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Traditional Neural Networks
Traditional neural networks: MLP, CNN, RNN, Transformer

Strength: strong feature representation ability

Limitation: not applicable to non-Euclidean data
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Graph-Structured Data

A lot of real-world data do not “live” on grids

Standard CNN and RNN architectures don’t work on these data
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Graph Data and Related Tasks

Graph data
G = (V ,E)
Vertices/nodes V = {v1, v2, . . . , vn}, edges/links E = {e1, e2, . . . , el}
Affinity matrix A 2 Rn⇥n

Feature matrix of nodes X 2 Rn⇥d (may not exist)

Tasks
Node embedding/representation

Given a graph G, represent each node as a vector, i.e.,
(A,X) ! Z 2 Rn⇥k

Graph embedding/representation
Given a set of graphs G = {G1,G2, . . . ,GN}, represent each graph as
a vector, i.e., (Ai ,Xi) ! gi 2 Rk

Node classification: vi ! yi , i = 1, . . . , n
Graph classification: Gi ! yi , i = 1, . . . ,N
Link prediction, node or graph clustering, etc

Node and graph embeddings are crucial for node and graph classifications!
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Traditional Embedding Methods

Node embedding/representation
Laplacian embedding [Belkin&Niyogi 2003]
Deepwalk [Perozzi et al. 2014]
LINE [Tang et al. 2015]
node2vec [Grover&Leskovec 2016]

Graph embedding/representation
Methods based on node embeddings
Graph kernels [Gartner et al 2003; Kriege et al. 2020]

Note that there are more methods for node and graph embeddings
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Graph Neural Networks
Graph neural networks (GNNs) are NNs that operate on
graph-structured data.

Main Idea: Pass massages between pairs of nodes and agglomerate
Alternative Interpretation: Pass massages between nodes to refine
node (and possibly edge) representations
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Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that
produces a third function (h = f ⇤ g).

1-D convolution
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Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that
produces a third function (h = f ⇤ g).

2-D convolution
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Convolution in CNN

Convolution of image and filter

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 12 / 38

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Convolution on graph

Convolution of a graph G and a feature matrix H(l) 2 Rn⇥dl

H(l+1) = �(ÂH(l)W(l))

- �: activation function, e.g., ReLU and Sigmoid
- W(l) 2 Rdl⇥dl+1 : parameter matrix
- Â = D̃�1/2ÃD̃�1/2, Ã = A + I, D̃ = diag(

P
i Ãi1, . . . ,

P
i Ãin)

- H(l+1) 2 Rn⇥dl+1 : output of l-th GCN layer
- H(0) = X 2 Rn⇥d
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Example of GCN layer

Â = D̃�1/2ÃD̃�1/2, Ã = A + I, D̃ = diag(
P

i Ãi1, . . . ,
P

i Ãin)

A =

2

664

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0

3

775 , Ã =

2

664

1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 0
0 0 0 0 1

3

775

D̃�1/2 =

2

664

0.71 0. 0. 0. 0.
0. 0.58 0. 0. 0.
0. 0. 0.58 0. 0.
0. 0. 0. 0.71 0.
0. 0. 0. 0. 1.

3

775 , Â =

2

664

0.5 0.41 0. 0. 0.
0.41 0.33 0.33 0. 0.

0. 0.33 0.33 0.41 0.
0. 0. 0.41 0.5 0.
0. 0. 0. 0. 1.

3

775
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Example of GCN layer

Â =

2

664

0.5 0.41 0. 0. 0.
0.41 0.33 0.33 0. 0.

0. 0.33 0.33 0.41 0.
0. 0. 0.41 0.5 0.
0. 0. 0. 0. 1.

3

775

Except for the diagonals, Â has the
same pattern of non-zero entries
with A

X =

2

66664

x1
x2
x3
x4
x5

3

77775
) ÂX =

2

66664

0.5x1 + 0.41x2
0.41x1 + 0.33x2 + 0.33x3
0.33x2 + 0.33x3 + 0.41x4

0.41x4 + 0.5x5
x5

3

77775
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Example of GCN layer

X =

2

66664

x1
x2
x3
x4
x5

3

77775
) ÂX =

2

66664

0.5x1 + 0.41x2
0.41x1 + 0.33x2 + 0.33x3
0.33x2 + 0.33x3 + 0.41x4

0.41x4 + 0.5x5
x5

3

77775

Convolution is just weighted sum of a node’s feature and its neighbors’
features, aka message passing and aggregation

H(1) = �(ÂXW(1))

H(2) = �(ÂH(1)W(2))

...

H(l+1) = �(ÂH(l)W(l+1))

...
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Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x 2 Rn (each node has a scalar) and a filter g✓ (e.g.
g✓(⇤) = diag(✓)) parameterized by ✓ 2 Rn in Fourier domain. x is filtered by g✓ as

g✓ ⇤ x (1)
= g✓(L)x = Ug✓(⇤)U>x

(2)
⇡ U

 
KX

k=0

✓k Tk (⇤̃)

!
U>x =

KX

k=0

✓k Tk (L̃)x

(3)
⇡ ✓0x � ✓1D�1/2AD�1/2x
(4)
⇡ ✓(IN + D�1/2AD�1/2)x
(5)
⇡ ✓D̃�1/2ÃD̃�1/2x

- In (1) U: eigenvectors of L = I � D�1/2AD�1/2 = U⇤U> (time consuming!)

