTagin	_
		Gossip Girl	The Office	The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	
	Grace	4	5	4	1	5	3	
ŧ`	Eric	1	4	5	1	5	3	
+	Haren	5	5	5	1	3	4	
	Sai	1	2	5	4	3	5	
1	Siyan	3	1	1	3	4	5	
1	Nikhil	2	3	4	2	2	2	
1	Felix	1	1	1	5	2	2	

Identify Similar Users



Identify Similar Users



Open issues

- Choice of distance metric
- Dealing with sparse data
- How to combine known user utilities to do the prediction

Distance/Similarity Measurement

Euclidean distance:

similarity(*user_i*, *user_j*) =
$$\frac{1}{1 + ||\mathbf{x}_i - \mathbf{x}_j||_2}$$

• Cosine similarity:

similarity(*user_i*, *user_j*) =
$$\frac{\mathbf{x}_i \cdot \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$$

Pearson correlation coefficient

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

• Spearman's rank correlation coefficient

$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

• $d_i = R(X_i) - R(Y_i)$: difference between the two ranks of each observation

Distance/Similarity Measurement

bety	only meas ween user overlappi	's using th		The Mandalorian	Criminal Minds	The Good Place	Grey's Anatomy	
	Grace		5		1	5	7 macomy	 +
- i	Eric		4	5		5	3	 1)?
÷	Haren	5		5		3	4	
Ť.	Sai		2					
- +	Siyan	3	1		3		5	
- +	Nikhil				2	2		
1	Felix	1		1		2		

Nearest-Neighbor Collaborative Filtering



Idea: predict utility of item *i* based on the most-similar users who recorded a utility for that item

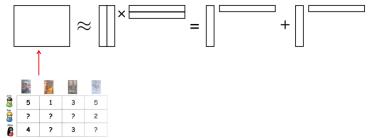
Idea: predict utility of item *i* based on the most-similar users who recorded a utility for that item

- Let \mathcal{N} be the neighborhood set: the most similar users to user u who have rated item i
- Let w_{uv} be a weight $\in [0, 1]$ based on the similarity of users u and v
- Predict user *u*'s utility for item *i* as

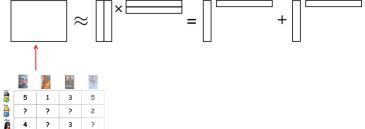
$$\hat{x}_{ui} = \bar{x}_u + \sum_{v \in \mathcal{N}} \left((x_{vi} - \bar{x}_v) \times \frac{w_{uv}}{\sum_{v' \in \mathcal{N}} w_{uv'}} \right)$$

- \bar{x}_u : average rating of user u
- \bar{x}_{v} : average rating of user v

Low-rank matrix factorization



Low-rank matrix factorization



• Low-rank matrix completion

-0.26	-1.84	?	2.16	1.03	0.56	?	1.91		-0.26	-1.84	1.54	2.16	1.03	0.56	0.41	
-0.86	?	1.83	0.65	?	0.01	1.17	?		-0.86	-1.74	1.83	0.65	0.52	0.01	1.17	
							0.56		1.23	0.09	-0.82	2.63	0.84	0.99	-1.56	
?	2.27	-1.48	?	-1.76	-1.26	?	-2.71	V	-0.35	2.27	-1.48	-4.19	-1.76	-1.26	0.35	
-0.39	?	1.12	0.89	0.50	?	0.54	?		-0.39	-1.19	1.12	0.89	0.50	0.18	0.54	

Notations

- $R = [r_{ui}] \in \mathbb{R}^{m \times n}$: incomplete user-item rating matrix
- Ω : the set of indices of observed entries (e.g. known ratings)

-
$$P = [p_1, \ldots, p_u, \ldots, p_m] \in \mathbb{R}^{f \times m}, \quad Q = [q_1, \ldots, q_i, \ldots, q_n] \in \mathbb{R}^{f \times n}$$

Notations

- $R = [r_{ui}] \in \mathbb{R}^{m \times n}$: incomplete user-item rating matrix
- Ω : the set of indices of observed entries (e.g. known ratings)
- $P = [p_1, \ldots, p_u, \ldots, p_m] \in \mathbb{R}^{f \times m}, \quad Q = [q_1, \ldots, q_i, \ldots, q_n] \in \mathbb{R}^{f \times n}$

