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Overview

0 Introduction
e Self-training algorithm

© Graph based SSL methods

Slides Courtesy: Jerry Zhu
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0 Introduction
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Three Types of Learning

@ Supervised learning (SL)
o Classification
o Regression
@ Unsupervised learning (USL)
o Clustering
e Dimensionality reduction
o Probability distribution estimation
e Generative models

@ Semi-supervised learning (SSL)
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Why Semi-Supervised Learning?

@ Labeled data are rare or expensive
e Human annotation is boring
o Labels may require experts
o Labels may require special devices or money
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Why Semi-Supervised Learning?

@ Labeled data are rare or expensive

e Human annotation is boring

o Labels may require experts

o Labels may require special devices or money
@ Unlabeled data are prevalent and cheap
@ Unlabeled data are helpful

e Using both labeled and unlabeled data to build better learners, than
using each one alone.
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Why Semi-Supervised Learning?

Classification on the two moons pattern [Zhou et al. 04]:
(a) two labeled points; (b) SVM with a RBF kernel; (c) k-NN with k = 1.

(a) Toy Data (Two Moons) (b) SVM (RBF Kernel)
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@ Input (or feature) x € X, output (or label) y € Y

@ Learnerf: X — Y

@ Labeled data (X, Y)) = {(x1,¥1),-.., (X, ¥1)}

@ Unlabeled data X, = {X/.1,...,Xn}, available during training
@ Lossfunction/: Y x Y — R

@ Usually, < N

@ Test data Xiest = {Xn.1,- - -}, Not available during training
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How Can Unlabeled Data Help?

w labeled data

————— decision boundary (labeled)
(O unlabeled data
— decision boundary (labeled and unlabeled)
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@ Assuming each class is a coherent group (e.g. Gaussian)
@ With and without unlabeled data: decision boundary shift
@ This is only one of many ways to use unlabeled data.
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SSL Algorithms

@ Self-training algorithm

@ Graph based algorithms

@ Graph convolutional network based SSL (next lecture)
@ Other algorithms
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9 Self-training algorithm
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Self-Training Algorithm

@ Assumption: One’s own high confidence predictions are correct.
@ Self-training algorithm

1. Train f from (X, Y})

2. Predicton x € X,

3. Add (x, f(x)) to labeled data
4. Repeat
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Self-Training Algorithm

@ Some variations
o Add a few most confident (x, f(x)) to labeled data
e Add all (x, f(x)) to labeled data
e Add all (x, f(x)) to labeled data, but with different weights
according to the confidence
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Self-Training Algorithm: Propagating 1-NN

1. Classify x with 1-NN
2. Add (x, f(x)) to labeled data, and repeat
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Self-Training Algorithm: Propagating 1-NN

1. Classify x with 1-NN
2. Add (x, f(x)) to labeled data, and repeat
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Self-Training Algorithm: Propagating 1-NN

It is sensitive to outlier!
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Advantage and Disadvantage of Self-Training

@ Advantage
e The simplest semi-supervised learning method.
o A wrapper method, applies to existing (complex) classifiers.
o Often used in real tasks like natural language processing.
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Advantage and Disadvantage of Self-Training

@ Advantage

e The simplest semi-supervised learning method.
o A wrapper method, applies to existing (complex) classifiers.
o Often used in real tasks like natural language processing.

@ Disadvantage
e Early mistakes could reinforce themselves
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e Graph based SSL methods
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Example 1

@ Classify astronomy v.s. travel articles
o Articles d; and @, are training data (labeled)
o Classify articles d; and d;, (test data)
e Use similarity measured by content word overlap

@ Case A: successful classification

dy ds dy4 do
asteroid N .
bright ° .
comet °

year

zodiac

airport
bike

camp .
yellowstone ° .
zion °

Tongxin Li (SDS, CUHK-SZ) Lecture 05-11 Semi-Supervised Learning Spring 2024



Example 1

@ Classify astronomy v.s. travel articles
o Articles d; and @, are training data (labeled)
o Classify articles d; and d;, (test data)
e Use similarity measured by content word overlap