- (2) uses K -th order Chebyshev polynomials, ⇤̃ = 2
�max

⇤� I, L̃ = 2
�max

L � I.
The Chebyshev polynomials are recursively defined as
Tk (a) = 2aTk�1(a)� Tk�2(a), with T0(a) = 1 and T1(a) = a.
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�max

⇤� I, L̃ = 2
�max

L � I.
The Chebyshev polynomials are recursively defined as
Tk (a) = 2aTk�1(a)� Tk�2(a), with T0(a) = 1 and T1(a) = a.
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Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x 2 Rn (each node has a scalar) and a filter g✓ (e.g.
g✓(⇤) = diag(✓)) parameterized by ✓ 2 Rn in Fourier domain. x is filtered by g✓ as

g✓ ⇤ x (1)
= g✓(L)x = Ug✓(⇤)U>x

(2)
⇡ U

 
KX

k=0

✓k Tk (⇤̃)

!
U>x =

KX

k=0

✓k Tk (L̃)x

(3)
⇡ ✓0x � ✓1D�1/2AD�1/2x
(4)
⇡ ✓(IN + D�1/2AD�1/2)x
(5)
⇡ ✓D̃�1/2ÃD̃�1/2x

- (3) sets K = 1 and �max ⇡ 2

- (4) assumes ✓0 + ✓1 = 0

- (5) uses the renormalization trick Ã = A + I
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Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x 2 Rn (each node has a scalar) and a filter g✓ (e.g.
g✓(⇤) = diag(✓)) parameterized by ✓ 2 Rn in Fourier domain. x is filtered by g✓ as

g✓ ⇤ x (1)
= g✓(L)x = Ug✓(⇤)U>x

(2)
⇡ U

 
KX

k=0

✓k Tk (⇤̃)

!
U>x =

KX

k=0

✓k Tk (L̃)x

(3)
⇡ ✓0x � ✓1D�1/2AD�1/2x
(4)
⇡ ✓(IN + D�1/2AD�1/2)x
(5)
⇡ ✓D̃�1/2ÃD̃�1/2x

Note that g✓ ⇤ x ⇡ D̃�1/2ÃD̃�1/2x✓ = Âx✓. The form ÂH(l)W(l) in GCN is the
generalization of the formula. More details can be found in [Kipf and Welling 2017;
Defferrard et al. 2016].
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Why GCNs work

Commonly used architecture

Z = f (X,A) = softmax(Â ReLu(ÂXW(0))W(1))

Why only two layers?
Deep GCNs do not perform well.
An intuitive explanation is, graph convolution can be viewed as
information exchange between neighbors, and if we keep doing
this, all nodes’ features will become more and more similar.
Graph Laplacian Â has a smoothing effect. [Li et al. 2018] proved
that if we apply the graph Laplacian enough times, all nodes’
features will converge to the same value. Hence the name
over-smoothing.
There are still some deep GCNs, with modified architectures. But
the gains are tiny or even negative.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 18 / 38

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Why GCNs work

Commonly used architecture

Z = f (X,A) = softmax(Â ReLu(ÂXW(0))W(1))

Why only two layers?
Deep GCNs do not perform well.
An intuitive explanation is, graph convolution can be viewed as
information exchange between neighbors, and if we keep doing
this, all nodes’ features will become more and more similar.
Graph Laplacian Â has a smoothing effect. [Li et al. 2018] proved
that if we apply the graph Laplacian enough times, all nodes’
features will converge to the same value. Hence the name
over-smoothing.
There are still some deep GCNs, with modified architectures. But
the gains are tiny or even negative.
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GCN: node classification

Classify papers into topics on citation networks
Classify posts into subgroups on Reddit networks
Classify products into categories on Amazon co-purchase
graphs
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GCN: node classification

Setting: some nodes are labeled
(black circle), all other nodes are
unlabeled

- YL: set of labeled node indices
- Y 2 {0, 1}L⇥K : label matrix
- X 2 Rn⇥d : feature matrix
- Â: preprocessed adjacency matrix

Task: predict node labels of
unlabeled nodes
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GCN: node classification

Setting: some nodes are labeled
(black circle), all other nodes are
unlabeled

- YL: set of labeled node indices
- Y 2 {0, 1}L⇥K : label matrix
- X 2 Rn⇥d : feature matrix
- Â: preprocessed adjacency matrix

Task: predict node labels of
unlabeled nodes

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks February 29, 2024 20 / 38

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



GCN: node classification
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GCN: node classification

Output of GCN:

Z = f (X,A) = softmax(Â ReLu(ÂXW(0))W(1))

Objective function (semi-supervised):

L = �
X

i2YL

KX

k=1

Yik lnZik
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GCN: node classification
Experiments

Datasets [Yang et al. 2016]

Classification accuracy [Kipf & Welling 2017]
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GCN: graph classification

Task: given a set of graphs G = {G1,G2, . . . ,Gj , . . .} with
{Xj 2 Rnj⇥d , Âj 2 Rnj⇥nj}, train a model to classify them into K classes.

