DDA4210/AIR6002 Advanced Machine Learning Lecture 06 Graph Neural Networks

Tongxin Li

School of Data Science, CUHK-Shenzhen

February 29, 2024

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks

Introduction

- 2 Graph Convolutional Network (GCN)
 - Architecture of GCN
 - Applications of GCN

3 Other GNNs

- GraphSAGE
- GAT

Graph Convolutional Network (GCI

- Architecture of GCN
- Applications of GCN

3 Other GNNs

GraphSAGEGAT

4 Conclusions

Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

Speech data

Grid games

Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

Speech data

Grid games

• Strength: strong feature representation ability

Limitation: not applicable to non-Euclidean data

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks

4/38

Graph-Structured Data

A lot of real-world data do not "live" on grids

Standard CNN and RNN architectures don't work on these data

Tongxin Li (SDS, CUHK-SZ)

- Graph data
 - G = (V, E)
 - Vertices/nodes $V = \{v_1, v_2, \dots, v_n\}$, edges/links $E = \{e_1, e_2, \dots, e_l\}$
 - Affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
 - Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)

$$X = \begin{bmatrix} 1 & 1 & 1 \\ X_1 & X_2 & X_n \end{bmatrix}^T \in \mathbb{R}^n$$
$$A = \begin{bmatrix} a_n & a_{12} & a_{1n} \\ \vdots \\ a_n & a_{n2} & a_{nn} \end{bmatrix} \in \mathbb{R}^n$$

· Tasks?

- Graph data
 - G = (V, E)
 - Vertices/nodes $V = \{v_1, v_2, \dots, v_n\}$, edges/links $E = \{e_1, e_2, \dots, e_l\}$
 - Affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
 - Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)
- Tasks
 - Node embedding/representation
 - Given a graph *G*, represent each node as a vector, i.e., $(\mathbf{A}, \mathbf{X}) \rightarrow \mathbf{Z} \in \mathbb{R}^{n \times k}$
 - Graph embedding/representation
 - Given a set of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_N\}$, represent each graph as a vector, i.e., $(\mathbf{A}_i, \mathbf{X}_i) \to \mathbf{g}_i \in \mathbb{R}^k$

- Graph data
 - G = (V, E)
 - Vertices/nodes $V = \{v_1, v_2, ..., v_n\}$, edges/links $E = \{e_1, e_2, ..., e_l\}$
 - Affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
 - Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)
- Tasks
- we stream f Node embedding/representation we that f Given a graph G, represent each node as a vector, i.e., $(\mathbf{A}, \mathbf{X}) \rightarrow \mathbf{Z} \in \mathbb{R}^{n \times k}$ Graph embedding/representation
 - - Given a set of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_N\}$, represent each graph as a vector, i.e., $(\mathbf{A}_i, \mathbf{X}_i) \rightarrow \mathbf{q}_i \in \mathbb{R}^k$
- Node classification: $v_i \rightarrow y_i, i = 1, ..., n$ Graph classification: $G_i \rightarrow y_i, i = 1, ..., N$ Link prediction, node or graph clustering, etc

Node and graph embeddings are crucial for node and graph classifications!

Traditional Embedding Methods

- Laplacian embedding [Belkin&Niyogi 2003]
- Deepwalk [Perozzi et al. 2014]
- LINE [Tang et al. 2015]
- node2vec [Grover&Leskovec 2016]

• Node embedding/representation

- Laplacian embedding [Belkin&Niyogi 2003]
- Deepwalk [Perozzi et al. 2014]
- LINE [Tang et al. 2015]
- node2vec [Grover&Leskovec 2016]
- Graph embedding/representation
 - Methods based on node embeddings
 - Graph kernels [Gartner et al 2003; Kriege et al. 2020]

Note that there are more methods for node and graph embeddings

Graph Neural Networks

Graph neural networks (GNNs) are NNs that operate on graph-structured data.

Main Idea: Pass massages between pairs of nodes and agglomerate Alternative Interpretation: Pass massages between nodes to refine node (and possibly edge) representations

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks

Convolution is a mathematical operation on two functions (*f* and *g*) that produces a third function (h = f * g).

Convolution in signal processing

Convolution is a mathematical operation on two functions (*f* and *g*) that produces a third function (h = f * g).

