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Overview

0 Introduction
e Graph Partition
© Minimum Cut and Normalized Cut

e Spectral Clustering Algorithm
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Unsupervised Learning

@ Supervised learning
o Use labeled data pairs {(x;, y,-)},-’\i1 to learn a function y = f(x).

@ Unsupervised learning
o Learn something useful from unlabeled data {x;},.
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Clustering

@ Clustering
| {X1,X2, X3, X4, X5, X6, X7, X5, X9, X10

{X1 , X3, Xg} {Xg, X4, X5, X10} {XG? X7, Xg}
e Unsupervised grouping of datapoints.
o Knowledge discovery.
o Useful when don’t know what you're looking for.
@ Basic idea of clustering
o Group together similar instances.

@ o
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Clustering Algorithms

@ Hierarchical clustering (intuitive, not included in this course)
@ K-means clustering (learned in basic ML courses)

@ Mixture of Gaussians (learned in basic ML courses)

@ Spectral clustering

@ Subspace clustering (not included in this course)

@ Deep learning based clustering (not included in this course)
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Applications of Clustering

@ Image segmentation
e Break up image into meaningful or perceptually similar regions.
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Applications of Clustering

@ Image clustering

Difficult!

Tongxin Li (SDS, CUHK-SZ) Lecture 05-1 Graph Cut and Spectral Clusterin Spring 2024



Applications of Clustering

@ Image clustering

Very difficult!
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Applications of Clustering

@ Gene and cell clustering

@ Document clustering

@ Recommendation system (How to do?)
@ Social network analysis

@ Community detection

Community
detection

* Global structure
« Distribution of actors
& and activities
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K-Means Clustering:
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GMM: Example
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This is the Old Faithful Geyser dataset [PRML, Bishop]
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Main Limitation of K-means

K-means Spectral clustering
two circles, 2 clusters (K-means) . twocircles, 2 clusters
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Clustering Criterion

e Two different clustering criteria

o Compactness, e.g., k-means, Gaussian mixture models
o Connectivity, e.g., spectral clustering
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e Graph Partition
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Graph Partition

Similarity Graph: G(V,E@ D— Vertices (Data points) Vl=n
— E — Edge if similarity > 0
&= (N £) W - Edge weights (similarities)
<) affinity matrix

o o
L R
o0
() H H B
Similarities Similarity graph
Gn
V= {V1,V27...,VN}, E:{e1,e2,...,e,}, W=1|.. Wi

W is usually nonnegative and symmetric, and w;; = 0.
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Graph Partition

Similarity Graph: G(V,E,W) V — Vertices (Data points)
E — Edge if similarity > 0
W - Edge weights (similarities)
affinity matrix

® O o AN
o o. o —
. ° éa
o
®e
® .
Data Similarities Similarity graph

@ Similarity graph
e Model local neighborhood relations between data points
o Exist naturally or need to be constructed
@ Graph partition: Partition the graph so that edges within a group
have large weights and edges across groups have small weights.
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Similarity Graph Construction

Given x4, Xo, ..., Xy, construct a similarity graph.

Data clustering G={V,E}
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Similarity Graph Construction

Given x4, Xo, ..., Xy, construct a similarity graph.

Data clustering G={V,E}

@ k-nearest neighbor grap{T
@ e-neighborhood graph
@ Gaussian kernel similarity function
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©/Minimum Cut 3nd Normalized Cut
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Minimum cut: Partition graph into two sets A and B such that weight
of edges connecting vertices in A to vertices in B is minimum.

(k=2) AUB= YV
CUt(A, B) := > icajes Wi
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Minimum cut: Partition graph into two sets A and B such that weight
of edges connecting vertices in A to vertices in B is minimum.

Th cot ( A-B)
N B sk AOBZV ABz D

@ Easy to solve O(|V||E|) algorithm L
@ Not satisfactory partition? Often isolates vertices

-y ‘ . ‘\@\: Solukbion Ao fix 2
¢ I% PY [ ) Cuts with

/ lesser weight
than the
R ideal cut
Ideal Cut
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Normalized Cut

K=2
Normalized cut: Partition graph into two sets A and B such that
weight of edges connecting vertices in A to vertices in B is minimum &
sizes of A and B are very similar.

Let wol(A) = > ;4 di, Where d; = Zj’\;efine the objective

functionas —— .

1 1
w) : <voI(A) + voI(B)>
/
OO

di
[TV O Y

Tongxin Li (SDS, CUHK-SZ) Lecture 05-1 Graph Cut and Spectral Clusterin Spring 2024



Normalized Cut

Normalized cut: Partition graph into two sets A and B such that
weight of edges connecting vertices in A to vertices in B is minimum &
sizes of A and B are very similar.

