DDA4210/AIR6002 Advanced Machine Learning Lecture 06 Graph Neural Networks

Tongxin Li

School of Data Science, CUHK-Shenzhen

Spring 2024

Overview

- Introduction
- Graph Convolutional Network (GCN)
 - Architecture of GCN
 - Applications of GCN
- Other GNNs
 - GraphSAGE
 - GAT
- 4 Conclusions

- Introduction
- Graph Convolutional Network (GCN)
 - Architecture of GCN
 - Applications of GCN
- Other GNNs
 - GraphSAGE
 - GAT
- 4 Conclusions

Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

Strength: strong feature representation ability

Limitation: not applicable to non-Euclidean data

Graph-Structured Data

A lot of real-world data do not "live" on grids

Standard CNN and RNN architectures don't work on these data

Graph Data and Related Tasks

- Graph data
 - G = (V, E)
 - Vertices/nodes $V = \{v_1, v_2, \dots, v_n\}$, edges/links $E = \{e_1, e_2, \dots, e_l\}$
 - Affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
 - Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)

Graph Data and Related Tasks

- Graph data
 - G = (V, E)
 - Vertices/nodes $V = \{v_1, v_2, \dots, v_n\}$, edges/links $E = \{e_1, e_2, \dots, e_l\}$
 - Affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
 - Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)
- Tasks
 - Node embedding/representation
 - Given a graph G, represent each node as a vector, i.e.,
 (A, X) → Z ∈ ℝ^{n×k}
 - Graph embedding/representation
 - Given a set of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_N\}$, represent each graph as a vector, i.e., $(\mathbf{A}_i, \mathbf{X}_i) \to \mathbf{g}_i \in \mathbb{R}^k$

Graph Data and Related Tasks

- Graph data
 - G = (V, E)
 - Vertices/nodes $V = \{v_1, v_2, \dots, v_n\}$, edges/links $E = \{e_1, e_2, \dots, e_l\}$
 - Affinity matrix $\mathbf{A} \in \mathbb{R}^{\hat{n} \times n}$
 - Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)
- Tasks
 - Node embedding/representation
 - Given a graph G, represent each node as a vector, i.e., $(\mathbf{A}, \mathbf{X}) \to \mathbf{Z} \in \mathbb{R}^{n \times k}$
 - Graph embedding/representation
 - Given a set of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_N\}$, represent each graph as a vector, i.e., $(\mathbf{A}_i, \mathbf{X}_i) \to \mathbf{g}_i \in \mathbb{R}^k$
 - Node classification: $v_i \rightarrow y_i, i = 1, \dots, n$
 - Graph classification: $G_i \rightarrow y_i, i = 1, ..., N$
 - Link prediction, node or graph clustering, etc

Node and graph embeddings are crucial for node and graph classifications!

Traditional Embedding Methods

- Node embedding/representation
 - Laplacian embedding [Belkin&Niyogi 2003]
 - Deepwalk [Perozzi et al. 2014]
 - LINE [Tang et al. 2015]
 - node2vec [Grover&Leskovec 2016]

Traditional Embedding Methods

- Node embedding/representation
 - Laplacian embedding [Belkin&Niyogi 2003]
 - Deepwalk [Perozzi et al. 2014]
 - LINE [Tang et al. 2015]
 - node2vec [Grover&Leskovec 2016]
- Graph embedding/representation
 - Methods based on node embeddings
 - Graph kernels [Gartner et al 2003; Kriege et al. 2020]

Note that there are more methods for node and graph embeddings

Graph Neural Networks

Graph neural networks (GNNs) are NNs that operate on graph-structured data.

Main Idea: Pass massages between pairs of nodes and agglomerate **Alternative Interpretation:** Pass massages between nodes to refine node (and possibly edge) representations

- Introduction
- Graph Convolutional Network (GCN)
 - Architecture of GCN
 - Applications of GCN
- Other GNNs
 - GraphSAGE
 - GAT
- Conclusions

Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that produces a third function (f = f * g).

1-D convolution

$$y[t] = \sum_{\tau=0}^{|k|-1} k[\tau] x[t+\tau]$$

Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that produces a third function (h = f * g).