2-D convolution

Convolution of image and filter

$$H^{(\circ)} = X$$

Convolution of a graph *G* and a feature matrix $\mathbf{H}^{(l)} \in \mathbb{R}^{n \times d_l}$

$$\mathbf{H}^{(l+1)} = \sigma(\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l)}) \qquad \text{(ecurs: VC)}$$

-
$$\sigma$$
: activation function, e.g., ReLU and Sigmoid
- $W^{(I)} \in \mathbb{R}^{d_I \times d_{I+1}}$: parameter matrix $W^{(\circ)} = W^{(I)} \cdots W^{(L)}$
- $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}$, $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$, $\tilde{\mathbf{D}} = \text{diag}(\sum_i \tilde{\mathbf{A}}_{i1}, \dots, \sum_i \tilde{\mathbf{A}}_{in})$ Perameters
- $\mathbf{H}^{(I+1)} \in \mathbb{R}^{n \times d_{I+1}}$: output of *I*-th GCN layer (converting)
 $\mathbf{H}^{(0)} = \mathbf{X} \in \mathbb{R}^{n \times d}$ adjucency metric graph deta
 $\mathcal{H}^{(1)} = 6(\hat{\mathbf{A}} \times W^{(\circ)})$, $\mathcal{H}^{(2)} = 6(\hat{\mathbf{A}} \mathcal{H}^{(1)} W^{(1)})$

Lecture 06 Graph Neural Networks

1.00

.

Convolution on graph

Convolution of a graph G and a feature matrix $\mathbf{H}^{(l)} \in \mathbb{R}^{n \times d_l}$

$$\mathbf{H}^{(l+1)} = \sigma(\mathbf{\hat{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l)})$$

- σ : activation function, e.g., ReLU and Sigmoid
- $\mathbf{W}^{(l)} \in \mathbb{R}^{d_l \times d_{l+1}}$: parameter matrix

-
$$\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-1/2}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1/2}, \ \tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}, \ \tilde{\mathbf{D}} = \text{diag}(\sum_{i} \tilde{\mathbf{A}}_{i1}, \dots, \sum_{i} \tilde{\mathbf{A}}_{in})$$

- $\mathbf{H}^{(l+1)} \in \mathbb{R}^{n \times d_{l+1}}$: output of *l*-th GCN layer
- $\mathbf{H}^{(0)} = \mathbf{X} \in \mathbb{R}^{n imes d}$

Example of GCN layer

 $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}, \, \tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}, \, \tilde{\mathbf{D}} = \text{diag}(\sum_{i} \tilde{\mathbf{A}}_{i1}, \dots, \sum_{i} \tilde{\mathbf{A}}_{in})$

 $\tilde{\boldsymbol{D}}^{-1/2} = \begin{bmatrix} 0.71 & 0. & 0. & 0. & 0. \\ 0. & 0.58 & 0. & 0. & 0. \\ 0. & 0. & 0.58 & 0. & 0. \\ 0. & 0. & 0. & 0.71 & 0. \\ 0. & 0. & 0. & 0. & 1. \end{bmatrix}, \\ \hat{\boldsymbol{A}} = \begin{bmatrix} 0.5 & 0.41 & 0. & 0. & 0. \\ 0.41 & 0.33 & 0.33 & 0. & 0. \\ 0. & 0.33 & 0.33 & 0.41 & 0. \\ 0. & 0. & 0.41 & 0.5 & 0. \\ 0. & 0. & 0. & 0. & 1. \end{bmatrix}$

 $\hat{\mathbf{A}} = \begin{bmatrix} 0.5 & 0.41 & 0. & 0. & 0.\\ 0.41 & 0.33 & 0.33 & 0. & 0.\\ 0. & 0.33 & 0.33 & 0.41 & 0.\\ 0. & 0. & 0.41 & 0.5 & 0.\\ 0. & 0. & 0. & 0. & 1. \end{bmatrix}$

Except for the diagonals, **Â** has the same pattern of non-zero entries with **A**

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \end{bmatrix} \Rightarrow \hat{\mathbf{A}} \mathbf{X} = \begin{bmatrix} 0.5\mathbf{x}_1 + 0.41\mathbf{x}_2 \\ 0.41\mathbf{x}_1 + 0.33\mathbf{x}_2 + 0.33\mathbf{x}_3 \\ 0.33\mathbf{x}_2 + 0.33\mathbf{x}_3 + 0.41\mathbf{x}_4 \\ 0.41\mathbf{x}_3 + 0.5\mathbf{x}_5 \end{bmatrix}$$

