DDA4210/MAIR6002 Advanced Machine Learning Lecture 05-II Semi-Supervised Learning

Tongxin Li

School of Data Science, CUHK-Shenzhen

Spring 2024

2 Self-training algorithm

Slides Courtesy: Jerry Zhu

1 Introduction

- 2 Self-training algorithm
- 3 Graph based SSL methods

- Supervised learning (SL)
 - Classification
 - Regression
- Unsupervised learning (USL)
 - Clustering
 - Dimensionality reduction
 - Probability distribution estimation
 - Generative models
- Semi-supervised learning (SSL)

Labeled data are rare or expensive

- Human annotation is boring & expensive (fine-tuning GPTs, etc)
- Labels may require experts
- · Labels may require special devices or money

• Labeled data are rare or expensive

- Human annotation is boring
- Labels may require experts
- Labels may require special devices or money
- Unlabeled data are prevalent and cheap
- Unlabeled data are helpful
 - Using both labeled and unlabeled data to build better learners, than using each one alone.

Why Semi-Supervised Learning?

Classification on the two moons pattern [Zhou et al. 04]: (a) two labeled points; (b) SVM with a RBF kernel; (c) k-NN with k = 1.

Tongxin Li (SDS, CUHK-SZ)

Notations

{(xe. Ye)} () {Xu} Input (or feature) $\mathbf{x} \in \mathcal{X}$, output (or label) $\mathbf{y} \in \mathcal{Y}$ • Learner $f : \mathcal{X} \to \mathcal{Y}$ \mathcal{S} • Labeled data $(X_l, Y_l) = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_l, \mathbf{y}_l)\}$ • Unlabeled data $X_u = {\mathbf{x}_{l+1}, \dots, \mathbf{x}_N}$, available during training • Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ • Usually, $I \ll N$ • Test data $X_{\text{test}} = \{\mathbf{x}_{N+1}, \ldots\}$, not available during training

- Assuming each class is a coherent group (e.g. Gaussian)
- With and without unlabeled data: decision boundary shift
- This is only one of many ways to use unlabeled data.

- Self-training algorithm
- Graph based algorithms
- Graph convolutional network based SSL (next lecture)
- Other algorithms

Introduction

2 Self-training algorithm

3 Graph based SSL methods

- Assumption: One's own high confidence predictions are correct.
- Self-training algorithm
 - 1. Train f from (X_l, Y_l)
 - 2. Predict on $\boldsymbol{x} \in X_u$
 - 3. Add $(\mathbf{x}, f(\mathbf{x}))$ to labeled data
 - 4. Repeat

Some variations Add a few most confident (x, f(x)) to labeled data

- Add all $(\mathbf{x}, f(\mathbf{x}))$ to labeled data
- Add all (x, f(x)) to labeled data, but with different weights according to the confidence

Self-Training Algorithm: Propagating 1-NN

- 1. Classify **x** with K-NN
- 2. Add $(\mathbf{x}, f(\mathbf{x}))$ to labeled data, and repeat

Self-Training Algorithm: Propagating 1-NN

- = 1- Neorest Neighbor !
- 1. Classify x with 1-NN 2
- 2. Add $(\mathbf{x}, f(\mathbf{x}))$ to labeled data, and repeat

Self-Training Algorithm: Propagating 1-NN

It is sensitive to outlier!

Tongxin Li (SDS, CUHK-SZ)

Lecture 05-II Semi-Supervised Learning

Advantage

- The simplest semi-supervised learning method.
- A wrapper method, applies to existing (complex) classifiers.
- Often used in real tasks like natural language processing.

Advantage

- The simplest semi-supervised learning method.
- A wrapper method, applies to existing (complex) classifiers.
- Often used in real tasks like natural language processing.

