DDA4210/MAIR6002 Advanced Machine Learning Lecture 05-II Semi-Supervised Learning

Tongxin Li

School of Data Science, CUHK-Shenzhen

Spring 2024

Overview

- Introduction
- Self-training algorithm
- Graph based SSL methods

Slides Courtesy: Jerry Zhu

- Introduction
- Self-training algorithm
- Graph based SSL methods

Three Types of Learning

- Supervised learning (SL)
 - Classification
 - Regression
- Unsupervised learning (USL)
 - Clustering
 - Dimensionality reduction
 - Probability distribution estimation
 - Generative models
- Semi-supervised learning (SSL)

Why Semi-Supervised Learning?

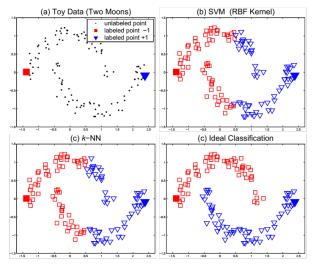
- Labeled data are rare or expensive
 - Human annotation is boring
 - Labels may require experts
 - Labels may require special devices or money

Why Semi-Supervised Learning?

- Labeled data are rare or expensive
 - Human annotation is boring
 - Labels may require experts
 - Labels may require special devices or money
- Unlabeled data are prevalent and cheap
- Unlabeled data are helpful
 - Using both labeled and unlabeled data to build better learners, than using each one alone.

Why Semi-Supervised Learning?

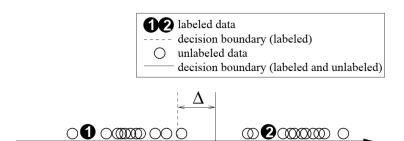
Classification on the two moons pattern [Zhou et al. 04]: (a) two labeled points; (b) SVM with a RBF kernel; (c) k-NN with k = 1.



Notations

- Input (or feature) $\mathbf{x} \in \mathcal{X}$, output (or label) $\mathbf{y} \in \mathcal{Y}$
- Learner $f: \mathcal{X} \to \mathcal{Y}$
- Labeled data $(X_l, Y_l) = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_l, \mathbf{y}_l)\}$
- Unlabeled data $X_u = \{\mathbf{x}_{l+1}, \dots, \mathbf{x}_N\}$, available during training
- Loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- Usually, I ≪ N
- Test data $X_{\text{test}} = \{\mathbf{x}_{N+1}, \ldots\}$, not available during training

How Can Unlabeled Data Help?



- Assuming each class is a coherent group (e.g. Gaussian)
- With and without unlabeled data: decision boundary shift
- This is only one of many ways to use unlabeled data.

 \boldsymbol{x}

SSL Algorithms

- Self-training algorithm
- Graph based algorithms
- Graph convolutional network based SSL (next lecture)
- Other algorithms

- Introduction
- Self-training algorithm
- Graph based SSL methods

Self-Training Algorithm

- Assumption: One's own high confidence predictions are correct.
- Self-training algorithm
 - 1. Train f from (X_I, Y_I)
 - 2. Predict on $\mathbf{x} \in X_u$
 - 3. Add $(\mathbf{x}, f(\mathbf{x}))$ to labeled data
 - 4. Repeat

Self-Training Algorithm

Some variations

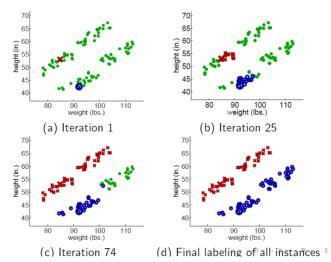
- Add a few most confident (x, f(x)) to labeled data
- Add all (x, f(x)) to labeled data
- Add all (x, f(x)) to labeled data, but with different weights according to the confidence

Self-Training Algorithm: Propagating 1-NN

- 1. Classify x with 1-NN
- 2. Add $(\mathbf{x}, f(\mathbf{x}))$ to labeled data, and repeat

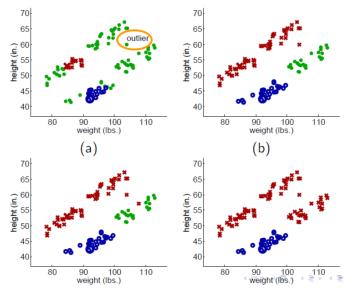
Self-Training Algorithm: Propagating 1-NN

- Classify x with 1-NN
- 2. Add $(\mathbf{x}, f(\mathbf{x}))$ to labeled data, and repeat



Self-Training Algorithm: Propagating 1-NN

It is sensitive to outlier!



Advantage and Disadvantage of Self-Training

Advantage

- The simplest semi-supervised learning method.
- A wrapper method, applies to existing (complex) classifiers.
- Often used in real tasks like natural language processing.

Advantage and Disadvantage of Self-Training

Advantage

- The simplest semi-supervised learning method.
- A wrapper method, applies to existing (complex) classifiers.
- Often used in real tasks like natural language processing.