Example of GCN layer

Convolution is just weighted sum of a node's feature and its neighbors' features, aka message passing and aggregation

$$\mathbf{H}^{(1)} = \sigma(\mathbf{\hat{A}}\mathbf{X}\mathbf{W}^{(1)})$$
$$\mathbf{H}^{(2)} = \sigma(\mathbf{\hat{A}}\mathbf{H}^{(1)}\mathbf{W}^{(2)})$$
$$\vdots$$
$$\mathbf{H}^{(l+1)} = \sigma(\mathbf{\hat{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l+1)})$$
$$\mathbf{\mathcal{R}} : \mathbf{W}\mathbf{h}\mathbf{y} := \mathbf{H}^{i}\mathbf{h}\mathbf{i}\mathbf{s} \quad \mathbf{termed} \quad \mathbf{a} \quad \mathbf{\hat{s}} \text{ suph convolution } ?$$

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution. Consider a signal $\mathbf{x} \in \mathbb{R}^n$ (each node has a scalar) and a filter q_{θ} (e.g. $g_{\theta}(\Lambda) = \operatorname{diag}(\theta)$ parameterized by $\theta \in \mathbb{R}^n$ in Fourier domain. **x** is filtered by g_{θ} as $g_{\theta}(\Lambda) = \begin{bmatrix} \theta, \lambda_{\ell} \\ \theta_{k} \lambda_{k} \end{bmatrix} \begin{bmatrix} g_{\theta} * \mathbf{x} \stackrel{(1)}{=} g_{\theta}(\mathbf{L})\mathbf{x} = \mathbf{U}g_{\theta}(\Lambda)\mathbf{U}^{\top}\mathbf{x} \\ & \approx \mathbf{U}\left(\sum_{k=0}^{K} \theta_{k}T_{k}(\tilde{\Lambda})\right)\mathbf{U}^{\top}\mathbf{x} = \sum_{k=0}^{K} \theta_{k}T_{k}(\tilde{\mathbf{L}})\mathbf{x} \end{bmatrix}$ $\overset{(3)}{\approx} \theta_0 \mathbf{x} - \theta_1 \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \mathbf{x}$ $\stackrel{(4)}{\approx} \theta(\mathbf{I}_{N} + \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})\mathbf{x}$ $\sim \rho \tilde{\mathbf{n}}^{-1/2} \tilde{\mathbf{\Delta}} \tilde{\mathbf{n}}^{-1/2} \mathbf{x}$

- In (1) U: eigenvectors of $\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{U} \wedge \mathbf{U}^{\top}$ (time consuming!)

- (2) uses *K*-th order Chebyshev polynomials, $\tilde{\Lambda} = \frac{2}{\lambda_{\max}} \Lambda - I$, $\tilde{L} = \frac{2}{\lambda_{\max}} L - I$. The Chebyshev polynomials are recursively defined as $T_k(a) = 2aT_{k-1}(a) - T_{k-2}(a)$, with $T_0(a) = 1$ and $T_1(a) = a$.

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution. Consider a signal $\mathbf{x} \in \mathbb{R}^n$ (each node has a scalar) and a filter q_{θ} (e.g. $g_{\theta}(\Lambda) = \operatorname{diag}(\theta)$ parameterized by $\theta \in \mathbb{R}^n$ in Fourier domain. **x** is filtered by g_{θ} as Special case: go (1) = I $g_{\theta}(\Lambda) = \begin{bmatrix} \theta \cdot \lambda_{i} \\ g_{\theta}(\Lambda) \end{bmatrix} \begin{bmatrix} g_{\theta} * \mathbf{x} \stackrel{(1)}{=} g_{\theta}(\mathbf{L})\mathbf{x} = \mathbf{U}g_{\theta}(\Lambda)\mathbf{U}^{\top}\mathbf{x} \\ \approx \mathbf{U}\left(\sum_{k=0}^{K} \theta_{k}T_{k}(\tilde{\Lambda})\right)\mathbf{U}^{\top}\mathbf{x} = \sum_{k=0}^{K} \theta_{k}T_{k}(\tilde{\mathbf{L}})\mathbf{x}$ $\Rightarrow 00^{T}x$ $\overset{(4)}{\approx} \theta(\mathbf{I}_N + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}) \mathbf{x} \quad \text{(an be extended to matrices)}$

- In (1) U: eigenvectors of $\mathbf{L} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{U} \wedge \mathbf{U}^{\top}$ (time consuming!)
- (2) uses *K*-th order Chebyshev polynomials, $\tilde{\Lambda} = \frac{2}{\lambda_{max}} \Lambda I$, $\tilde{L} = \frac{2}{\lambda_{max}} L I$. The Chebyshev polynomials are recursively defined as $T_k(a) = 2aT_{k-1}(a) - T_{k-2}(a)$, with $T_0(a) = 1$ and $T_1(a) = a$.

