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Overview

0 Introduction
e Graph Convolutional Network (GCN)
@ Architecture of GCN
@ Applications of GCN
© Other GNNs
@ GraphSAGE
o GAT

0 Conclusions
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0 Introduction

@ Architecture of GCN
@ Applications of GCN

@ GraphSAGE
o GAT
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Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

| M J‘- G E N E T Speech data ‘ Grid games

nnnnnnnn

Natural language
processing (NLP) Predicate / Verb Phrase

Noun Phrase

Noun Phrase

Anlltlz Naluvv Verb  Preposition Arlllclt Nnrn
The cat sat on the mat.
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Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

I M A G E N E T Speech data ! Grid games

8 Natural language Seatece

processing (NLP) Predicate / Verb Phrase
//>Wllloml Phrase

Noun Phrase

Noun Phrase

Arite N Virh Prepiiton Arkle Now
The cat sat on the mat.

@ Strength: strong feature representation ability

@ Limitation: not applicable to non-Euclidean data
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Graph-Structured Data

A lot of real-world data do not “live” on grids

ountry
USA
/ ot ersity °
( Vaganova Acaderny Yfk o
Social networks o Y a/g AH
Citation networks

* - ) ek prize | T
Communication networks a Knowledge graph: e o):r;h
Multi-agent systems e -~ ) “\E HjY "

@ad maps

Standard CNN and RNN architectures don’t work on these data
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Graph Data and Related Tasks

@ Graph data
e G=(V,E)
o Vertices/nodes V = {vy, vo,..., vy}, edges/links E = {ey,€2,..., €6}
o Affinity matrix A € R"™<"
e Feature matrix of nodes X € R"*9 (may not exist)

d

R v X3 | (77 .

© . = X, X2 Xn QIR

xi M © Ye xa X [( f []

2
?
3 A Q- Qi .
X Yo A’[ : cR
ve Xs - Qn Qnz. - Oaunl-
o Toasks ?
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Graph Data and Related Tasks

@ Graph data
o G=(V,E)
o Vertices/nodes V = {vy, vo,..., vy}, edges/links E = {ey,€2,..., €6}
o Affinity matrix A € R™"
e Feature matrix of nodes X € R"*9 (may not exist)
@ Tasks
o Node embedding/representation
@ Given a graph G, represent each node as a vector, i.e.,
(A, X) — Z c R™K
o Graph embedding/representation

@ Given a set of graphs G = {Gy, Gz, ..., Gy}, represent each graph as
a vector, i.e., (A, X;) — g; € R
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Graph Data and Related Tasks

@ Graph data
o G=(V,E)
o Vertices/nodes V = {vy, vo,..., vy}, edges/links E = {ey,€2,..., €6}
o Affinity matrix A € R™"
e Feature matrix of nodes X € R"*9 (may not exist)
@ Tasks
o Node embedding/representation
@ Given a graph G, represent each node as a vector, i.e.,
methsdS (AX)>Ze Rk
o Graph embedding/representation
@ Given a set of graphs G = {Gy, Gz, ..., Gy}, represent each graph as
a vector, i.e., (A, X;) — g; € R
o Node classification: v; — y;,i=1,...,n
o Graph classification: Gi — y;,i=1,...,N
e Link prediction, node or graph clustering, etc

u?stum

Azu-}\ Sk reo

o.p?liaﬁwl

Node and graph embeddings are crucial for node and graph classifications!

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


Traditional Embedding Methods

@ Node embedding/representation /\r""‘ ore famlicr
e Laplacian embedding [Belkin&Niyogi 2003] wirh  +his | |
@ Deepwalk [Perozzi et al. 2014 o . Speetre
o LINE [Tang[ etal. 2015] ! " Rewe HFST Ckmeny L
e node2vec [Grover&Leskovec 2016] , 4 __ | 72 =, ]
el‘smoalul.
dez-.—rsnh'ﬂ-

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 7/38


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


Traditional Embedding Methods

@ Node embedding/representation
e Laplacian embedding [Belkin&Niyogi 2003]
o Deepwalk [Perozzi et al. 2014]
o LINE [Tang et al. 2015]
@ node2vec [Grover&Leskovec 2016]
@ Graph embedding/representation
e Methods based on node embeddings
o Graph kernels [Gartner et al 2003; Kriege et al. 2020]

Note that there are more methods for node and graph embeddings
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Graph Neural Networks

Graph neural networks (GNNs) are NNs that operate on
graph-structured data.