Let vol(A) = > ;4 di, Where d; = Zj’\; w;. Define the objective
function as

Ncut(A, B) := cut(A,

@ Ncut is NP-hard to solve [ ———
@ Spectral clustering is a relaxation
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Degree Matrix and Graph Laplacian

@ Given a graph with similarity matrix

11
W W
w= || & ANV uew
N1 N
dw
@ The degree matrix of the graph is defined as N
- L= = wiy
d 0 - 0 0= =Y
0 d 0
D-|. ~

0 0 - dy
where d; = Zf\; wj. d;is the degree of vertex j of the graph
@ The graph Laplacian matrix is definedasL =D — W
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Normalized Cut and Graph Laplacian (optional)

RecallL=D - Wand D = diag(dy,....dy) A LE=V

—— ifi
'—etU:[UnUz,-- UN] WlthQ:{VOI(A) LEAN 1op

why 7 vol(B)’ iticB”
T f— m 1 1 \2
Lu = Z wi(u =2 W <voI(A) * voI(B))

\@’ —ieAjeB

d g 1 L
u'Du = Z aiuf = Z W - Z VOI(IB)Z vol(A) " vol(B)

—
v}y?
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Normalized Cut and Graph Laplacian (optional)

Recall L = D — W and D = diag(d, ..., dv) ALB=N G=(.g

1 I
I ificA
cun]" with u,-:{ volgy 1SRN rep

Letu = [ur, Up, ... 1 it
oy ? Vol <87
?M 1 1 2
Ty — — (Ui — uj)? = j
u'lu= Z wi(Uj — )" = Z Wi <voI(A) " vol(B))
i IEA7./EB

d g 1 L
u'Du = Z aiuf = Z W - Z VOI(IB)Z vol(A) " vol(B)

w™Pu- LLTWM
= Zc[l“: — ZZ wiy Uily
roo il = ”/ oMW
(di- Z2Ws) fE R £2 w‘m—azzw)

N

UTLUu = L(,T(D‘W>M
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Normalized Cut and Graph Laplacian (optional)

RecallL =D — W and D = diag(ds, ..., dn)
ifieA

_1
Letu:[u1,u2,...,uN]T with U,':{ VOI(A), ificB

;
~ vol(B)’

uTLu—lzw--(u-—u-)z— > W"< LI )2
2 ; nene e Y\ vol(A) " vol(B)

i€A,jeB

d d 1 1
TDu — 2 = _ U
u Du= Z,: dili % vol(A)2 © j; vol(B)Z ~ VvolI(A) * vol(B)

Gret ‘thee g lMﬁliZei Cut
Then we have /7 Objective. |
u'Lu 1 1
uDu > Wi <voI(A) + voI(B)) = Neut(4, B)

i€A,jeB
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Normalized Cut and Graph Laplacian

u'Lu

Ncut is equivalent to the minimization of uTDu’ i.e.,
L —1_ jficA
min Ncut(A, B) <= min uTiu, uckN u= VOI(1A) iy
AB u u'Du ~vola)’ ifieB

"Detailed derivation can be found in: Shi and Malik. Normalized Cuts and Image
Segmentation. 2000.
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Normalized Cut and Graph Laplacian

u'Lu

Ncut is equivalent to the minimization of uTDu’ ie.,
TLu ? / ifiecA
min Ncut(A, B) <= min ———, UuEc€ RN,y = v
AB u u'Du ~ %l ificB

Equivalentto':  miny

* b is sgme positive constant. fl, -Lb}
/ “Lonnechvi‘y, >o ff G is Connected .

Relaxation: u—=second eigenvector of generalized eigenvalue problem

S velax +he
‘\nieaer \:lnj( ammlm (Lu = )\Du

(onstrainks |
Obtain cluster assignments by thresholding u at 0

"Detailed derivation can be found in: Shi and Malik. Normalized Cuts and Image
Segmentation. 2000.
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Normalized Cut and Graph Laplacian

-

:T;ﬂ st u'D1=0, y  {1,—b}

@ Relaxation: Let u be the eigenvector corresponding to the second
smallest eigenvalue of the generalized eigenvalue problem
Lu = \Du