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution. Consider a signal $\mathbf{x} \in \mathbb{R}^n$ (each node has a scalar) and a filter g_θ (e.g. $g_\theta(\Lambda) = \operatorname{diag}(\theta)$) parameterized by $\theta \in \mathbb{R}^n$ in Fourier domain. \mathbf{x} is filtered by g_θ as

$$g_{\theta} * \mathbf{x} \stackrel{(1)}{=} g_{\theta}(\mathbf{L})\mathbf{x} = \mathbf{U}g_{\theta}(\Lambda)\mathbf{U}^{\top}\mathbf{x}$$

$$\stackrel{(2)}{\approx} \mathbf{U}\left(\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\Lambda})\right)\mathbf{U}^{\top}\mathbf{x} = \sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}})\mathbf{x}$$

$$\stackrel{(3)}{\approx} \theta_{0}\mathbf{x} - \theta_{1}\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}\mathbf{x}$$

$$\stackrel{(4)}{\approx} \theta(\mathbf{I}_{N} + \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})\mathbf{x}$$

$$\stackrel{(5)}{\approx} \theta\tilde{\mathbf{D}}^{-1/2}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1/2}\mathbf{x}$$

- (3) sets K = 1 and $\lambda_{\max} \approx 2$ $\lambda_{\max} \ll 2$ holds for Loplacians.

- (4) assumes $\theta_0 + \theta_1 = 0$
- (5) uses the renormalization trick $\tilde{\textbf{A}}=\textbf{A}+\textbf{I}$

In essence, GCN layer is an approximated spectral convolution. Consider a signal $\mathbf{x} \in \mathbb{R}^n$ (each node has a scalar) and a filter g_θ (e.g. $g_\theta(\Lambda) = \operatorname{diag}(\theta)$) parameterized by $\theta \in \mathbb{R}^n$ in Fourier domain. \mathbf{x} is filtered by g_θ as

$$g_{\theta} * \mathbf{x} \stackrel{(1)}{=} g_{\theta}(\mathbf{L})\mathbf{x} = \mathbf{U}g_{\theta}(\Lambda)\mathbf{U}^{\top}\mathbf{x}$$

$$\stackrel{(2)}{\approx} \mathbf{U}\left(\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\Lambda})\right)\mathbf{U}^{\top}\mathbf{x} = \sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}})\mathbf{x}$$

$$\stackrel{(3)}{\approx} \theta_{0}\mathbf{x} - \theta_{1}\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}\mathbf{x}$$

$$\stackrel{(4)}{\approx} \theta(\mathbf{I}_{N} + \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})\mathbf{x}$$

$$\stackrel{(5)}{\approx} \theta\widetilde{\mathbf{D}}^{-1/2}\widetilde{\mathbf{A}}\widetilde{\mathbf{D}}^{-1/2}\mathbf{x}$$

Note that $g_{\theta} * \mathbf{x} \approx \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \mathbf{x} \theta = \hat{\mathbf{A}} \mathbf{x} \theta$. The form $\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)}$ in GCN is the generalization of the formula. More details can be found in [Kipf and Welling 2017; Defferrard et al. 2016].

Commonly used architecture

$$\mathbf{Z} = f(\mathbf{X}, \mathbf{A}) = \operatorname{softmax}(\hat{\mathbf{A}} \operatorname{ReLu}(\hat{\mathbf{A}}\mathbf{X}\mathbf{W}^{(0)})\mathbf{W}^{(1)})$$

• Why only two layers? (A special case of the previously introduced Gran)

$$X \to \prod_{W^{(r)}} A \times W^{(r)} \text{ activition} \to \operatorname{Relu}(A \times W^{(r)}) \to A H^{(e)} W^{(r)}$$

$$H^{(r)} W^{(r)}$$

Commonly used architecture

 $\mathbf{Z} = f(\mathbf{X}, \mathbf{A}) = \operatorname{softmax}(\hat{\mathbf{A}} \operatorname{ReLu}(\hat{\mathbf{A}} \mathbf{X} \mathbf{W}^{(0)}) \mathbf{W}^{(1)})$

- Why only two layers? (A special case of the previously in troduced GEN)
 - Deep GCNs do not perform well.
 - An intuitive explanation is, graph convolution can be viewed as information exchange between neighbors, and if we keep doing this, all nodes' features will become more and more similar.
 - Graph Laplacian has a smoothing effect. [Li et al. 2018] proved that if we apply the graph Laplacian enough times, all nodes' features will converge to the same value. Hence the name over-smoothing.
 - There are still some deep GCNs, with modified architectures. But the gains are tiny or even negative.

How to make GNNs deep?