Hidden layer Hidden layer

Output

Rel

—

ain ldea;/Pass massages between pairs of nodes a
Alternative Interpretation: Pass massages

node (and possibly edge).represe oS
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o 2=[7 b Kigf
@ Graph Convolutional Network (GCN) = Pesng *<< S
@ Architecture of GCN

Ex-alL.
o oy Gty medels:
@ Applications of GCN o Moy pod S
Chgbl‘l&"'s
. wavEs
vaflv arention er )
4 GraphSAGE gperink i GATN((?”esgaje pessing NN)
® GAT et AS e

PinSAGE meshees

Gy&rh 6“32 i 5"‘"‘1’“”3 _baSC‘z
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Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that
produces a third function (h = f x g).

@ 1-D convolution

[kl-1
y[t] = Z klt]x[t + 7]

Amplitude

0 10 20 30 40 50 60 70 S0 9 100 110
Sample number Sample number

Kct) M+

0 10 20 30
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Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that
produces a third function (h = f x g).

@ 2-D convolution
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Convolution in CNN

Convolution of image and filter

activation map

__— 32x32x3 image

/ 5x5x3 filter
=

> x % F e

convolve (slide) over all

spatial locations
32 28

v

w|
-—
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Convolution on graph

HS = X

S
Convolution of a graph G and a feature matrix H() € R

fecurs VE '

HHD = o (AHOW)

- o activation function, e.g., ReLU and Sigmoid

I o> (220
© W)k RI*di1: parameter matrix = W - W o W
- A=D""/2AD""/2, A=A +1,D =diag(>";An,..., > An) T
- HUHT) € R™dk1: output %f I-th GCN layer \earrod o
D . senr qroph
Rxd adjace»?/ < Y D{SMZ

(@D

Y 2e(Bixw'™), H- eCAHTW

- (=0 =1
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Convolution on graph

He Hm ’1(‘) )
X — || U > > | |=> H

)
(HD eV &wv 24%

Convolution of a graph G %nd a feature matrix H() € R
HHD = o (AHOW)

- o activation function, e.g., ReLU and Sigmoid

- W) € R¥*d1: parameter matrix

- A=D""2AD""/2, A=A +1,D=diag(>;Ax,..., > An)
- HU+1) e R™<d+1: output of /-th GCN layer

- HO) = X ¢ R4
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Example of GCN layer

&: V"}y aa{b‘.inj r 7
A=D""2AD" "2, A=A +1,D =diag(>;Aj1,..., > Ap)
Example- :

Q) @ 01 0 0 0] 1100 0

\ 10100 _ 11100

A=]|0o 1 01 0/,A=1|0 1 1 10

00100 00110

/@ 000 0 0Of 000 0 f
071 0. 0. 0 O r05 041 0. 0. O
0. 058 0. 0 0| _ |04 033 033 0. O
D'2=]0 0o 05 o0 o|,A=|0 033 033 041 0.
0. 0 0 071 O 0. 0 041 05 o0
oo o0 0 0 1 Lo. o o0 0 1.
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Example of GCN layer

05 041 O 0.
R 0.41 033 033 0.
A= |0 033 033 041

0. 0. 041 05

0. 0. 0. 0.

Except for the diagonals, A has the
same pattern of non-zero entries
with A

teoo0o

X @+ 0.41%s
Xo A 0.41x4 + 0733x5 )+ 0.33x3
X = X3 | = AX = [0.33x0 + @-33x3>+ 0.41x4

X : +0.5
: oM
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Example of GCN layer

Convolution is just weighted sum of a node’s feature and its neighbors’
features, aka message passing and aggregation
w )
H®@) — U(AHU)W(?))

HHD = o(AHOW(+D)
O\ VY] h)/ = ~“his +ermed o 51‘&1’}\ Con uo luk>N 2
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Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x € R” (each node has a scalar) and a filter gy (e.g.
go(N) = diag(0)) parameterized by 6 € R" in Fourier domain. x is filtered by gy as

[carne

g0+ x 2 gy(L)x = Ugs (AU x
(B ® K
9o (L) ~[ &Az__.e i @ U <Z O, Tk(i\)) U'x= Z O T (L)x
nAn k=0

k=0
9 gox — 6,0~ /2AD /2%
@ 01y + D2AD/2)x
2 ob-1/2AD~"/2x

- In (1) U: eigenvectors of L=1—D~"/2AD~"/2 = UAUT (time consuming!)

