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Overview

0 Introduction
e Graph Partition
© Minimum Cut and Normalized Cut

e Spectral Clustering Algorithm
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Unsupervised Learning

@ Supervised learning
o Use labeled data pairs {(x;, y,-)},-’\i1 to learn a function y = f(x).

@ Unsupervised learning
o Learn something useful from unlabeled data {x;}",.
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Clustering

@ Clustering
| {X1,X2, X3, X4, X5, X6, X7, X5, X9, X10

{X1 , X3, Xg} {Xg, X4, X5, X10} {XG? X7, Xg}
e Unsupervised grouping of datapoints.
o Knowledge discovery.
o Useful when don’t know what you're looking for.
@ Basic idea of clustering
o Group together similar instances.
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Clustering Algorithms

@ Hierarchical clustering (intuitive, not included in this course)
@ K-means clustering (learned in basic ML courses)

@ Mixture of Gaussians (learned in basic ML courses)

@ Spectral clustering

@ Subspace clustering (not included in this course)

@ Deep learning based clustering (not included in this course)
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Applications of Clustering

@ Image segmentation
e Break up image into meaningful or perceptually similar regions.
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Applications of Clustering

@ Image clustering
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Applications of Clustering

@ Image clustering

Very difficult!
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Applications of Clustering

@ Gene and cell clustering

@ Document clustering

@ Recommendation system (How to do?)
@ Social network analysis

@ Community detection
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K-Means Clustering:

Example
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GMM: Example
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Main Limitation of K-means

K-means Spectral clustering
two circles, 2 clusters (K-means) . twocircles, 2 clusters
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Clustering Criterion

e Two different clustering criteria

o Compactness, e.g., k-means, Gaussian mixture models
o Connectivity, e.g., spectral clustering
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e Graph Partition
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Graph Partition

Similarity Graph: G(V,E,W) V — Vertices (Data points)
E — Edge if similarity > 0
W - Edge weights (similarities)
affinity matrix
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Data Similarities Similarity graph
V:{V1,V2,...,VN}, E:{e1,e2,...,e,}, W=1|.. Wi

W is usually nonnegative and symmetric, and w;; = 0.
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Graph Partition

Similarity Graph: G(V,E,W) V — Vertices (Data points)
E — Edge if similarity > 0
W - Edge weights (similarities)
affinity matrix
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Data Similarities Similarity graph

@ Similarity graph
e Model local neighborhood relations between data points
o Exist naturally or need to be constructed
@ Graph partition: Partition the graph so that edges within a group
have large weights and edges across groups have small weights.
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Similarity Graph Construction

Given x4, Xo, ..., Xy, construct a similarity graph.

Data clustering G ={V,E}
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Similarity Graph Construction

Given x4, Xo, ..., Xy, construct a similarity graph.

Data clustering G ={V,E}

@ k-nearest neighbor graph
@ e-neighborhood graph
@ Gaussian kernel similarity function

2
Xi—X;
k(Xi,Xj) = exp <_ || 20.2/H >
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© Minimum Cut and Normalized Cut
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Minimum cut: Partition graph into two sets A and B such that weight
of edges connecting vertices in A to vertices in B is minimum.
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Minimum cut: Partition graph into two sets A and B such that weight
of edges connecting vertices in A to vertices in B is minimum.

@ Easy to solve O(|V||E|) algorithm
@ Not satisfactory partition? Often isolates vertices

XY %
Ideal Cut
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Normalized Cut

Normalized cut: Partition graph into two sets A and B such that
weight of edges connecting vertices in A to vertices in B is minimum &
sizes of A and B are very similar.

Let vol(A) = > ;4 di, Where d; = Zj’\; w;. Define the objective
function as

Neut(A, B) = cut(A, B) <vo|1(A) " vol1(B)>
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Normalized Cut

Normalized cut: Partition graph into two sets A and B such that
weight of edges connecting vertices in A to vertices in B is minimum &
sizes of A and B are very similar.

Let vol(A) = > ;4 di, Where d; = Zj’\; w;. Define the objective
function as

Neut(A, B) = cut(A, B) <vo|1(A) " vol1(B)>

@ Ncut is NP-hard to solve
@ Spectral clustering is a relaxation
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Degree Matrix and Graph Laplacian

@ Given a graph with similarity matrix

Wi W2 -0 WiN

Woi Wop -+ Wopn
W=| | . .

WNni Wn2 - WhN

@ The degree matrix of the graph is defined as

dg 0 --- 0
0 db --- 0
0 0 - dy

where d; = >N, w;. d} is the degree of vertex j of the graph.
@ The graph Laplacian matrix is definedasL =D — W
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Normalized Cut and Graph Laplacian (optional)

RecallL =D — W and D = diag(ds, ..., dn)

1 . .
——— ifieA
Letu = [uy, Up,...,up]"  with u,-:{ vol(a) ticB
~vol)’ ! e
u'Lu= 1ZW"(U'—U')2— > w LI i
S22 T vol(A) T vol(B)
i icA,jeB

d d 1 1
TDu — 2 = _ U
u Du= Z,: dili % vol(A)2 © j; vol(B)Z ~ VvolI(A) * vol(B)
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Normalized Cut and Graph Laplacian (optional)

RecallL =D — W and D = diag(ds, ..., dn)
ifieA

_1
Letu:[u1,u2,...,uN]T with U,':{ VOI(A), ificB

;
~vol(B)’

uTLu—lzw--(u-—u-)z— > W"< LI )2
2 ; nene e Y\ vol(A) " vol(B)

i€AjeB

d d 1 1
TDu — 2 = _ U
u Du= Z,: dili % vol(A)2 © j; vol(B)Z ~ VvolI(A) * vol(B)