2-D convolution

Convolution in CNN

Convolution of image and filter

activation map

Convolution on graph

Convolution of a graph G and a feature matrix $\mathbf{H}^{(I)} \in \mathbb{R}^{n \times d_I}$

$$\mathbf{H}^{(l+1)} = \sigma(\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l)})$$

- σ : activation function, e.g., ReLU and Sigmoid
- $\mathbf{W}^{(l)} \in \mathbb{R}^{d_l \times d_{l+1}}$: parameter matrix
- $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}$, $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$, $\tilde{\mathbf{D}} = \text{diag}(\sum_i \tilde{\mathbf{A}}_{i1}, \dots, \sum_i \tilde{\mathbf{A}}_{in})$
- $\mathbf{H}^{(l+1)} \in \mathbb{R}^{n \times d_{l+1}}$: output of l-th GCN layer
- $\mathbf{H}^{(0)} = \mathbf{X} \in \mathbb{R}^{n \times d}$

Example of GCN layer

$$\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}, \ \tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}, \ \tilde{\mathbf{D}} = \operatorname{diag}(\sum_i \tilde{\mathbf{A}}_{i1}, \dots, \sum_i \tilde{\mathbf{A}}_{in})$$

$$V_{5}$$
 V_{5}
 V_{4}

$$\begin{array}{c|cccc}
\hline
V_{1} & \hline
V_{2} \\
\hline
V_{5} & \hline
V_{3} & A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \tilde{\mathbf{A}} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\tilde{\boldsymbol{D}}^{-1/2} = \begin{bmatrix} 0.71 & 0. & 0. & 0. & 0. \\ 0. & 0.58 & 0. & 0. & 0. \\ 0. & 0. & 0.58 & 0. & 0. \\ 0. & 0. & 0. & 0.71 & 0. \\ 0. & 0. & 0. & 0. & 1. \end{bmatrix}, \hat{\boldsymbol{A}} = \begin{bmatrix} 0.5 & 0.41 & 0. & 0. & 0. \\ 0.41 & 0.33 & 0.33 & 0. & 0. \\ 0. & 0.33 & 0.33 & 0.41 & 0. \\ 0. & 0. & 0.41 & 0.5 & 0. \\ 0. & 0. & 0. & 0. & 1. \end{bmatrix}$$

Example of GCN layer

$$\hat{\textbf{A}} = \begin{bmatrix} 0.5 & 0.41 & 0. & 0. & 0. \\ 0.41 & 0.33 & 0.33 & 0. & 0. \\ 0. & 0.33 & 0.33 & 0.41 & 0. \\ 0. & 0. & 0.41 & 0.5 & 0. \\ 0. & 0. & 0. & 0. & 1. \end{bmatrix}$$
 Except for the diagonals, $\hat{\textbf{A}}$ has the same pattern of non-zero entries with $\hat{\textbf{A}}$

Except for the diagonals, Â has the

Example of GCN layer

Convolution is just weighted sum of a node's feature and its neighbors' features, aka message passing and aggregation

$$\mathbf{H}^{(1)} = \sigma(\hat{\mathbf{A}}\mathbf{X}\mathbf{W}^{(1)})$$

$$\mathbf{H}^{(2)} = \sigma(\hat{\mathbf{A}}\mathbf{H}^{(1)}\mathbf{W}^{(2)})$$

$$\vdots$$

$$\mathbf{H}^{(l+1)} = \sigma(\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l+1)})$$

$$\vdots$$

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution. Consider a signal $\mathbf{x} \in \mathbb{R}^n$ (each node has a scalar) and a filter g_θ (e.g. $g_\theta(\Lambda) = \operatorname{diag}(\theta)$) parameterized by $\theta \in \mathbb{R}^n$ in Fourier domain. \mathbf{x} is filtered by g_θ as

$$\begin{split} g_{\theta} * \mathbf{x} &\stackrel{(1)}{=} g_{\theta}(\mathbf{L}) \mathbf{x} = \mathbf{U} g_{\theta}(\Lambda) \mathbf{U}^{\top} \mathbf{x} \\ &\stackrel{(2)}{\approx} \mathbf{U} \left(\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\Lambda}) \right) \mathbf{U}^{\top} \mathbf{x} = \sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{x} \\ &\stackrel{(3)}{\approx} \theta_{0} \mathbf{x} - \theta_{1} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \mathbf{x} \\ &\stackrel{(4)}{\approx} \theta(\mathbf{I}_{N} + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}) \mathbf{x} \\ &\stackrel{(5)}{\approx} \theta \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \mathbf{x} \end{split}$$