@ Case B: failed classification (since there is no overlapping words!)

dy ds dg  do
asteroid o
bright °
comet
year
zodiac .

airport .
bike .

camp
yellowstone .
zion °
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Example 1

@ Case C: Take advantages of unlabeled data

e ds,ds, d7, dg, dy are unlabeled articles
o Labels “propagate” via similar unlabeled articles

d'l d5 dG Cl7 d3 d4 dS dg do
asteroid .
bright ° °
comet [ °
year . .
zodiac o .

airport .
bike . .
camp . .
yellowstone . .
zion °
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Example 2

Handwritten digits recognition with pixel-wise Euclidean distance

SA dAAALRA

not similar ‘indirectly’ similar
with stepping stones
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Graph-Based Semi-Supervised Learning

@ Assumption: A graph is given on the labeled and unlabeled data.
Instances connected by heavy edge tend to have the same label
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Graph-Based Semi-Supervised Learning

@ Assumption: A graph is given on the labeled and unlabeled data.
Instances connected by heavy edge tend to have the same label

Question: Any other graph-based methods we have learnt?
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@ Nodes X, U X,
@ Edges: similarity weights computed from features, e.g.,
- k-nearest-neighbor graph, unweighted (0, 1 weights)
- fully connected graph, weight decays with distance
wj = exp (—]|X; — Xj[|?/(20?))

@ Want: implied similarity via all paths
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Graph Regularization

@ Regularized classifier
@ Learn a classifier that minimize

- Loss term + regularization
- Example: regularized least squares, LASSO
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Graph Regularization

@ Regularized classifier
@ Learn a classifier that minimize

- Loss term + regularization
- Example: regularized least squares, LASSO

@ Can we use unlabeled data for regularization?

e If x; and x; are similar (i.e. weight w; is large), then their predicted
labels (or responses more generally) f(x;) and f(x;) are similar.
e Thus we can solve the following problem

m.an i, F(x;) +>\ZZWUHf(X, ) — f(x)|12

i=1 j=1
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Graph Regularization

@ Specific examples of graph regularization based SSL?
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Label Propagation Algorithm

Algorithm 11.1 Label propagation (Zhu and Ghahramani [2002])

Compute affinity matrix W from (11.1)
Compute the diagonal degree matrix D by Di; — z] Wij
Initialize Y@ — (yy,..., 4,0,0,...,0)

Iterate
YD prtwy
2. %"V v,

until convergence to Y (>

Label point z; by the sign of gf*’)

@ The algorithm forces the labels on the labeled data

@ The algorithm tries to maximizes the consistency of the unlabeled
examples with the topology of the graph
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Label Propagation: Example

Label propagation on two synthetic datasets
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Real Applications

Classification on Extended Yale Face B dataset

PL SRC Garrr
50% 97.02 95.42
30% 94.81 94.86
10% 85.08 94.25
5% 74.52 93.41
3% 51.02 91.03

SRC: a sparse representation based classification method
GaLrr: label propagation on a graph constructed by ALRR (Fan et al. 2018)
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Real Applications

Classification on MNIST dataset

7207
35 22 PL CNN Grie Garrr
£333 50% 98.26 97.74 98.63
Y¥4+ 4 30% 97.04 96.33 98.01
%f ‘z’ 2" 10% 95.33 94.52 97.27
- 5% 93.97 93.11 96.23
,; g '; : 3% 91.08 92.26 95.86
9994 1% 83.18 88.75 93.53

Gy label propagation on LLE (lecture 07) graph
GaLrr: label propagation on a graph constructed by ALRR (Fan et al. 2018)

More about label propagation:
Fujiwara, Y., & Irie, G. (2014). Efficient label propagation. In Proceedings of the 31st
international conference on machine learning (pp. 784-792).
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