- Classify papers into topics on citation networks
- Classify posts into subgroups on Reddit networks
- Classify products into categories on Amazon co-purchase graphs

Tongxin Li (SDS, CUHK-SZ)

E. 183×4 4 nodes Setting: some nodes are labeled 4 labelet nodes. 3: Etistige, Marth - Birton (black circle), all other nodes are unlabeled *Y_I*: set of labeled node indices - $\mathbf{Y} \in \{0, 1\}^{L \times K}$: label matrix \checkmark K lobels - $\mathbf{X} \in \mathbb{R}^{n \times d}$: feature matrix teo tures Â: preprocessed adjacency matrix Task: predict node labels of

unlabeled nodes

citation ner

 $\mathbf{Z} = f(\mathbf{X}, \mathbf{A}) = \operatorname{softmax}(\hat{\mathbf{A}} \operatorname{ReLu}(\hat{\mathbf{A}}\mathbf{X}\mathbf{W}^{(0)})\mathbf{W}^{(1)})$

• Objective function (semi-supervised):

$$\mathcal{L} = -\sum_{i \in \mathcal{Y}_L} \sum_{k=1}^{K} Y_{ik} \ln Z_{ik}$$

Tongxin Li (SDS, CUHK-SZ)

Experiments

Datasets [Yang et al. 2016]

Dataset	Туре	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Classification accuracy [Kipf & Welling 2017]

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)

Tongxin Li (SDS, CUHK-SZ)

GCN: graph classification

Task: given a set of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_j, \dots\}$ with $\{\mathbf{X}_j \in \mathbb{R}^{n_j \times d}, \hat{\mathbf{A}}_j \in \mathbb{R}^{n_j \times n_j}\}$, train a model to classify them into *K* classes.

How to define the feature vector of a graph?

GCN: graph classification

READOUT function: compute graph feature from nodes' features

 $\mathbf{h}_{G} = \operatorname{READOUT}(\{\mathbf{h}_{v}\}_{v \in \mathcal{V}})$

E.g.: sum, average, min/max pooling of node embeddings

READOUT function using different ways

- Sum: $\mathbf{h}_G = \sum_{i=1}^{n_G} \mathbf{h}_i$
- Average: $\mathbf{h}_G = \frac{1}{N_G} \sum_{i=1}^{n_G} \mathbf{h}_i$
- Min/Max: $\mathbf{h}_G = \min / \max([\mathbf{h}_1; \dots; \mathbf{h}_{n_G}])$

Which one is better? Sum¹.

¹Xu et al. How powerful are graph neural networks? ICLR 2019.

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks

GCN: graph classification

Task: given a set of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_j, \dots\}$ with $\{\mathbf{X}_j \in \mathbb{R}^{n \times d}, \hat{\mathbf{A}}_j \in \mathbb{R}^{n \times n}\}$, train a model to classify them into *K* classes.

*In this chart, feature of graph is computed as the sum of the features of its nodes.

Objective function (supervised): $\mathcal{L} = -\sum_{j} \sum_{k=1}^{K} Y_{jk} \ln Z_{jk}$

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks

27/38

Experiments: graph classification accuracy (%) of different GNNs with different readout functions