- In (1) **U**: eigenvectors of $\mathbf{L} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{U} \wedge \mathbf{U}^{\top}$ (time consuming!)
- (2) uses K-th order Chebyshev polynomials, $\tilde{\Lambda} = \frac{2}{\lambda_{\text{max}}} \Lambda \mathbf{I}$, $\tilde{\mathbf{L}} = \frac{2}{\lambda_{\text{max}}} \mathbf{L} \mathbf{I}$. The Chebyshev polynomials are recursively defined as $T_k(a) = 2aT_{k-1}(a) T_{k-2}(a)$, with $T_0(a) = 1$ and $T_1(a) = a$.

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution. Consider a signal $\mathbf{x} \in \mathbb{R}^n$ (each node has a scalar) and a filter g_{θ} (e.g. $g_{\theta}(\Lambda) = \operatorname{diag}(\theta)$) parameterized by $\theta \in \mathbb{R}^n$ in Fourier domain. \mathbf{x} is filtered by g_{θ} as

$$\begin{split} g_{\theta} * \mathbf{x} &\overset{(1)}{=} g_{\theta}(\mathbf{L}) \mathbf{x} = \mathbf{U} g_{\theta}(\Lambda) \mathbf{U}^{\top} \mathbf{x} \\ &\overset{(2)}{\approx} \mathbf{U} \left(\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\Lambda}) \right) \mathbf{U}^{\top} \mathbf{x} = \sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{x} \\ &\overset{(3)}{\approx} \theta_{0} \mathbf{x} - \theta_{1} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \mathbf{x} \\ &\overset{(4)}{\approx} \theta(\mathbf{I}_{N} + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}) \mathbf{x} \\ &\overset{(5)}{\approx} \theta \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \mathbf{x} \end{split}$$

- (3) sets K=1 and $\lambda_{\max}\approx 2$
- (4) assumes $\theta_0 + \theta_1 = 0$
- (5) uses the renormalization trick $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution. Consider a signal $\mathbf{x} \in \mathbb{R}^n$ (each node has a scalar) and a filter g_θ (e.g. $g_\theta(\Lambda) = \operatorname{diag}(\theta)$) parameterized by $\theta \in \mathbb{R}^n$ in Fourier domain. \mathbf{x} is filtered by g_θ as

$$g_{\theta} * \mathbf{x} \stackrel{\text{(1)}}{=} g_{\theta}(\mathbf{L})\mathbf{x} = \mathbf{U}g_{\theta}(\Lambda)\mathbf{U}^{\top}\mathbf{x}$$

$$\stackrel{\text{(2)}}{\approx} \mathbf{U} \left(\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\Lambda})\right) \mathbf{U}^{\top}\mathbf{x} = \sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}})\mathbf{x}$$

$$\stackrel{\text{(3)}}{\approx} \theta_{0}\mathbf{x} - \theta_{1}\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}\mathbf{x}$$

$$\stackrel{\text{(4)}}{\approx} \theta(\mathbf{I}_{N} + \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})\mathbf{x}$$

$$\stackrel{\text{(5)}}{\approx} \theta\tilde{\mathbf{D}}^{-1/2}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1/2}\mathbf{x}$$

Note that $g_{\theta} * \mathbf{x} \approx \tilde{\mathbf{D}}^{-1/2}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1/2}\mathbf{x}\theta = \hat{\mathbf{A}}\mathbf{x}\theta$. The form $\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l)}$ in GCN is the generalization of the formula. More details can be found in [Kipf and Welling 2017; Defferrard et al. 2016].

