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Three Types of Learning

Supervised learning (SL)
Classification
Regression

Unsupervised learning (USL)
Clustering
Dimensionality reduction
Probability distribution estimation
Generative models

Semi-supervised learning (SSL)
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Why Semi-Supervised Learning?

Labeled data are rare or expensive
Human annotation is boring
Labels may require experts
Labels may require special devices or money

Unlabeled data are prevalent and cheap
Unlabeled data are helpful

Using both labeled and unlabeled data to build better learners, than
using each one alone.
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Why Semi-Supervised Learning?
Classification on the two moons pattern [Zhou et al. 04]:
(a) two labeled points; (b) SVM with a RBF kernel; (c) k-NN with k = 1.

Tongxin Li (SDS, CUHK-SZ) Lecture 05-II Semi-Supervised Learning Spring 2024 6 / 28



Notations

Input (or feature) x 2 X , output (or label) y 2 Y
Learner f : X ! Y
Labeled data (Xl ,Yl) = {(x1, y1), . . . , (xl , yl)}
Unlabeled data Xu = {xl+1, . . . , xN}, available during training
Loss function ` : Y ⇥ Y ! R
Usually, l ⌧ N
Test data Xtest = {xN+1, . . .}, not available during training
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How Can Unlabeled Data Help?

Assuming each class is a coherent group (e.g. Gaussian)
With and without unlabeled data: decision boundary shift
This is only one of many ways to use unlabeled data.
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SSL Algorithms

Self-training algorithm
Graph based algorithms
Graph convolutional network based SSL (next lecture)
Other algorithms
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Self-Training Algorithm

Assumption: One’s own high confidence predictions are correct.
Self-training algorithm

1. Train f from (Xl ,Yl)
2. Predict on x 2 Xu
3. Add (x , f (x)) to labeled data
4. Repeat
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Self-Training Algorithm

Some variations
Add a few most confident (x , f (x)) to labeled data
Add all (x , f (x)) to labeled data
Add all (x , f (x)) to labeled data, but with different weights
according to the confidence
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Self-Training Algorithm: Propagating 1-NN

1. Classify x with 1-NN
2. Add (x , f (x)) to labeled data, and repeat
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Self-Training Algorithm: Propagating 1-NN

1. Classify x with 1-NN
2. Add (x , f (x)) to labeled data, and repeat
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Self-Training Algorithm: Propagating 1-NN
It is sensitive to outlier!
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Advantage and Disadvantage of Self-Training

Advantage
The simplest semi-supervised learning method.
A wrapper method, applies to existing (complex) classifiers.
Often used in real tasks like natural language processing.

Disadvantage
Early mistakes could reinforce themselves
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Example 1
Classify astronomy v.s. travel articles

Articles d1 and d2 are training data (labeled)
Classify articles d3 and d4 (test data)
Use similarity measured by content word overlap

Case A: successful classification
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Example 1
Classify astronomy v.s. travel articles

Articles d1 and d2 are training data (labeled)
Classify articles d3 and d4 (test data)
Use similarity measured by content word overlap

Case B: failed classification (since there is no overlapping words!)
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Example 1

Case C: Take advantages of unlabeled data
d5, d6, d7, d8, d9 are unlabeled articles
Labels “propagate” via similar unlabeled articles
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Example 2

Handwritten digits recognition with pixel-wise Euclidean distance
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Graph-Based Semi-Supervised Learning

Assumption: A graph is given on the labeled and unlabeled data.
Instances connected by heavy edge tend to have the same label

Question: Any other graph-based methods we have learnt?
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Graph-Based Semi-Supervised Learning

Assumption: A graph is given on the labeled and unlabeled data.
Instances connected by heavy edge tend to have the same label

Question: Any other graph-based methods we have learnt?
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Graph

Nodes Xl [ Xu

Edges: similarity weights computed from features, e.g.,
- k-nearest-neighbor graph, unweighted (0, 1 weights)
- fully connected graph, weight decays with distance

wij = exp
�
�kxi � xjk2/(2�2)

�

Want: implied similarity via all paths
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Graph Regularization

Regularized classifier
Learn a classifier that minimize

- Loss term + regularization
- Example: regularized least squares, LASSO

Can we use unlabeled data for regularization?
If xi and xj are similar (i.e. weight wij is large), then their predicted
labels (or responses more generally) f (xi) and f (xj) are similar.
Thus we can solve the following problem

min
f

lX

i=1

` (yi , f (xi)) + �
NX

i=1

NX

j=1

wijkf (xi)� f (xj)k2
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Graph Regularization

Specific examples of graph regularization based SSL?
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Label Propagation Algorithm

The algorithm forces the labels on the labeled data
The algorithm tries to maximizes the consistency of the unlabeled
examples with the topology of the graph
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Label Propagation: Example

Label propagation on two synthetic datasets
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Real Applications

Classification on Extended Yale Face B dataset

SRC: a sparse representation based classification method
GALRR : label propagation on a graph constructed by ALRR (Fan et al. 2018)
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Real Applications

Classification on MNIST dataset

GLLE : label propagation on LLE (lecture 07) graph
GALRR : label propagation on a graph constructed by ALRR (Fan et al. 2018)

More about label propagation:
Fujiwara, Y., & Irie, G. (2014). Efficient label propagation. In Proceedings of the 31st
international conference on machine learning (pp. 784-792).
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