Disadvantage

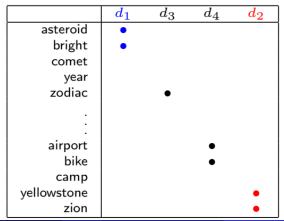
Early mistakes could reinforce themselves

- Introduction
- Self-training algorithm
- Graph based SSL methods

- Classify astronomy v.s. travel articles
 - Articles d_1 and d_2 are training data (labeled)
 - Classify articles d₃ and d₄ (test data)
 - Use similarity measured by content word overlap
- Case A: successful classification

	d_1	d_3	d_4	d_2
asteroid	•	•		
bright	•	•		
comet		•		
year				
zodiac				
airport				
bike				
camp			•	
yellowstone			•	•
zion				•

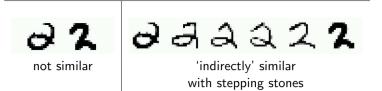
- Classify astronomy v.s. travel articles
 - Articles d₁ and d₂ are training data (labeled)
 - Classify articles d₃ and d₄ (test data)
 - Use similarity measured by content word overlap
- Case B: failed classification (since there is no overlapping words!)



- Case C: Take advantages of unlabeled data
 - d_5 , d_6 , d_7 , d_8 , d_9 are unlabeled articles
 - Labels "propagate" via similar unlabeled articles

	d_1	d_5	d_6	d_7	d_3	d_4	d_8	d_9	d_2
asteroid	•								
bright	•	•							
comet		•	•						
year			•	•					
zodiac				•	•				
:									
airport						•			
bike									
1						•	•	_	
camp							•	•	
yellowstone								•	•
zion									•

Handwritten digits recognition with pixel-wise Euclidean distance



Graph-Based Semi-Supervised Learning

Assumption: A graph is given on the labeled and unlabeled data.
 Instances connected by heavy edge tend to have the same label

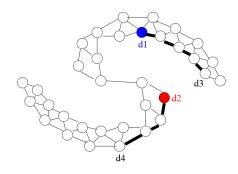
Graph-Based Semi-Supervised Learning

Assumption: A graph is given on the labeled and unlabeled data.
 Instances connected by heavy edge tend to have the same label

Question: Any other graph-based methods we have learnt?

Graph

- Nodes $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,
 - k-nearest-neighbor graph, unweighted (0, 1 weights)
 - fully connected graph, weight decays with distance $w_{ii} = \exp(-\|\mathbf{x}_i \mathbf{x}_i\|^2/(2\sigma^2))$
- Want: implied similarity via all paths



Graph Regularization

- Regularized classifier
- Learn a classifier that minimize
 - Loss term + regularization
 - Example: regularized least squares, LASSO

Graph Regularization

- Regularized classifier
- Learn a classifier that minimize
 - Loss term + regularization
 - Example: regularized least squares, LASSO
- Can we use unlabeled data for regularization?
 - If \mathbf{x}_i and \mathbf{x}_j are similar (i.e. weight w_{ij} is large), then their predicted labels (or responses more generally) $f(\mathbf{x}_i)$ and $f(\mathbf{x}_i)$ are similar.
 - Thus we can solve the following problem

$$\min_{f} \sum_{i=1}^{l} \ell(y_{i}, f(\mathbf{x}_{i})) + \lambda \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} ||f(\mathbf{x}_{i}) - f(\mathbf{x}_{j})||^{2}$$

Graph Regularization

Specific examples of graph regularization based SSL?

Label Propagation Algorithm

Algorithm 11.1 Label propagation (Zhu and Ghahramani [2002])

```
Compute affinity matrix W from (11.1)

Compute the diagonal degree matrix D by \mathbf{D}_{ii} \leftarrow \sum_{j} W_{ij}

Initialize \hat{Y}^{(0)} \leftarrow (y_1, \dots, y_l, 0, 0, \dots, 0)

Iterate

1. \hat{Y}^{(t+1)} \leftarrow \mathbf{D}^{-1} \mathbf{W} \hat{Y}^{(t)}

2. \hat{Y}_{l}^{(t+1)} \leftarrow Y_{l}

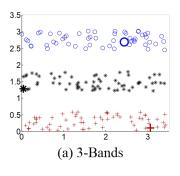
until convergence to \hat{Y}^{(\infty)}

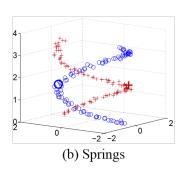
Label point x_i by the sign of \hat{y}_{i}^{(\infty)}
```

- The algorithm forces the labels on the labeled data
- The algorithm tries to maximizes the consistency of the unlabeled examples with the topology of the graph

Label Propagation: Example

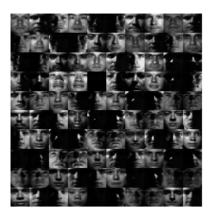
Label propagation on two synthetic datasets





Real Applications

Classification on Extended Yale Face B dataset



p_L	SRC	G _{ALRR}
50%	97.02	95.42
30%	94.81	94.86
10%	85.08	94.25
5%	74.52	93.41
3%	51.02	91.03

SRC: a sparse representation based classification method

G_{ALRR}: label propagation on a graph constructed by ALRR (Fan et al. 2018)

Real Applications

Classification on MNIST dataset

p_L	CNN	G_{LLE}	G_{ALRR}
50%	98.26	97.74	98.63
30%	97.04	96.33	98.01
10%	95.33	94.52	97.27
5%	93.97	93.11	96.23
3%	91.08	92.26	95.86
1%	83.18	88.75	93.53

G_{LLE}: label propagation on LLE (lecture 07) graph

 G_{ALRR} : label propagation on a graph constructed by ALRR (Fan et al. 2018)

More about label propagation:

Fujiwara, Y., & Irie, G. (2014). Efficient label propagation. In Proceedings of the 31st international conference on machine learning (pp. 784-792).