Why GCNs work

Commonly used architecture

$$\mathbf{Z} = f(\mathbf{X}, \mathbf{A}) = \operatorname{softmax}(\hat{\mathbf{A}} \operatorname{ReLu}(\hat{\mathbf{A}} \mathbf{X} \mathbf{W}^{(0)}) \mathbf{W}^{(1)})$$

- Why only two layers?
 - Deep GCNs do not perform well.
 - An intuitive explanation is, graph convolution can be viewed as information exchange between neighbors, and if we keep doing this, all nodes' features will become more and more similar.
 - Graph Laplacian has a smoothing effect. [Li et al. 2018] proved that if we apply the graph Laplacian enough times, all nodes' features will converge to the same value. Hence the name over-smoothing.
 - There are still some deep GCNs, with modified architectures. But the gains are tiny or even negative.

- Classify papers into topics on citation networks
- Classify posts into subgroups on Reddit networks
- Classify products into categories on Amazon co-purchase graphs

- Setting: some nodes are labeled (black circle), all other nodes are unlabeled
 - \mathcal{Y}_L : set of labeled node indices
 - $\mathbf{Y} \in \{0,1\}^{L \times K}$: label matrix
 - $\mathbf{X} \in \mathbb{R}^{n \times d}$: feature matrix
 - A: preprocessed adjacency matrix
- Task: predict node labels of unlabeled nodes

Output of GCN:

$$\mathbf{Z} = f(\mathbf{X}, \mathbf{A}) = \operatorname{softmax}(\hat{\mathbf{A}} \operatorname{ReLu}(\hat{\mathbf{A}} \mathbf{X} \mathbf{W}^{(0)}) \mathbf{W}^{(1)})$$

• Objective function (semi-supervised):

$$\mathcal{L} = -\sum_{i \in \mathcal{Y}_L} \sum_{k=1}^K Y_{ik} \ln Z_{ik}$$

Experiments

Datasets [Yang et al. 2016]

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Classification accuracy [Kipf & Welling 2017]

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)

Task: given a set of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_j, \dots\}$ with $\{\mathbf{X}_j \in \mathbb{R}^{n_j \times d}, \hat{\mathbf{A}}_j \in \mathbb{R}^{n_j \times n_j}\}$, train a model to classify them into K classes.

How to define the feature vector of a graph?

READOUT function: compute graph feature from nodes' features

$$\mathbf{h}_{G} = \text{READOUT}(\{\mathbf{h}_{V}\}_{V \in \mathcal{V}})$$

E.g.: sum, average, min/max pooling of node embeddings

READOUT function using different ways

- Sum: $\mathbf{h}_G = \sum_{i=1}^{n_G} \mathbf{h}_i$
- Average: $\mathbf{h}_G = \frac{1}{N_G} \sum_{i=1}^{n_G} \mathbf{h}_i$
- Min/Max: $\mathbf{h}_G = \min / \max([\mathbf{h}_1; \dots; \mathbf{h}_{n_G}])$

Which one is better? Sum¹.

¹Xu et al. How powerful are graph neural networks? ICLR 2019.

Task: given a set of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_j, \dots\}$ with $\{\mathbf{X}_j \in \mathbb{R}^{n \times d}, \hat{\mathbf{A}}_j \in \mathbb{R}^{n \times n}\}$, train a model to classify them into K classes.

^{*}In this chart, feature of graph is computed as the sum of the features of its nodes.

Objective function (supervised): $\mathcal{L} = -\sum_{j} \sum_{k=1}^{K} Y_{jk} \ln Z_{jk}$

Experiments: graph classification accuracy (%) of different GNNs with different readout functions