How to define the feature vector of a graph?
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GCN: graph classification
READOUT function: compute graph feature from nodes’ features

hG = READOUT({hv}v2V)

E.g.: sum, average, min/max pooling of node embeddings
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GCN: graph classification

READOUT function using different ways
- Sum: hG =

PnG
i=1 hi

- Average: hG = 1
NG

PnG
i=1 hi

- Min/Max: hG = min /max(
⇥
h1; . . . ;hnG

⇤
)

Which one is better? Sum1.

1Xu et al. How powerful are graph neural networks? ICLR 2019.
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GCN: graph classification
Task: given a set of graphs G = {G1,G2, . . . ,Gj , . . .} with
{Xj 2 Rn⇥d , Âj 2 Rn⇥n}, train a model to classify them into K classes.

*In this chart, feature of graph is computed as the sum of the features of its nodes.

Objective function (supervised): L = �
P

j
PK

k=1 Yjk lnZjk
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GCN: graph classification

Experiments: graph classification accuracy (%) of different GNNs with
different readout functions

Table from: Xu et al. How powereful are graph neural networks? ICLR 2019.
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GCN: link prediction
Link prediction: given a graph G = (V ,E), predict new edges, i.e.,

E = (e1, . . . , el) �! Ẽ = (e1, . . . , el , el+1, . . . , el+m)

Applications: recommendation system, knowledge graph mining, etc
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GCN: link prediction

Task: given a graph G with X 2 Rn⇥d and Â, predict the potential
edges of G

Objective function: L = �
P

(i,j)2⌦ Aij ln�(z>i zj)
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GCN: link prediction

Experiments: link prediction task in citation networks
Datasets: Cora, Citeseer, and Pubmed
Evaluation metrics: AUC and AP

Table from: Kipf and Welling. Variational Graph Auto-Encoders. 2016.
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1 Introduction

2 Graph Convolutional Network (GCN)
Architecture of GCN
Applications of GCN

3 Other GNNs
GraphSAGE
GAT

4 Conclusions
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GraphSAGE (optional)
Limitations of GCN

Require that all nodes are presented in the training stage
Do transductive learning but not inductive learning

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurIPS 2017.
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GraphSAGE (optional)
Limitations of GCN

Require that all nodes are presented in the training stage
Do transductive learning but not inductive learning

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurIPS 2017.
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Graph Attention Network (GAT) (optional)

Self-attention: eij = a
�
Whi ,Whj

�

- hi and hj are the d-dimensional features of nodes i and j
- W 2 Rd 0⇥d , a : Rd 0 ⇥ Rd 0 ! R
- ↵ij =

exp(eij)P
k2Ni

exp(eik )
, it is a normalized eij

- ↵ij =
exp(LeakyReLU(aT [WhikWhj ]))P

k2Ni
exp(LeakyReLU(aT [WhikWhk ]))

, k is the concatenation
operation. Here a is a single-layer feedforward neural network.

Compute the next layer

h0
i = �

0

@
X

j2Ni

↵ijWhj

1

A

or with multi-head attention h0
i = kM

m=1�
⇣P

j2Ni
↵(m)

ij W(m)hj

⌘

Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.
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Graph Attention Network (GAT) (optional)

Self-attention: eij = a
�
Whi ,Whj

�

- hi and hj are the d-dimensional features of nodes i and j
- W 2 Rd 0⇥d , a : Rd 0 ⇥ Rd 0 ! R
- ↵ij =

exp(eij)P
k2Ni

exp(eik )
, it is a normalized eij

- ↵ij =
exp(LeakyReLU(aT [WhikWhj ]))P

k2Ni
exp(LeakyReLU(aT [WhikWhk ]))

, k is the concatenation
operation. Here a is a single-layer feedforward neural network.

Compute the next layer

h0
i = �

0

@
X

j2Ni

↵ijWhj

1

A

or with multi-head attention h0
i = kM

m=1�
⇣P

j2Ni
↵(m)

ij W(m)hj

⌘

Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.
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Graph Attention Network (optional)

Velickovic et al. Graph Attention Networks. ICLR 2018.
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1 Introduction

2 Graph Convolutional Network (GCN)
Architecture of GCN
Applications of GCN

3 Other GNNs
GraphSAGE
GAT

4 Conclusions
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Conclusions

Deep learning on graphs works and is very effective!
Exciting area: lots of new applications and extensions (hard to
keep up)
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Learning Outcomes

Understand the motivation of GCN
Understand the architectures of GCN
Know the applications of GNNs
Be able to conduct some experiments (e.g. node classification)
using GNN
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