- (2) uses K-th order Chebyshev polynomials, A = s2-A —1, L= L1
The Chebyshev polynomials are recursively defined as
Tk(a) = 2aTk—_1(a) — Tk—2(a), with To(a) = 1 and Ti(a) = a.

February 29, 2024 17/38
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Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x € R” (each node has a scalar) and a filter gs (e.g
go(N) = diag(0)) parameterized by # € R" in Fourier domain

. X is filtered by gy as
1 [cemek 4F£ ciel Cose: 3@ (A = I
Jo x X @ go(L)x = Ugs(A)U " x = (JU"x
(A (@) K
39‘“‘[ Btk Qu <Z Ok Tk(7\)) U'x =Yk Ti(D)x
BnAn k=0 k=0
(S
2 gox — 0:D~'/2AD~"/%x g e
exker
Youn+D2AD Ak T
2 ob-"/2AD /% oo = Z anTnts) . xe Bl

- In (1) U: eigenvectors of L=1—D~"/2AB~'/2 = UAUT (time consuming!)

- (2) uses K-th order Chebyshev polynomials, A = A— —LL= —L -1
The Chebyshev polynomials are recursively defined as
Tk(a) = 2aTk—_1(a) — Tk—2(a), with To(a) = 1 and Ti(a) = a.
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Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x € R" (each node has a scalar) and a filter gy (e.g.
go(N) = diag(0)) parameterized by 0 € R” in Fourier domain. x is filtered by gy as

g0 +x 2 go(L)x = Ugs(A)U T x
@ K ~ - K ~
U 0Tu(A) | UTx =" 0k Ti(D)x
k=0 k=0

3
9 9ox — 0,0~/2AD~"/?x

4
@ 601y + D2AD1/2)x

2 ob-1/2AD~"/2x
- (B)sets K=1and Amax 2 Amex < 2 Ields fos Lop leciansS.

- (4) assumes 6y + 61 =0
- (5) uses the renormalization trick A = A + |
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Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x € R" (each node has a scalar) and a filter gy (e.g.
ge(N) = diag(0)) parameterized by 0 € R” in Fourier domain. x is filtered by gy as

g0 +x = go(L)x = Ugy(A)U " x

K K
Qu <Z 0 Tk(7\)> UTx = > 6 Ti(D)x
k=0 k=0 ~
A O - ‘.R

A H”)\N{Q)i ”2

n
3
9 9ox — 0,0~"/2AD~"/?x

4
@ o(ly + D=128D/2)x

©) o5 -"2RD ox

NxNey

Note that gy * x ~ D~1/2AD~"/2x9 = Ax6. The form AHOW( in GCN is the
generalization of the formula. More details can be found in [Kipf and Welling 2017;
Defferrard et al. 2016].
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Why GCNs work

@ Commonly used architecture

Z = f(X,A) = softmax(A ReLu(AXW(®))w())

+ha pe vlcus}, in +roduced,

@ Why only two layers? (A speciet cose =f o

Xa U — AXW{D)/, achvebon = {ZeLM(AXW(L")A AXH“%(')
v H(l) WC')

LK

o
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Why GCNs work

@ Commonly used architecture

e Z=f(X A)=shftmax(A ReLu(AXW(©))w(")

(e x o hea e vious | in +/DALLL24Q
@ Why only two layers? (A syeciel cesa of #= ¢ /a—cN>

o Deep GCNs do not perform well.

e An intuitive explanation is, graph convolution can be viewed as
information exchange between neighbors, and if we keep doing
this, all nodes’ features will become more and more similar.

@ Graph Laplacian A has a smoothing effect. [Li et al. 2018] proved
that if we apply the graph Laplacian enough times, all nodes’
features will converge to the same value. Hence the name
O O

o There are still some deep GCNs, with modified architectures. But
the gains are tiny or even negative.