ets	Datasets # graphs	IMDB-B 1000	IMDB-M 1500	RDT-B 2000	RDT-M5K 5000	COLLAB 5000	MUTAG 188	PROTEINS 1113	PTC 344	NCI1 4110
Datas	# classes	2	3	2	5	3	2	2	2	2
	Avg # nodes	19.8	13.0	429.6	508.5	74.5	17.9	39.1	25.5	29.8
Baselines	WL subtree	73.8 ± 3.9	50.9 ± 3.8	81.0 ± 3.1	52.5 ± 2.1	78.9 ± 1.9	90.4 ± 5.7	75.0 ± 3.1	59.9 ± 4.3	86.0 \pm 1.8 *
	DCNN	49.1	33.5	-	-	52.1	67.0	61.3	56.6	62.6
	PATCHYSAN	71.0 ± 2.2	45.2 ± 2.8	86.3 ± 1.6	49.1 ± 0.7	72.6 ± 2.2	92.6 \pm 4.2 *	75.9 ± 2.8	60.0 ± 4.8	78.6 ± 1.9
	DGCNN	70.0	47.8	-	-	73.7	85.8	75.5	58.6	74.4
	AWL	74.5 ± 5.9	51.5 ± 3.6	87.9 ± 2.5	54.7 ± 2.9	73.9 ± 1.9	87.9 ± 9.8	-	-	-
	SUM-MLP (GIN-0)	$\textbf{75.1} \pm \textbf{5.1}$	$\textbf{52.3} \pm \textbf{2.8}$	$\textbf{92.4} \pm \textbf{2.5}$	$\textbf{57.5} \pm \textbf{1.5}$	$\textbf{80.2} \pm \textbf{1.9}$	$\textbf{89.4} \pm \textbf{5.6}$	$\textbf{76.2} \pm \textbf{2.8}$	$\textbf{64.6} \pm \textbf{7.0}$	$\textbf{82.7} \pm \textbf{1.7}$
GNN variants	SUM-MLP (GIN- ϵ)	$\textbf{74.3} \pm \textbf{5.1}$	$\textbf{52.1} \pm \textbf{3.6}$	$\textbf{92.2} \pm \textbf{2.3}$	$\textbf{57.0} \pm \textbf{1.7}$	$\textbf{80.1} \pm \textbf{1.9}$	$\textbf{89.0} \pm \textbf{6.0}$	$\textbf{75.9} \pm \textbf{3.8}$	63.7 ± 8.2	$\textbf{82.7} \pm \textbf{1.6}$
	SUM-1-LAYER	74.1 ± 5.0	$\textbf{52.2} \pm \textbf{2.4}$	90.0 ± 2.7	55.1 ± 1.6	$\textbf{80.6} \pm \textbf{1.9}$	$\textbf{90.0} \pm \textbf{8.8}$	$\textbf{76.2} \pm \textbf{2.6}$	63.1 ± 5.7	82.0 ± 1.5
	MEAN-MLP	73.7 ± 3.7	$\textbf{52.3} \pm \textbf{3.1}$	50.0 ± 0.0	20.0 ± 0.0	79.2 ± 2.3	83.5 ± 6.3	75.5 ± 3.4	$\textbf{66.6} \pm \textbf{6.9}$	80.9 ± 1.8
	MEAN-1-LAYER (GCN)	74.0 ± 3.4	51.9 ± 3.8	50.0 ± 0.0	20.0 ± 0.0	79.0 ± 1.8	85.6 ± 5.8	76.0 ± 3.2	64.2 ± 4.3	80.2 ± 2.0
	MAX-MLP	73.2 ± 5.8	51.1 ± 3.6	-	-	-	84.0 ± 6.1	76.0 ± 3.2	64.6 ± 10.2	77.8 ± 1.3
	MAX-1-LAYER (GraphSAGE)	72.3 ± 5.3	50.9 ± 2.2	-	-	-	85.1 ± 7.6	75.9 ± 3.2	63.9 ± 7.7	77.7 ± 1.5

Table from: Xu et al. How powereful are graph neural networks? ICLR 2019.

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks

GCN: link prediction

Link prediction: given a graph G = (V, E), predict new edges, i.e.,

$$E = (e_1, \ldots, e_l) \longrightarrow \tilde{E} = (e_1, \ldots, e_l, e_{l+1}, \ldots, e_{l+m})$$

Applications: recommendation system, knowledge graph mining, etc

GCN: link prediction

Task: given a graph *G* with $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\hat{\mathbf{A}}$, predict the potential edges of *G*

Experiments: link prediction task in citation networks Datasets: Cora, Citeseer, and Pubmed (*Publication Potasets*) Evaluation metrics: AUC and AP

Method	Co	ora	Cite	seer	Pubmed		
	AUC	AP	AUC	AP	AUC	AP	
SC [5] DW [6]	$\begin{array}{c} 84.6 \pm 0.01 \\ 83.1 \pm 0.01 \end{array}$	$\begin{array}{c} 88.5 \pm 0.00 \\ 85.0 \pm 0.00 \end{array}$	$\begin{array}{c} 80.5 \pm 0.01 \\ 80.5 \pm 0.02 \end{array}$	$\begin{array}{c} 85.0 \pm 0.01 \\ 83.6 \pm 0.01 \end{array}$	$\begin{array}{c} 84.2 \pm 0.02 \\ 84.4 \pm 0.00 \end{array}$	$\begin{array}{c} 87.8 \pm 0.01 \\ 84.1 \pm 0.00 \end{array}$	
GAE* VGAE* GAE VGAE	$\begin{array}{c} 84.3\pm 0.02\\ 84.0\pm 0.02\\ 91.0\pm 0.02\\ \textbf{91.4}\pm 0.01\end{array}$	$\begin{array}{c} 88.1 \pm 0.01 \\ 87.7 \pm 0.01 \\ 92.0 \pm 0.03 \\ \textbf{92.6} \pm 0.01 \end{array}$	$\begin{array}{c} 78.7 \pm 0.02 \\ 78.9 \pm 0.03 \\ 89.5 \pm 0.04 \\ \textbf{90.8} \pm 0.02 \end{array}$	$\begin{array}{c} 84.1\pm 0.02\\ 84.1\pm 0.02\\ 89.9\pm 0.05\\ \textbf{92.0}\pm 0.02\end{array}$	$\begin{array}{c} 82.2\pm 0.01\\ 82.7\pm 0.01\\ \textbf{96.4}\pm 0.00\\ 94.4\pm 0.02\end{array}$	$\begin{array}{c} 87.4 \pm 0.00 \\ 87.5 \pm 0.01 \\ \textbf{96.5} \pm 0.00 \\ 94.7 \pm 0.02 \end{array}$	