• SVD-based recommendation ($R \approx P^{\top}Q$)

$$\underset{P,Q}{\text{minimize}} \sum_{(u,i)\in\Omega} \left\{ \left(r_{ui} - \boldsymbol{p}_{u}^{\top} \boldsymbol{q}_{i} \right)^{2} + \lambda \left(\|\boldsymbol{p}_{u}\|^{2} + \|\boldsymbol{q}_{i}\|^{2} \right) \right\}$$
(1)

Notations

- $R = [r_{ui}] \in \mathbb{R}^{m \times n}$: incomplete user-item rating matrix
- Ω : the set of indices of observed entries (e.g. known ratings)
- $P = [p_1, \ldots, p_u, \ldots, p_m] \in \mathbb{R}^{f \times m}, \quad Q = [q_1, \ldots, q_i, \ldots, q_n] \in \mathbb{R}^{f \times n}$

• SVD-based recommendation ($R \approx P^{\top}Q$)

$$\underset{P,Q}{\text{minimize}} \sum_{(u,i)\in\Omega} \left\{ \left(r_{ui} - \boldsymbol{p}_{u}^{\top} \boldsymbol{q}_{i} \right)^{2} + \lambda \left(\|\boldsymbol{p}_{u}\|^{2} + \|\boldsymbol{q}_{i}\|^{2} \right) \right\}$$
(1)

Optimization

- Gradient descent (GD) or SGD
- Alternating least squares

• SVD with bias ($b_{ui} = \mu + b_u + b_i$)

$$\underset{P,Q,B}{\text{minimize}} \sum_{(u,i)\in\Omega} \left\{ \left(r_{ui} - \mu - b_u - b_i - p_u^\top q_i \right)^2 + \lambda \left(\|p_u\|^2 + \|q_i\|^2 + b_u^2 + b_i^2 \right) \right\}$$

$$(2)$$

B = {μ, {b_u}, {b_i}}
What are the meanings of μ, b_u, and b_i?

Koren, Y., Bell, R., Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.

Tongxin Li (SDS, CUHK-SZ)

Lecture 04 Advanced Applications

Advantages

- No domain knowledge needed
 - Item details are irrelevant, only user behavior matters
- Heterogeneous preferences
 - Capture that users may have diverse preferences

Advantages

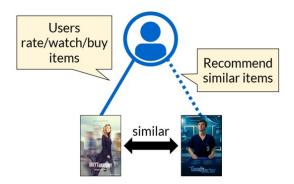
- No domain knowledge needed
 - Item details are irrelevant, only user behavior matters
- Heterogeneous preferences
 - Capture that users may have diverse preferences

Disadvantages

- Cannot handle new items and new users (cold start problem)
 - New items have no user feedback and new users have no rating records
 - So the system cannot make recommendations for them

Content-Based Methods

- Collaborative filtering doesn't consider user or item attributes/content
- Content-based methods do!



 Content analysis: characterize item as feature vector (e.g., TF-IDF features of text description, image features)

- Content analysis: characterize item as feature vector (e.g., TF-IDF features of text description, image features)
- Profile learning: characterize user as feature vector (e.g., age, sex, education)

Content-Based Methods

- Content analysis: characterize item as feature vector (e.g., TF-IDF features of text description, image features)
- Profile learning: characterize user as feature vector (e.g., age, sex, education)
- Filtering module: train classification/regression model for predicting users utility for an item

Content-Based Methods

- Consider the following notations
 - l: a loss function (e.g. squared loss)
 - $g: \mathbb{R}^{d_l} \to \mathbb{R}^{n_U}, \, h: \mathbb{R}^{d_U} \to \mathbb{R}^{n_l}$
 - $d_U(d_I)$: # of user (item) features
 - $n_U(n_I)$: # of users (items)
 - g_u: u-th output of g
- Recommendation for item

$$\underset{g}{\textit{minimize}} \sum_{(u,i)\in\Omega} \ell(r_{ui},g_u(z_i))$$

Recommendation for user

$$\underset{h}{\textit{minimize}} \sum_{(u,i)\in\Omega} \ell(r_{ui},h_i(z_u))$$

Question: How do they handle new users or items?