® How 4o maxea &Gwis dee??
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GCN: node classification

Node
classification

° Classi@into topics on citation networks
@ Classify posts into subgroups on Reddit networks
@ Classify products into categories on Amazon co-purchase

ATERRES
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GCN: node classification

G=(V-2)

. LV
@ Setting: some nodes are labeled >

(black circle), all other nodes are .. L= e |

unlabeled 4 of \evered
- Y.: set of labeled node indices °
- Y € {0, 1}2€) [abel matrix ~ L2
- X € R feature matrix = A" T

- A: preprocessed adjacency matrix

@ Task: predict node labels of ¢ 4
unlabeled nodes
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GCN: node classification
013> ]

4 neded

@ Setting: some nodes are labeled
(black circle), all other nodes are
unlabeled

- Y;: set of labeled node indic

4 labelepTnodes:

2 {Hisrgp, Mosh- 6@1 Yu=

- Y € {0,1}1%K: label matrix /' K [etel> . ®ioe .o .
- Xe R™9: feature matrix d e tureS AT
- A: preprocessed adjacency matrix . '. . L S
@ Task: predict node labels of _/./°h—4
unlabeled nodes ciparion ekt .
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GCN: node classification

Hidden layer Hidden layer Node classification:
A ( . softmax(zy, )
. . e.g. Kipf & Welling (ICLR 2017)
\ :
Input S - Output
. — RelU | o /" ReLU
D e 2 o PSR S o B
~VY\ toe () s ()
\ &
X =HO A A Z=HWY
L2 » . »
. .
b L ] . L ]

HAED — (AH”)W(”)
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GCN: node classification

> of pos=ible labels

@ Output of GCN: Z is nxK
Z = f(X,A) = softmax(A ReLu(AXW(©®))w())
@ Objective function (semi-supervised):
K
L=- Z Z Yik In Zik
i€y k=1
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GCN: node classification

Experiments

@ Datasets [Yang et al. 2016]

Dataset Type Nodes Edges Classes Features Label rate
Citeseer  Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.001

@ Classification accuracy [Kipf & Welling 2017]

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1
ICA [18] 69.1 75.1 73.9 23.1

Planetoid* [29] 64.7 (26s) 75.7(13s) 77.2(25s) 61.9 (185s)
GCN (this paper) 70.3(7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 23/38



GCN: graph classification

Task: given a set of graphs G = {Gj, Ga, .

.., Gj,...} with

{X; € R1*, f\j e R"*M}, train a model to classify them into K classes.

Hidden layer Hidden layer NOde CIaSSification:
. . softmax(zy,)
. .
i . e.. Kipf & Welling (ICLR 2017)
. .
Input v . v . Output
. 2 2 Graph classification:
. _ &7 RelU | o /" RelU
L4 ~ —
SR R N e = e B S  l o So softmax(}_,, zn)
= o) o0 e.g. Duvenaud et al. (NIPS 2015)
X =HO . N 7 — HM
5 L} o h L 2
. .
- L] d o
L

HGD — 4 (AH(”W“))

How to define the feature vector of a graph?
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GCN: graph classification

READOUT function: compute graph feature from nodes’ features
hg = READOUT({h, },cy)

E.g.: sum, average, min/max pooling of node embeddings

Graph classification

h¢ = READOUT(RD, P, ..., h®)

I

D e

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 25/38



GCN: graph classification

READOUT function using different ways
- Sum: hg = 2761 h;
- Average: hg = N ST hy
- Min/Max: hg = min / max( [h1, el hnG])

Which one is better? Sum?.

"Xu et al. How powerful are graph neural networks? ICLR 2019.
Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 26/38



GCN: graph classification

Task: given a set of graphs G = { Gy, Ga, ..

., Gj,.

..} with

{X; € R™9, A; € R™"}, train a model to classify them into K classes.

Hidden layer

Hidden layer

RelLU

a()

HGD — 4 (AH(l)WU))

Output

Z=H®

Node classification:
softmax(zy)
e.g. Kipf & Welling (ICLR 2017)

Graph classification:

softmax(}", zn)

e.g. Duvenaud et al. (NIPS 2015)

*In this chart, feature of graph is computed as the sum of the features of its nodes.

Objective function (supervised): £ = — 3, 31, Vi In Zj

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks
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GCN: graph classification

Experiments: graph classification accuracy (%) of different GNNs with
different readout functions