@ Equivalent to eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian

L=D'L=1-D'wW

mina g NCut(A, B) <= miny
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Normalized Cut and Graph Laplacian

u'Lu
u'Du
@ Relaxation: Let u be the eigenvector corresponding to the second
smallest eigenvalue of the generalized eigenvalue problem
Lu = \Du
@ Equivalent to eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian

mina g NCut(A, B) <=xuminy 3t. u'™D1=0,U,€{1,-b

L=D'L=1- +hres holk - based

@ Obtain binary partltlon as follows: / parriven
ifu>0, ieB ifui<0

Relaxed solution
%

@ It can be extended to multiple clusters — Spectral Clustering
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e Spectral Clustering Algorithm
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Spectral Clustering Algorithm

Input: data X = {x4, Xz, ..., Xy}, number K of clusters

@ Step 1. Construct a si matrix W

L _ xix]?
e.g. use wj = éxp 57

k-nearest neighbor graph, or e-neighborhood graph

@ Step 2. Compute the Laplacian matrix L (or normalized L)
-L=D_—
- L=1—-D"'W (normalized)
@ - D‘VZ\WE);y2 (symmetric normalized, recommended)
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Spectral Clustering Algorithm

@ Step 3. Perform eigenvalue decomposition on L (or normalized L)
and use the first K eigenvectors to form a matrix Z

A L | # of rodes
@VZVT, Z:[\11,v2,...,vK]TeRKXN Vi
B N I

| opeen. k<<WNV

. . H of .cluﬁe/s
@ Step 4. Normalize the columns of Z to unit L, norm, i.e.,

K
R 2 zi<z/lzl, i=1,... N

~ 1’7
&: Can we clucys de L = VEV :

Ao Yes! Lo et
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Spectral Clustering Algorithm

M€\ - S Ay —> Spectom:

@ Step 3. Perform eigenvalue decomposition on L (or normalized L)
and use the first K eigenvectors to form a matrix Z

i: = VZVT, @: [V1’V2/U .. ,VK]‘—:DG RKXN

]

I3
@ Step 4. Normalize the columgs of i to unLJLQ norm,i.e.,

(S Z|
\%a Z,'<—Z,'/HZ,'H, i:1,...,N

Sanera\ize 4o " K clusters”  case

@ Step 5. Perform K-means on {z4,2,,...,zy}

Output: K of clusters of Z or X
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Property of Graph Laplacian Matrix

Rens i+
LAD-w »Y e
— r i x
o "y PRy S
. iy . . M ¥ l"‘s\ Lo}
@ Symmetric and positive semi-definite Cx x e, ’X o
. . R Lam.ronej\-\—s
@ The eigenvalues satisfy
B bbbt
_ S
O=XM <A< A3<- <A1 S Ay {A8,
@ If the number of zero eigenvalues is K, the graph h
connected components, corresponding to K rs
, Linear Algebra. Bazics.
LC—, /ng«xN o = a:otg\

j-)c - Lbr‘f_c.(o-ﬂ
C< kk“_\, hes K
gy 7O {i{AiS

camp’nerd's/ A= =Ag =O- Aph

g $?M9 +he 5?“‘-2 ‘RN
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Examples of Spectral Clustering

4
. squiggles, 4 clusters nips, 8 clusters
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Images from Ng et al. 2001
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Examples of Spectral Clustering

@ Influence of K
k=3 k=2

threecircles-joined, 2 clusters threecircles-joined, 2 clusters
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Images from Ng et al. 2001
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Determine K in Spectral Clustering

@ Use the k that maximizes the eigengap (difference between
consecutive eigenvalues)

Aj = ‘)\j+1 -\l K*:argmaxAj
J
Eigenvalues
*
¥ ¥
*
0.8 g
0.6
04
0.2 =
x ¥

1 2 3 456 7 8 910
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More Examples of Spectral Clustering
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Characteristics of Spectral Clustering?®

@ High clustering accuracy in real applications
e Often outperform k-means

@ High computational cost, not applicable to big data
e Space complexity: O(N?)
e Time complexity: O(N?)

2More about spectral clustering can be found in: A Tutorial on Spectral Clustering.
Ulrike von Luxburg. 2007.
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Characteristics of Spectral Clustering?®

@ High clustering accuracy in real applications
e Often outperform k-means

@ High computational cost, not applicable to big data
e Space complexity: O(N?)
e Time complexity: O(N?)

@ Not easy to determine the similarity matrix

o kNN, e-neighborhood, Gaussian kernel, etc
@ Which method and what hyperparameter?

2More about spectral clustering can be found in: A Tutorial on Spectral Clustering.
Ulrike von Luxburg. 2007.
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Learning Outcomes

@ Know the definitions of cut and Ncut
@ Know the main steps of spectral clustering
@ Know the property of graph Laplacian matrix

@ Know the advantage and disadvantage of spectral clustering
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