Disadvantage

Early mistakes could reinforce themselves

1 Introduction

- 2 Self-training algorithm
- ③ Graph based SSL methods

Example 1

- Classify astronomy v.s. travel articles
 - Articles d_1 and d_2 are training data (labeled)
 - Classify articles *d*₃ and *d*₄ (test data)
 - Use similarity measured by content word overlap
- Case A: successful classification

	d_1	d_3	d_4	d_2
asteroid	•	•		
bright	•	•		
comet		•		
year				
zodiac				
airport				
bike				
camp			•	
yellowstone			•	•
zion				•

Spring 2024

Example 1

- Classify astronomy v.s. travel articles
 - Articles d₁ and d₂ are training data (labeled)
 - Classify articles d_3 and d_4 (test data)
 - Use similarity measured by content word overlap
- Case B: failed classification (since there is no overlapping words!)
 (features)

Spring 2024

Example 1

- Case C: Take advantages of unlabeled data
 - d_5, d_6, d_7, d_8, d_9 are unlabeled articles
 - Labels "propagate" via similar unlabeled articles

Handwritten digits recognition with pixel-wise Euclidean distance

22	22222		
not similar	'indirectly' similar with stepping stones		

• **Assumption:** A graph is given on the labeled and unlabeled data. Instances connected by heavy edge tend to have the same label

• Assumption: A graph is given on the labeled and unlabeled data. Instances connected by heavy edge tend to have the same label

Question: Any other graph-based methods we have learnt?

Graph

• Nodes $X_I \cup X_u$

• Edges: similarity weights computed from features, e.g.,

- k-nearest-neighbor graph, unweighted (0, 1 weights)
- fully connected graph, weight decays with distance

$$w_{ij} = \exp\left(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2/(2\sigma^2)\right)$$

• Want: implied similarity via all paths

$$\mathcal{W} = (\mathcal{W}_{i})_{i,j=1,\dots,N}$$
$$\mathcal{W} = \mathcal{P} \left[X_{e} (+ |X_{u}| + |X_{u}| + |X_{u}| + |X_{u}| \right]$$

Graph Regularization

- Regularized classifier
- Learn a classifier that minimize
 - Loss term + regularization
 - Example: regularized least squares, LASSO

Graph Regularization

ferr let L = D - W be the loplacian. $\sum W_{ij} (f_i - f_j)^2 = a f^T f$

- Regularized classifier Learn a classifier that minimize $\int \frac{f(z)}{z_1} w_{ij} ||_{f(z)} f(z) = 2+r(F^T \angle F)$
 - Loss term + regularization
 - Example: regularized least squares, LASSO
- Can we use unlabeled data for regularization?
 - If x_i and x_i are similar (i.e. weight w_{ii} is large), then their predicted labels (or responses more generally) $f(\mathbf{x}_i)$ and $f(\mathbf{x}_i)$ are similar.
 - Thus we can solve the following problem

23/28

Graph Regularization

• Specific examples of graph regularization based SSL?

min
$$\sum_{i=1}^{n} \sum_{k=1}^{k} Y_{ik} \log f_{ik} + \lambda + r(Z^T L Z)$$

 $0 \quad i=1 \quad k=1$
 $\cdot ian \quad ke used \quad as \quad a \quad regularizer$
in deep learning

Label Propagation Algorithm

- The algorithm forces the labels on the labeled data
- The algorithm tries to maximizes the consistency of the unlabeled examples with the topology of the graph

Label propagation on two synthetic datasets

Real Applications

Classification on Extended Yale Face B dataset

• SRC: State - of - the - Att-
supervised classifier
•
$$Gr_{ALRR}$$
: semi-supervised
 p_L SRC G_{ALRR}
 50% 97.02 95.42
 30% 94.81 94.86
 10% 85.08 94.25
 5% 74.52 93.41
 3% 51.02 91.03

SRC: a sparse representation based classification method G_{ALRR}: label propagation on a graph constructed by ALRR (Fan et al. 2018) (Low - Renk Representation)

Tongxin Li (SDS, CUHK-SZ)

Real Applications

Classification on MNIST dataset 0000 n n G_{ILE} CNN GALRR p_L 98.26 50% 97.74 98.63 30% 97.04 96.33 98.01 10% 95.33 94.52 97.27 5% 93.97 93.11 96.23 3% 91.08 92.26 95.86 Ы 1% 83.18 88.75 93.53 2 G_{LLE} : label propagation of LLE (lecture 07) graph GALBR: label propagation on a graph constructed by ALRR (Fan et al. 2018) More about label propagation: Fujiwara, Y., & Irie, G. (2014). Efficient label propagation, In Proceedings of the 31st

international conference on machine learning (pp. 784-792).