Datasets IMDB-B IMDB-M RDT-B RDT-MSK COLLAB MUTAG PROTEINS  PTC NCI
2 #graphs 1000 1500 2000 5000 5000 188 1113 344 4110
& #classes 2 3 2 5 3 2 2 2 2
A Avg#nodes 198 130 4296 508.5 74.5 179 39.1 255 298
WL subtree 738439 S09+38 8L0£31 525421 789+19 904£57 75.0+£31 599+43 860+ 18"
5 DCNN 491 335 - - 2.1 67.0 613 56.6 626
£ patcHySaN TL0£22 452+28 86316 49.1+£07 726+22 926+42% 759+28 60.0+48 786+ 1.9
% DoCNN 700 478 - - 737 85.8 755 58.6 744
AWL 745459 51536 879+25 54729 739+£19 879498 - - -
SUM-MLP (GIN-0) 751451 523+28 92425 ST5:15 802+19 89456 762+28 64670 82717
2 SUM-MLP (GIN-0) 743451 521+36 922:+23 ST0+17 801+19 890+60 759+38 63782 82716
£ sum-l-Laver 741450 522+24 900£27 55116 80.6+£19 900+88 762+26 631+57 820+15
2 MEan-MLP 737437 523+31 500£00 20000 792+23 835463 15534  666+69 809+ 18
Z  MeAN-1-LAYER (GON) 740434 S19+38 500200 20000 790+18 856+58 760+£32  642+43  §02+20
MAX-MLP 732458 SL1£36 - - - 84061  760+£32 646+102 77.8+13
MAX-1-LAYER (GraphSAGE) 72353 509 2.2 - - - 85.1£7.6 759432 63977 TLIE1S

Table from: Xu et al. How powereful are graph neural networks? ICLR 2019.
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GCN: link prediction

Link prediction: given a graph G = (V, E), predict new edges, i.e.,
E=(er,....e) — E=(er,....e1.611,....€1m)
Applications: recommendation system, knowledge graph mining, etc

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 29/38



GCN: link prediction

Task: given a graph G with X € R"*9 and A, predict the potential

edges of G
Hidden layer Hidden layer
Input P ° o . Output
_ 7 ReLU | e— /- ReLU
e e
¢ . 0 ¢ .
X = H(O) . . 7 = H(N)

HGD — 4 (AH(I)W(l))

Obijective function: £ =

Tongxin Li (SDS, CUHK-SZ)

! = %
gb%rueal ealgee

=2 (ij)eq Ajln o(z/ )

Lecture 06 Graph Neural Networks

Node classification:
softmax(zn)
e.g. Kipf & Welling (ICLR 2017)

Graph classification:

softmax(} ", zn)

e.g. Duvenaud et al. (NIPS 2015)

Link prediction:
p(Aij) = o(z{ z;)

Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”
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GCN: link prediction

Experiments: link prediction task in citation networks

Datasets: Cora, Citeseer, and Pubmed ( purlication Peasets’)

Evaluation metrics: AUC and AP

Method Cora Citeseer Pubmed
AUC AP AUC AP AUC AP
SC [5] 84.6+0.01 88.5+0.00 80.5+0.01 85.0+0.01 84.2+0.02 87.8+0.01
DW [6] 83.1+0.01 85.0+0.00 80.5+0.02 83.6+0.01 84.4+0.00 84.1+0.00
GAE* 84.3+0.02 88.1+0.01 787+£0.02 84.14+0.02 8224+0.01 87.4+0.00
VGAE* 84.0+0.02 87.7+0.01 789+0.03 84.1+0.02 82.7+0.01 &87.5+0.01
GAE 91.0+0.02 92.0+0.03 89.5+0.04 89.9+0.05 96.4+0.00 96.5=+0.00
VGAE 91.4+0.01 926+0.01 90.8+0.02 92.0+0.02 94.4+0.02 94.7+0.02
Table from: Kipf and Welling. Variational Graph Auto-Encoders. 2016.
Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 31/38


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


@ Architecture of GCN
@ Applications of GCN

e Other GNNs
@ GraphSAGE
o GAT

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 32/38



GraphSAGE (optional)
@ Limitations of GCN ﬁ c kg ™

o Require that all nodes are presented in the training stage
e Do transductive learning but not inductive learning

Consider & d/namic 5m17h_-

— 5 new hodes +thar present o

the +eshing Stage

Gubstph Ahet- oppensS in  the +minin3 olara
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GraphSAGE (optional)

@ Limitations of GCN
o Require that all nodes are presented in the training stage
e Do transductive learning but not inductive learning

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
Input : Graph G(V,£); input features {x,, Vv € V}; depth K’; weight matrices
Wk Vk € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEg, Vk € {1, ..., K'}; neighborhood function A : v — 2V
Output: Vector representations z, for allv € V
1 hd +x,,YoeV;
2 fork=1..K do
3 forveVdo

4 h}(,) < AGGREGATE({h{™",Vu € N'(v)});
5 h* < o (W’C - CONCAT(hF—1, h}“\/(v)))

