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Unsupervised Learning

Supervised learning
Use labeled data pairs {(xi , yi)}N

i=1 to learn a function y = f (x).

Unsupervised learning
Learn something useful from unlabeled data {xi}N

i=1.
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Clustering

Clustering
{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}

{x1, x3, x8} {x2, x4, x5, x10} {x6, x7, x9}
Unsupervised grouping of datapoints.
Knowledge discovery.
Useful when don’t know what you’re looking for.

Basic idea of clustering
Group together similar instances.
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Clustering Algorithms

Hierarchical clustering (intuitive, not included in this course)
K-means clustering (learned in basic ML courses)
Mixture of Gaussians (learned in basic ML courses)
Spectral clustering
Subspace clustering (not included in this course)
Deep learning based clustering (not included in this course)
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Applications of Clustering

Image segmentation
Break up image into meaningful or perceptually similar regions.
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Applications of Clustering

Image clustering

Difficult!
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Applications of Clustering

Image clustering

Very difficult!
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Applications of Clustering
Gene and cell clustering
Document clustering
Recommendation system (How to do?)
Social network analysis
Community detection
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K-Means Clustering: Example

Tongxin Li (SDS, CUHK-SZ) Lecture 05-I Graph Cut and Spectral Clustering Spring 2024 11 / 35



GMM: Example

This is the Old Faithful Geyser dataset [PRML, Bishop]
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Main Limitation of K-means
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Clustering Criterion

Two different clustering criteria
Compactness, e.g., k-means, Gaussian mixture models
Connectivity, e.g., spectral clustering
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Graph Partition

V = {v1, v2, . . . , vN}, E = {e1, e2, . . . , el}, W =

2

664

...
· · · wij · · ·

...

3

775

W is usually nonnegative and symmetric, and wii = 0.
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Graph Partition

Similarity graph
Model local neighborhood relations between data points
Exist naturally or need to be constructed

Graph partition: Partition the graph so that edges within a group
have large weights and edges across groups have small weights.
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Similarity Graph Construction

Given x1, x2, . . . , xN , construct a similarity graph.

k -nearest neighbor graph
✏-neighborhood graph
Gaussian kernel similarity function

k(xi , xj) = exp

✓
�kxi�xjk2

2�2

◆

Tongxin Li (SDS, CUHK-SZ) Lecture 05-I Graph Cut and Spectral Clustering Spring 2024 18 / 35



Similarity Graph Construction

Given x1, x2, . . . , xN , construct a similarity graph.

k -nearest neighbor graph
✏-neighborhood graph
Gaussian kernel similarity function

k(xi , xj) = exp

✓
�kxi�xjk2

2�2

◆

Tongxin Li (SDS, CUHK-SZ) Lecture 05-I Graph Cut and Spectral Clustering Spring 2024 18 / 35

-

-
O - Wij



1 Introduction

2 Graph Partition

3 Minimum Cut and Normalized Cut

4 Spectral Clustering Algorithm

Tongxin Li (SDS, CUHK-SZ) Lecture 05-I Graph Cut and Spectral Clustering Spring 2024 19 / 35

>



Minimum Cut
Minimum cut: Partition graph into two sets A and B such that weight
of edges connecting vertices in A to vertices in B is minimum.

cut(A,B) :=
P

i2A,j2B
wij

Easy to solve O(|V ||E |) algorithm
Not satisfactory partition? Often isolates vertices
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Normalized Cut

Normalized cut: Partition graph into two sets A and B such that
weight of edges connecting vertices in A to vertices in B is minimum &
sizes of A and B are very similar.

Let vol(A) =
P

i2A
di , where di =

P
N

j=1 wij . Define the objective
function as

Ncut(A,B) := cut(A,B)

✓
1

vol(A)
+

1
vol(B)

◆

Ncut is NP-hard to solve
Spectral clustering is a relaxation
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Degree Matrix and Graph Laplacian

Given a graph with similarity matrix

W =

2

6664

w11 w12 · · · w1N

w21 w22 · · · w2N

...
... . . . ...

wN1 wN2 · · · wNN

3

7775

The degree matrix of the graph is defined as

D =

2

6664

d1 0 · · · 0
0 d2 · · · 0
...