Then we have

u'Lu 1 1
= ) W < - ) = Ncut(A, B)
u'Du icATeB vol(A)  vol(B)
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Normalized Cut and Graph Laplacian

u'Lu

Ncut is equivalent to the minimization of uTDu’ i.e.,
L —1_ jficA
min Ncut(A, B) <= min uTiu, uckN u= VOI(1A) iy
AB u u'Du ~vola)’ ifieB

"Detailed derivation can be found in: Shi and Malik. Normalized Cuts and Image
Segmentation. 2000.
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Normalized Cut and Graph Laplacian

Ncut is equivalent to the minimization of Y-Fl i.e,,

T 9 _ 1 f 7/
AB u'Du vol(B)’ ifieB

L 1 ificA
min Ncut(A, B) <— muin u-u uc ]RN’ U = { vol(4)

u'Lu The
ooy Stu D1=0, uj € {1,-b}

* b is some positive constant.

Equivalentto':  miny

Relaxation: u—second eigenvector of generalized eigenvalue problem
Lu = \Du

Obtain cluster assignments by thresholding u at 0

"Detailed derivation can be found in: Shi and Malik. Normalized Cuts and Image
Segmentation. 2000.
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Normalized Cut and Graph Laplacian

-

:T;ﬂ st u'D1=0, y € {1,—b}

@ Relaxation: Let u be the eigenvector corresponding to the second
smallest eigenvalue of the generalized eigenvalue problem
Lu = \Du

@ Equivalent to eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian

L=D'L=1-D'wW

mina g NCut(A, B) <= miny
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Normalized Cut and Graph Laplacian

u'Lu
u'Du
@ Relaxation: Let u be the eigenvector corresponding to the second
smallest eigenvalue of the generalized eigenvalue problem
Lu = \Du
@ Equivalent to eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian

L=D'L=I-D"'W
@ Obtain binary partition as follows:
ieA ifu>0, ieB ifui<0

mina g NCut(A, B) <= miny st. u'™D1=0, u;c{1,-b}

Ideal solution Relaxed solution

o -

| T

@ It can be extended to multiple clusters — Spectral Clustering
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e Spectral Clustering Algorithm
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Spectral Clustering Algorithm

Input: data X = {x4, Xz, ..., Xy}, number K of clusters

@ Step 1. Construct a similarity matrix W

e.g. use wj = ex <—||x"x"|‘2>
. . Ij - p 20_2

k-nearest neighbor graph, or e-neighborhood graph

@ Step 2. Compute the Laplacian matrix L (or normalized L)
-L=D-W
- L=1—D"'W (normalized)

~

- L=1-D""/2WD~"/2 (symmetric normalized, recommended)
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Spectral Clustering Algorithm

@ Step 3. Perform eigenvalue decomposition on L (or normalized L)
and use the first K eigenvectors to form a matrix Z

L=VIV', Z=[vi,Vo,...,vk] € RN

@ Step 4. Normalize the columns of Z to unit L, norm , i.e.,

Z,'<—Z,'/HZ,'H, i:1,...,N
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Spectral Clustering Algorithm

@ Step 3. Perform eigenvalue decomposition on L (or normalized L)
and use the first K eigenvectors to form a matrix Z

L=VIV', Z=[vi,Vo,...,vk] € RN

@ Step 4. Normalize the columns of Z to unit L, norm , i.e.,

Z,'<—Z,'/HZ,'H, i:1,...,N

@ Step 5. Perform K-means on {z4,2,,...,zy}

Output: K of clusters of Z or X
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Property of Graph Laplacian Matrix

L=D-W or L=I1-D"2wD "2
@ Symmetric and positive semi-definite
@ The eigenvalues satisfy
0:>\1 S)\QS)\3§“'S)\N—1 < AN

@ If the number of zero eigenvalues is K, the graph has K
connected components, corresponding to K clusters.
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Examples of Spectral Clustering

4
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Images from Ng et al. 2001

Tongxin Li (SDS, CUHK-SZ) Lecture 05-1 Graph Cut and Spectral Clusterin Spring 2024 30/35



Examples of Spectral Clustering

@ Influence of K
k=3 k=2

threecircles-joined, 2 clusters threecircles-joined, 2 clusters
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Determine K in Spectral Clustering

@ Use the k that maximizes the eigengap (difference between
consecutive eigenvalues)

Aj = ‘)\j+1 -\l K*:argmaxAj
J
Eigenvalues
*
¥ ¥
*
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More Examples of Spectral Clustering
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Characteristics of Spectral Clustering?®

@ High clustering accuracy in real applications
o Often outperform k-means

@ High computational cost, not applicable to big data
e Space complexity: O(N?)
e Time complexity: O(N?)

2More about spectral clustering can be found in: A Tutorial on Spectral Clustering.
Ulrike von Luxburg. 2007.
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Characteristics of Spectral Clustering?®

@ High clustering accuracy in real applications
o Often outperform k-means

@ High computational cost, not applicable to big data
e Space complexity: O(N?)
e Time complexity: O(N?)

@ Not easy to determine the similarity matrix

o kNN, e-neighborhood, Gaussian kernel, etc
@ Which method and what hyperparameter?

2More about spectral clustering can be found in: A Tutorial on Spectral Clustering.
Ulrike von Luxburg. 2007.
Tongxin Li (SDS, CUHK-SZ) Lecture 05-1 Graph Cut and Spectral Clusterin Spring 2024 34/35



Learning Outcomes

@ Know the definitions of cut and Ncut
@ Know the main steps of spectral clustering
@ Know the property of graph Laplacian matrix

@ Know the advantage and disadvantage of spectral clustering
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