6 end

7 b < hE/||hk|2, Vo € V

s end

9 zvehff,VUEV

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurlPS 2017.
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GraphSAGE (optional)

@ Limitations of GCN
o Require that all nodes are presented in the training stage
e Do transductive learning but not inductive learning

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
Input : Graph G(V,£); input features {x,, Vv € V}; depth K’; weight matrices
Wk Vk € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEg, Vk € {1, ..., K'}; neighborhood function A : v — 2V

Output: Vector representations z, for allv € V Assume  Aij € {“DJ [f
1 h?«x,,YoeV; . d
2 fork =1..K do sggregate Hha featwes of neighborS  for nede v
3 forv e Vdo
4 hj“\,(v) < AGGREGATE;({hf~1 Vu € N (v)}); QJ/@

5 h* o (W’C , CONCAT(hfjfl,@)) N\ ser of ncighbers & O
= {

N
N end k> vecter concaten ok of) [] "
7 | b« hi/|hf]s, Vo eV (o
s end

9 zvehff,VUEV

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurlPS 2017.
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Graph Attention Network (GAT) (optional)

@ Self-attention: e; = a (Wh;, Wh)
- h; and h; are the d-dimensional features of nodes / and j

- WeRI*d, a:RY xRY 5 R
exp(e))

BV seer=ricnl it is a normalized e;
~ exp(LeakyReLU(a” [Wh;[|Wh/])) : ;
= s Tk Re U@ W [Wh ) || is the concatenation

operation.XHere ais a single-layer feedforward neural network.

similar 4o seftmax

(eok/ RelU
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Graph Attention Network (GAT) (optional)

@ Self-attention: e; = a (Wh;, Wh)
- h; and h; are the d-dimensional features of nodes / and j

- WeRI*d, a:RY xRY 5 R
exp(e))

BV seer=ricnl it is a normalized e;
o exp(LeakyReLU(aT[Wh/‘||Wh/'])) i i
= s Tk Re U@ W [Wh ) || is the concatenation

operation. Here a is a single-layer feedforward neural network.

@ Compute the next layer

hi=o > a;Wh;
JEN;
. . . M (m) )
or with multi-head attention h, = |M_.o (Z/EN,- aj W(’")hj)
Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.
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Graph Attention Network (GAT) (optional)

@ Self-attention: e; = a (Wh;, Wh)
- h; and h; are the d-dimensional features of nodes / and j
- WeRI*d, a:RY xRY 5 R

exp(e,-j) Mo+ all nodes =hould hava

- Qi it is a normalized ¢; ,

i = AZkEN exp(ei)’ the same ;mr.u'han[e |
exp(LeakyReLU( T[Wh ||Wh,])) is th t ti
Sren, op(LeakyReLU@ Wh,[Wh,T))> (I 1S the concatenation

operation. Here a is a single-layer fe¢dforward neural network.
> seb oij=a. hiis
Similar 4o Gcn !

Lo i om  oladr
, e Idea: infer iy {rom
hi =0 Z alehj Ern)/ mea ottentinnl 4o feature 0‘7(“"’“"—%

/EM Con cat€nahiol]

- oy =
@ Compute the next layer

or with multi-head attention h!, = |M_, o (Z/e\f a( )W(’")h)
Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.
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Graph Attention Network (optional)

concat/avg /7,
hq

Figure 1: Left: The attention mechanism a(VVﬁi, WI;]) employed by our model, parametrized

by a weight vector & € R2F ', applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain l-{’l.

Velickovic et al. Graph Attention Networks. ICLR 2018.
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@ Architecture of GCN  chepiet
@ Applications of GCN

@ GraphSAGE

o GAT

e Conclusions
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Conclusions

@ Deep learning on graphs works and is very effective!
@ Exciting area: lots of new applications and extensions (hard to

keep up)
Relational reasoning Multi-Agent RL GCN for recommendation on 16 billion edge graph!
O (@ Pinterest £
- . # ‘ SUCCESSFUL
‘ RECOMMENDATION
. . 3 possivle k}i\‘&m \
[Santoro et al., NIPS 2017] [Sukhbaat:: :t al,, O i Source pin
NIPS 2016] [ e

[Leskovec lab, Stanford] BAD RECOMMENDATION
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Learning Outcomes

@ Understand the motivation of GCN
@ Understand the architectures of GCN
@ Know the applications of GNNs

@ Be able to conduct some experiments (e.g. node classification)
using GNN
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