... . . . ...
0 0 · · · dN

3

7775

where dj =
P

N

i=1 wij . dj is the degree of vertex j of the graph.
The graph Laplacian matrix is defined as L = D�W
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Normalized Cut and Graph Laplacian (optional)

Recall L = D�W and D = diag(d1, . . . , dN)

Let u = [u1, u2, . . . , uN ]
> with ui =

( 1
vol(A) , if i 2 A

� 1
vol(B)

, if i 2 B

u>Lu =
1
2

X

ij

wij(ui � uj)
2 =

X

i2A,j2B

wij

✓
1

vol(A)
+

1
vol(B)

◆2

u>Du =
X

i

diu
2
i =

X

i2A

di

vol(A)2 +
X

j2B

dj

vol(B)2 =
1

vol(A)
+

1
vol(B)

Then we have

u>Lu
u>Du

=
X

i2A,j2B

wij

✓
1

vol(A)
+

1
vol(B)

◆
= Ncut(A,B)
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Normalized Cut and Graph Laplacian

Ncut is equivalent to the minimization of u>Lu
u>Du , i.e.,

min
A,B

Ncut(A,B)() min
u

u>Lu
u>Du

, u 2 RN , ui =

( 1
vol(A) , if i 2 A

� 1
vol(B)

, if i 2 B

Equivalent to1: minu
u>Lu
u>Du

s.t. u>D1 = 0, ui 2 {1,�b}
* b is some positive constant.

Relaxation: u�second eigenvector of generalized eigenvalue problem

Lu = �Du

Obtain cluster assignments by thresholding u at 0

1Detailed derivation can be found in: Shi and Malik. Normalized Cuts and Image

Segmentation. 2000.
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Normalized Cut and Graph Laplacian

minA,B Ncut(A,B) () minu
u>Lu
u>Du

s.t. u>D1 = 0, ui 2 {1,�b}

Relaxation: Let u be the eigenvector corresponding to the second
smallest eigenvalue of the generalized eigenvalue problem
Lu = �Du
Equivalent to eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian

eL = D�1L = I� D�1W

Obtain binary partition as follows:
i 2 A if ui � 0, i 2 B if ui < 0

It can be extended to multiple clusters �! Spectral Clustering
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Spectral Clustering Algorithm

Input: data X = {x1, x2, . . . , xN}, number K of clusters

Step 1. Construct a similarity matrix W

e.g. use wij = exp

✓
�kxi�xjk2

2�2

◆

k -nearest neighbor graph, or ✏-neighborhood graph

Step 2. Compute the Laplacian matrix L (or normalized L)

- L = D�W

- eL = I� D�1W (normalized)

- bL = I� D�1/2WD�1/2 (symmetric normalized, recommended)
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Spectral Clustering Algorithm

Step 3. Perform eigenvalue decomposition on L (or normalized L)
and use the first K eigenvectors to form a matrix Z

bL = V⌃V>, Z = [v1, v2, . . . , vK ]
> 2 RK⇥N

Step 4. Normalize the columns of Z to unit L2 norm , i.e.,

zi  zi/ kzik , i = 1, . . . ,N

Step 5. Perform K-means on {z1, z2, . . . , zN}

Output: K of clusters of Z or X
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Property of Graph Laplacian Matrix

L = D�W or bL = I� D�1/2WD�1/2

Symmetric and positive semi-definite

The eigenvalues satisfy

0 = �1  �2  �3  · · ·  �N�1  �N

If the number of zero eigenvalues is K , the graph has K

connected components, corresponding to K clusters.
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Examples of Spectral Clustering
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Examples of Spectral Clustering
Influence of K
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Determine K in Spectral Clustering

Use the k that maximizes the eigengap (difference between
consecutive eigenvalues)

�j =
���j+1 � �j

�� , K
⇤ = argmax

j

�j
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More Examples of Spectral Clustering
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Characteristics of Spectral Clustering2

High clustering accuracy in real applications
Often outperform k-means

High computational cost, not applicable to big data
Space complexity: O(N2)
Time complexity: O(N3)

Not easy to determine the similarity matrix
kNN, ✏-neighborhood, Gaussian kernel, etc
Which method and what hyperparameter?

2More about spectral clustering can be found in: A Tutorial on Spectral Clustering.

Ulrike von Luxburg. 2007.
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Learning Outcomes

Know the definitions of cut and Ncut

Know the main steps of spectral clustering

Know the property of graph Laplacian matrix

Know the advantage and disadvantage of spectral clustering
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