Image from Eric Eaton

Tongxin Li (SDS, CUHK-SZ)

Lecture 04 Advanced Applications

Spring 2024

23/44

Advantages

- User-independent: only relies on user's profile to make recommendations
- Explainable: recommendations are based on concrete interacting features
- Handles new items well: item features are from content
- Handles new users well: user features are from content

Advantages

- User-independent: only relies on user's profile to make recommendations
- Explainable: recommendations are based on concrete interacting features
- Handles new items well: item features are from content
- Handles new users well: user features are from content

Disadvantages

- Content-analysis is limited: relies on discrete features, often needs domain knowledge
- Narrow recommendations: often recommends similar items to a user, since those have highest scores

Hybrid Methods

Combining separate recommenders

- $\,\circ\,$ Can use any ensemble technique: linear weighting, stacking, etc.
- $_{\odot}\,$ Recall the Netflix prize winner was a blend of over 800+ recommenders

Leaderboard

Display top 20 💌 leaders.

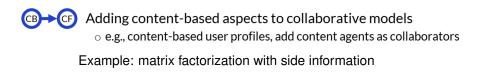
Rank	Team Name	Best Score	12 Improvement	Last Submit Time
1	The Ensemble	0.8553	10.10	2009-07-26 18:38:2
2	DEIIKUI'S FIAQIIIAIIC CIIAUS	0.0004	10.09	2009-07-26 18:18:2
Gran	<u>d Prize</u> - RMSE <= 0.8563			
3	Grand Prize Team	0.8571	9.91	2009-07-24 13:07:4
4	Opera Solutions and Vandelay United	0.8573	9.89	2009-07-25 20:05:5
5	Vandelay Industries !	0.8579	9.83	2009-07-26 02:49:5
6	PragmaticTheory	0.8582	9.80	2009-07-12 15:09:5
7	BellKor in BigChaos	0.8590	9.71	2009-07-26 12:57:2
8	Dace	0.8603	9.58	2009-07-24 17:18:4
9	Opera Solutions	0.8611	9.49	2009-07-26 18:02:0
10	BellKor	0.8612	9.48	2009-07-26 17:19:1
11	BigChaos	0.8613	9.47	2009-06-23 23:06:5
12	Feeds2	0.8613	9.47	2009-07-24 20:06:4
Proq	ress Prize 2008 - RMSE = 0.8616 -	Winning Team	: BellKor in BigCh	aos
13	xiangliang	0.8633	9.26	2009-07-21 02:04:4
14	Gravity	0.8634	9.25	2009-07-26 15:58:3

Image from Eric Eaton

25/44

Combining separate recommenders

- Can use any ensemble technique: linear weighting, stacking, etc.
- $_{\odot}\,$ Recall the Netflix prize winner was a blend of over 800+ recommenders



Most systems that we use nowadays are hybrid recommenders.

Evaluation Metric for Recommendation System

Predictive metrics

• RMSE (root mean square error)

$$\text{RMSE} = \sqrt{\frac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in \hat{R}} (r_{ui} - \hat{r}_{ui})^2}$$

- \hat{R} : the set of ratings we predicted
- MAE (mean absolute error)

$$\mathsf{MAE} = \frac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in \hat{R}} |r_{ui} - \hat{r}_{ui}|$$

Question: Given the rating matrix, how to define/construct training data and test data?

Recommender Systems Handbook

https://link.springer.com/book/10.1007/978-0-387-85820-3

Tongxin Li (SDS, CUHK-SZ)

Lecture 04 Advanced Applications

Ranking-based metrics

 Precision@k (fraction of top k recommended items that are relevant to the user)

$$\operatorname{Prec}(R)_k = \frac{|\{r \in R : r \leq k\}|}{k}$$

- *R*: the set of relevant items; *r*: a recommended item
- k: # of recommended items; Precision = TP/(TP + FP)