Table from: Kipf and Welling. Variational Graph Auto-Encoders. 2016.

31/38

Graph Convolutional Network (GCN

- Architecture of GCN
- Applications of GCN

GraphSAGE (optional)

Limitations of GCN

- Require that all nodes are presented in the training stage
- Do transductive learning but not inductive learning

GraphSAGE (optional)

- Limitations of GCN
 - Require that all nodes are presented in the training stage
 - Do transductive learning but not inductive learning

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$; depth K; weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$; non-linearity σ ; differentiable aggregator functions $\operatorname{AGGREGATE}_k, \forall k \in \{1, ..., K\}$; neighborhood function $\mathcal{N} : v \to 2^{\mathcal{V}}$ **Output :** Vector representations \mathbf{z}_v for all $v \in \mathcal{V}$

$$\begin{array}{c|c} \mathbf{1} \ \mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V} ;\\ \mathbf{2} \ \mathbf{for} \ k = 1...K \ \mathbf{do} \\ \mathbf{3} \ & \mathbf{for} \ v \in \mathcal{V} \ \mathbf{do} \\ \mathbf{4} \ & \left| \begin{array}{c} \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \operatorname{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\});\\ \mathbf{5} \ & \left| \begin{array}{c} \mathbf{h}_{v}^{k} \leftarrow \sigma \left(\mathbf{W}^{k} \cdot \operatorname{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right) \right) \\ \mathbf{6} \ & \mathbf{end} \\ \mathbf{7} \ & \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k} / \|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V} \\ \mathbf{8} \ \mathbf{end} \\ \mathbf{9} \ \mathbf{z}_{v} \leftarrow \mathbf{h}_{v}^{K}, \forall v \in \mathcal{V} \end{array} \right.$$

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurIPS 2017.

GraphSAGE (optional)

- Limitations of GCN
 - Require that all nodes are presented in the training stage
 - Do transductive learning but not inductive learning

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$; depth K; weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$; non-linearity σ ; differentiable aggregator functions $\operatorname{AGGREGATE}_k, \forall k \in \{1, ..., K\};$ neighborhood function $\mathcal{N}: v \to 2^{\mathcal{V}}$ **Output :** Vector representations \mathbf{z}_v for all $v \in \mathcal{V}$ Assume Aije for 1? 1 $\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V};$ aggregate the teatures of neighbors for node v 2 for k = 1...K do for $v \in \mathcal{V}$ do $v \in \mathcal{V} \text{ do}$ $\mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \operatorname{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\});$ 3 $\begin{array}{c} \mathbf{h}_{v}^{k} \leftarrow \sigma \left(\mathbf{W}^{k} \cdot \operatorname{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k}) \right) & \Rightarrow \mathsf{set} \text{ of } \mathsf{neigh} \mathsf{b}\mathsf{set} \\ \\ \begin{array}{c} \mathsf{end} \\ \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k} / \|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V} \end{array} & \overbrace{\mathsf{vector}} \\ \end{array} \right) & \overbrace{\mathsf{vector}} \\ \begin{array}{c} \mathsf{concaten} \text{ otion} \\ \\ \mathsf{f} \\ \mathsf{o} \\ \mathsf{f} \\ \mathsf{o} \end{array} & \overbrace{\mathsf{f}} \\ \end{array} \right) \\ \end{array}$ 4 5 6 7 8 end 9 $\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}$

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurIPS 2017.