Ranking-based metrics

 Precision@k (fraction of top k recommended items that are relevant to the user)

$$\operatorname{Prec}(R)_k = \frac{|\{r \in R : r \leq k\}|}{k}$$

- *R*: the set of relevant items; *r*: a recommended item
- k: # of recommended items; Precision = TP/(TP + FP)
- Recall@k (fraction of top k recommended items that are in a set of items relevant to the user; also known as HitRatio@k)

$$\operatorname{Recall}(R)_{k} = \frac{|\{r \in R : r \leq k\}|}{|R|}.$$
(3)

- Recall = TP/(TP + FN)

Ranking-based metrics

• Average Precision

AP@N =
$$\frac{1}{m} \sum_{k=1}^{N} (P(k) \text{ if } k^{th} \text{ item was relevant }) = \frac{1}{m} \sum_{k=1}^{N} P(k) \cdot \text{rel}(k)$$

- P(k): precision at k
- N: number of recommended items
- m: total number of relevant items in the full space of items
- rel(k): an indicator function

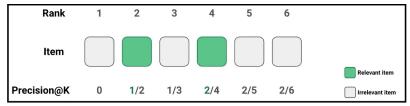
Ranking-based metrics

• Average Precision

AP@N =
$$\frac{1}{m} \sum_{k=1}^{N} (P(k) \text{ if } k^{th} \text{ item was relevant }) = \frac{1}{m} \sum_{k=1}^{N} P(k) \cdot \text{rel}(k)$$

- P(k): precision at k
- N: number of recommended items
- m: total number of relevant items in the full space of items
- rel(k): an indicator function

Example:



$$AP@6 = \frac{1}{2} \times (0 \cdot 0 + 0.5 \cdot 1 + 0.33 \cdot 0 + 0.5 \cdot 1 + 0.4 \cdot 0 + 0.33 \cdot 0) = 0.5$$

 Image from https://towardsdatascience.com/mean-average-precision-at-k-map-k-clearly-explained-538d8e032d2

 Tongxin Li (SDS, CUHK-SZ)
 Lecture 04 Advanced Applications
 Spring 2024
 29/44

Ranking-based metrics

• Mean Average Precision (MAP, mean of APs over Q users):

$$MAP = \frac{\sum_{q=1}^{Q} AP(q)}{Q}$$

Ranking-based metrics

• Mean Average Precision (MAP, mean of APs over Q users):

$$MAP = \frac{\sum_{q=1}^{Q} AP(q)}{Q}$$

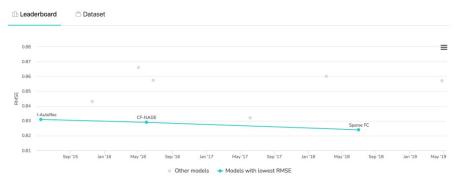
• Mean Reciprocal Rank (MRR, used when there is only one relevant item or only the first recommended item is the essential one; over *Q* users)

$$\mathsf{MRR} = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{\mathsf{rank}_i}$$

Normalized Discounted Cummulative Gain (NDCG, optional in this course)

Benchi	marks					Add a Result
TREND	DATASET	BEST METHOD	PAPER TITLE	PAPER	CODE	COMPARE
	MovieLens 1M	Payesian timeSVD++ flipped	On the Difficulty of Evaluating Baselines: A Study on Recommender Systems	6	0	See all
	MovieLens 100K	P Bayesian timeSVD++ flipped + Feat w/ Ordered Probit Regression	On the Difficulty of Evaluating Baselines: A Study on Recommender Systems		C	See all
	MovieLens 10M	🏆 Bayesian timeSVD++ flipped	On the Difficulty of Evaluating Baselines: A Study on Recommender Systems		0	See all
	MovieLens 20M	♀ H+Vamp Gated	Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms		0	See all
<u> </u>	Netflix	♀ H+Vamp Gated	Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms		0	See all
:	Douban Monti	TIGMC	Inductive Matrix Completion Based on Graph Neural Networks	6	0	See all
	Flixster Monti	TIGMC	Inductive Matrix Completion Based on Graph Neural Networks		0	See all
1	Million Song Dataset	T EASE	Embarrassingly Shallow Autoencoders for Sparse Data		0	See all

Recommendation Systems on MovieLens 1M



View	RMSE ~							🕑 Edit
RANK	MODEL	RMSE + NDCG@10	HR@10	NDCG	PAPER	CODE	RESULT	YEAR
1	Sparse FC	0.824			Kernelized Synaptic Weight Matrices	0	Ð	2018
2	CF-NADE	0.829			A Neural Autoregressive Approach to Collaborative Filtering	0	Ð	2016
3	I-AutoRec	0.831			AutoRec: Autoencoders Meet Collaborative Filtering	0	Ð	2015
4	GC-MC	0.832			Graph Convolutional Matrix Completion	0	Ð	2017
5	I-CFN	0.8321			Hybrid Recommender System based on Autoencoders	0	Ð	2016
6	NNMF	0.843			Neural Network Matrix Factorization	0	Ð	2015
7	IGMC	0.857			Inductive Matrix Completion Based on Graph Neural Networks	0	-9	2019
8	U-CFN	0.8574			Hybrid Recommender System based on Autoencoders	0	Ð	2016
9	Factorized EAE	0.860			Deep Models of Interactions Across Sets	0	-9	2018
10	Factorization with	220 0			Distingue Logening for Massivo Mateix Easterination	0	-51	2016

2 Learning to Rank

- Introduction
- Point-wise/Pair-wise/List-wise Modeling
- Evaluation for L2R
- Examples

- Information Retrieval (IR)
 - Query: formal statement of information needs (e.g., search strings in web search engines)
 - In IR, a query does not uniquely identify a single object in the collection. Instead, several objects may match the query, perhaps with different degrees of relevance (ranking).

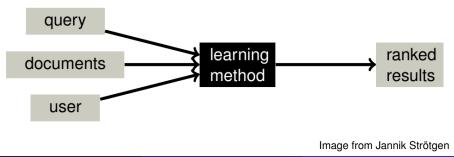
- Information Retrieval (IR)
 - Query: formal statement of information needs (e.g., search strings in web search engines)
 - In IR, a query does not uniquely identify a single object in the collection. Instead, several objects may match the query, perhaps with different degrees of relevance (ranking).
- Application of ranking: Search Engine (Google, Baidu, Bing, etc)
 - Big data
 - Many available features: anchor texts, PageRank score, click through data
 - Using machine learning to rank queries is effective and popular
- Other applications: collaborative filtering, key term extraction, sentiment analysis, etc

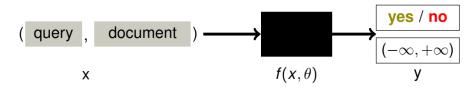
Learning to Rank

- Learning to rank (L2R) is a supervised learning problem
- Training data of L2R
 - A set of queries $Q = \{q_1, \ldots, q_m\}$
 - A set of documents D
 - Documents relevant to the *i*-th query $D_i = \{d_{i,1}, \ldots, d_{i,n_i}\} \subseteq D$
 - A vector of relevance scores $y_i = (y_{i,1}, \dots, y_{i,n_i})$ for each document relevant to query *i*

Learning to Rank

- Learning to rank (L2R) is a supervised learning problem
- Training data of L2R
 - A set of queries $Q = \{q_1, \ldots, q_m\}$
 - A set of documents D
 - Documents relevant to the *i*-th query $D_i = \{d_{i,1}, \ldots, d_{i,n_i}\} \subseteq D$
 - A vector of relevance scores $y_i = (y_{i,1}, \dots, y_{i,n_i})$ for each document relevant to query *i*
- Goal of L2R: given a new query q, output a sorted list of (a permutation) of relevant documents





- Predict for every document separately
- *x* is the feature vector extracted from one query and one document
- *y* is the response (document goodness, e.g. label or measure of engagement)
- Learn a model f with parameters θ

Disadvantage: as the input is a single document, the relative order between documents cannot be naturally considered in the learning process.

$$(\begin{array}{c} query \\ document \\ 1 \\ x \\ \end{array}) \longrightarrow \begin{array}{c} \hline \{-1, +1\} \\ f(x, \theta) \\ y \\ \end{array}$$

- Predict for every pair of documents jointly
- *x* is the feature vector extracted from one query and two documents
- y is the user's relative preference regarding the documents (+1 shows preference for document 1; -1 for document 2)