Graph Attention Network (GAT) (optional)

• Self-attention: $e_{ij} = a(Wh_i, Wh_j)$

- **h**_i and **h**_j are the *d*-dimensional features of nodes *i* and *j*

-
$$\mathbf{W} \in \mathbb{R}^{d' \times d}$$
, $a : \mathbb{R}^{d'} \times \mathbb{R}^{d'} \to \mathbb{R}$
- $\alpha_{ii} = \frac{\exp(e_{ij})}{1 + \exp(e_{ij})}$ it is a normalized e_{ii}

$$\alpha_{ij} = \frac{1}{\sum_{k \in \mathcal{N}_i} \exp(e_k)}, \text{ it is a normalized } e_{ij}$$

- $\alpha_{ij} = \frac{\exp(\text{LeakyReLU}(\mathbf{a}^{\prime}[\mathbf{W}\mathbf{h}_{i}||\mathbf{W}\mathbf{h}_{j}]))}{\sum_{k \in \mathcal{N}_{i}} \exp(\text{LeakyReLU}(\mathbf{a}^{\prime}[\mathbf{W}\mathbf{h}_{i}||\mathbf{W}\mathbf{h}_{k}]))}$, || is the concatenation operation.|Here *a* is a single-layer feedforward neural network.

Graph Attention Network (GAT) (optional)

• Self-attention:
$$e_{ij} = a(Wh_i, Wh_j)$$

- **h**_i and **h**_j are the *d*-dimensional features of nodes *i* and *j*

-
$$\mathbf{W} \in \mathbb{R}^{d' \times d}$$
, $\mathbf{a} : \mathbb{R}^{d'} \times \mathbb{R}^{d'} \to \mathbb{R}$
- $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{k})}$, it is a normalized e_{ij}
- $\alpha_{ij} = \frac{\exp(\text{LeakyReLU}(\mathbf{a}^T[\mathbf{W}\mathbf{h}_i || \mathbf{W}\mathbf{h}_i]))}{\sum_{k \in \mathcal{N}_i} \exp(\text{LeakyReLU}(\mathbf{a}^T[\mathbf{W}\mathbf{h}_i || \mathbf{W}\mathbf{h}_k])))}$, \parallel is the concatenation operation. Here \mathbf{a} is a single-layer feedforward neural network.

Compute the next layer

$$\mathbf{h}'_i = \sigma \left(\sum_{j \in \mathcal{N}_i} lpha_{ij} \mathbf{W} \mathbf{h}_j \right)$$

or with multi-head attention $\mathbf{h}'_{i} = \|_{m=1}^{M} \sigma \left(\sum_{j \in \mathcal{N}_{i}} \alpha_{ij}^{(m)} \mathbf{W}^{(m)} h_{j} \right)$ Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.

Graph Attention Network (GAT) (optional)

• Self-attention:
$$e_{ij} = a(\mathbf{Wh}_i, \mathbf{Wh}_j)$$

• \mathbf{h}_i and \mathbf{h}_j are the *d*-dimensional features of nodes *i* and *j*
• $\mathbf{W} \in \mathbb{R}^{d' \times d}$, $a : \mathbb{R}^{d'} \to \mathbb{R}$
• $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$, it is a normalized e_{ij} . Not all nodes should have
• $\alpha_{ij} = \frac{\exp(\operatorname{LeakyReLU}(\mathbf{a}^T[\mathbf{Wh}_i||\mathbf{Wh}_i])))}{\sum_{k \in \mathcal{N}_i} \exp(\operatorname{LeakyReLU}(\mathbf{a}^T[\mathbf{Wh}_i||\mathbf{Wh}_k])))}$, is the concatenation
operation. Here *a* is a single-layer feedforward neural network.
• Compute the next layer
 $\mathbf{h}'_i = \sigma\left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{Wh}_j\right) = \frac{1}{2} \cdot h'_i$ is
 $\sum_{i=1}^{i} \sum_{j \in \mathcal{N}_i} e_{ij} \sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{Wh}_j$
or with multi-head attention $\mathbf{h}'_i = \|_{m=1}^{M} \sigma\left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^{(m)} \mathbf{W}^{(m)} h_j\right)$
Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.

Lecture 06 Graph Neural Networks

34/38

Graph Attention Network (optional)

Figure 1: Left: The attention mechanism $a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$ employed by our model, parametrized by a weight vector $\vec{a} \in \mathbb{R}^{2F'}$, applying a LeakyReLU activation. **Right:** An illustration of multihead attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent attention computations. The aggregated features from each head are concatenated or averaged to obtain \vec{h}'_1 .

Velickovic et al. Graph Attention Networks. ICLR 2018.

2) Graph Convolutional Network (GCN

- Architecture of GCN cheby Net-
- Applications of GCN

3 Other GNNs

- GraphSAGE
- GAT

- Deep learning on graphs works and is very effective!
- Exciting area: lots of new applications and extensions (hard to keep up)

- Understand the motivation of GCN
- Understand the architectures of GCN
- Know the applications of GNNs
- Be able to conduct some experiments (e.g. node classification) using GNN