Disadvantage: no distinction between excellent-bad and fair-bad

$$(query, doc. 1, \dots, doc. k) \longrightarrow (-\infty, +\infty)$$
$$x \qquad f(x, \theta) \qquad y$$

- Predict for each ranked list of documents

Advantage: positional information visible to loss function Disadvantage: high training complexity

Benchmark dataset

- LETOR 2.0, 3.0, 4.0 (2007-2009) by Microsoft Research Asia
 - based on publicly available document collections
 - come with precomputed low-level features and relevance assessments
- Yahoo! Learning to Rank Challenge (2010) by Yahoo! Labs
 - comes with precomputed low-level features and relevance assessments
- Microsoft Learning to Rank Datasets by Microsoft Research U.S.
 - comes with precomputed low-level features and relevance assessments

Evaluation metric: MAP, NDCG, etc

Learning to Rank Algorithms

Figure from [Liu11]

Listwise Approach				AdaRank[33] ListNet[4] RankGP[35] SVM-MAP[36]	Decision Theoretic F SoftRank [27] CDN Ranker [16] PermuRank [34] AppRank [20] SVM-NDCG [6] ListMLE[32]	ramework for Ranking [39] BoltzRank [31] SmoothRank [7]
Pairwise Approach	RankingSVM[15] RankBoost[12] Ordering with preference function[8]	RankNet[2]	P-Norm Push [24] LambdaRank [1] IRSVM[3]	Robust Pairwise Ranki Magnitude-preserving FRank[28] Multiple hyperplane ranker[19] GBRank [37]	ng with Sigmoid Functi Ranking [9] QBRank[38] SortNet [23]	OWA for Ranking [29] Robust sparse ranker [26]
wise Approach	Polynomial regression Function[13] Threshold-basec for ordinal regre Ranking with large margin principles[25] PRanking[11] Logistic Regression based Ranking [14] SVM-based Ranking [18]		a reconstruction	MCRank[17]	Association Rule Ra	nking [30]
P.	< 2005	2005	2006	2007	2008	2009

Chart from http://ltr-tutorial-sigir19.isti.cnr.it/

Lecture 04 Advanced Applications

Ranking SVM

• Goal: learn *h* from $\{(\mathbf{x}_{i_1}, \mathbf{x}_{i_2}, y_{i_1}, y_{i_2}) : (i_1, i_2) \in \mathcal{P}\}$ such that

 $h(\mathbf{x}_i) > h(\mathbf{x}_j) \Longleftrightarrow y_i > y_j$

Ranking SVM

• Goal: learn *h* from $\{(\mathbf{x}_{i_1}, \mathbf{x}_{i_2}, y_{i_1}, y_{i_2}) : (i_1, i_2) \in \mathcal{P}\}$ such that

$$h(\mathbf{x}_i) > h(\mathbf{x}_j) \Longleftrightarrow y_i > y_j$$

• Optimization problem:

$$\begin{array}{l} \underset{\mathbf{w},\xi_{ij}\geq 0}{\text{minimize}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \frac{\mathcal{C}}{m}\sum_{(i,j)\in\mathcal{P}}\xi_{ij}\\ \text{subject to} \quad \left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i}\right)\geq \left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{j}\right) + 1 - \xi_{ij}, \; \forall (i,j)\in\mathcal{P} \end{array}$$

More about ranking SVM:

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html#References
https://arxiv.org/pdf/0704.3359.pdf

Tongxin Li (SDS, CUHK-SZ)

Lecture 04 Advanced Applications

NDCG@10 on public LtR Datasets

Algorithm	MSN10K	Y!S1	Y!S2	Istella-S
RankingSVM	0.4012	0.7238	0.7306	N/A
GBRT	0.4602	0.7555	0.7620	0.7313
LambdaMART	0.4618	0.7529	0.7531	0.7537

Table from http://ltr-tutorial-sigir19.isti.cnr.it/

- Know the types of recommendation system methods
- Know the two basic methods of collaborative filtering
- Understand the advantages and disadvantages of CF and CB
- Know the evaluation metrics for recommendation systems
- Be able to conduct CF and CB on some benchmark datasets
- Know the main ideas in learning to rank
- Be able to implement an algorithm of learning to rank