	Datasets	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB	MUTAG	PROTEINS	PTC	NCI1
Datasets	# graphs	1000	1500	2000	5000	5000	188	1113	344	4110
	# classes	2	3	2	5	3	2	2	2	2
	Avg # nodes	19.8	13.0	429.6	508.5	74.5	17.9	39.1	25.5	29.8
Baselines	WL subtree	73.8 ± 3.9	50.9 ± 3.8	81.0 ± 3.1	52.5 ± 2.1	78.9 ± 1.9	90.4 ± 5.7	75.0 ± 3.1	59.9 ± 4.3	86.0 \pm 1.8 *
	DCNN	49.1	33.5	-	-	52.1	67.0	61.3	56.6	62.6
	PATCHYSAN	71.0 ± 2.2	45.2 ± 2.8	86.3 ± 1.6	49.1 ± 0.7	72.6 ± 2.2	92.6 \pm 4.2 *	75.9 ± 2.8	60.0 ± 4.8	78.6 ± 1.9
	DGCNN	70.0	47.8	-	-	73.7	85.8	75.5	58.6	74.4
	AWL	74.5 ± 5.9	51.5 ± 3.6	87.9 ± 2.5	54.7 ± 2.9	73.9 ± 1.9	87.9 ± 9.8	-	-	-
	SUM-MLP (GIN-0)	$\textbf{75.1} \pm \textbf{5.1}$	$\textbf{52.3} \pm \textbf{2.8}$	$\textbf{92.4} \pm \textbf{2.5}$	57.5 ± 1.5	$\textbf{80.2} \pm \textbf{1.9}$	$\textbf{89.4} \pm \textbf{5.6}$	$\textbf{76.2} \pm \textbf{2.8}$	$\textbf{64.6} \pm \textbf{7.0}$	$\textbf{82.7} \pm \textbf{1.7}$
GNN variants	SUM-MLP (GIN- ϵ)	$\textbf{74.3} \pm \textbf{5.1}$	$\textbf{52.1} \pm \textbf{3.6}$	$\textbf{92.2} \pm \textbf{2.3}$	$\textbf{57.0} \pm \textbf{1.7}$	$\textbf{80.1} \pm \textbf{1.9}$	$\textbf{89.0} \pm \textbf{6.0}$	$\textbf{75.9} \pm \textbf{3.8}$	63.7 ± 8.2	$\textbf{82.7} \pm \textbf{1.6}$
	SUM-1-LAYER	74.1 ± 5.0	$\textbf{52.2} \pm \textbf{2.4}$	90.0 ± 2.7	55.1 ± 1.6	$\textbf{80.6} \pm \textbf{1.9}$	$\textbf{90.0} \pm \textbf{8.8}$	$\textbf{76.2} \pm \textbf{2.6}$	63.1 ± 5.7	82.0 ± 1.5
	MEAN-MLP	73.7 ± 3.7	$\textbf{52.3} \pm \textbf{3.1}$	50.0 ± 0.0	20.0 ± 0.0	79.2 ± 2.3	83.5 ± 6.3	75.5 ± 3.4	$\textbf{66.6} \pm \textbf{6.9}$	80.9 ± 1.8
	MEAN-1-LAYER (GCN)	74.0 ± 3.4	51.9 ± 3.8	50.0 ± 0.0	20.0 ± 0.0	79.0 ± 1.8	85.6 ± 5.8	76.0 ± 3.2	64.2 ± 4.3	80.2 ± 2.0
	MAX-MLP	73.2 ± 5.8	51.1 ± 3.6	-	-	-	84.0 ± 6.1	76.0 ± 3.2	64.6 ± 10.2	77.8 ± 1.3
	MAX-1-LAYER (GraphSAGE)	72.3 ± 5.3	50.9 ± 2.2	-	-	-	85.1 ± 7.6	75.9 ± 3.2	63.9 ± 7.7	77.7 ± 1.5

Table from: Xu et al. How powereful are graph neural networks? ICLR 2019.

GCN: link prediction

Link prediction: given a graph G = (V, E), predict new edges, i.e.,

$$E=(e_1,\ldots,e_l)\longrightarrow \tilde{E}=(e_1,\ldots,e_l,\underline{e_{l+1}},\ldots,\underline{e_{l+m}})$$

Applications: recommendation system, knowledge graph mining, etc

GCN: link prediction

Task: given a graph G with $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\hat{\mathbf{A}}$, predict the potential edges of G

Objective function: $\mathcal{L} = -\sum_{(i,j) \in \Omega} A_{ij} \ln \sigma(\mathbf{z}_i^\top \mathbf{z}_j)$

GCN: link prediction

Experiments: link prediction task in citation networks

Datasets: Cora, Citeseer, and Pubmed

Evaluation metrics: AUC and AP

Method	Co	ra	Cite	seer	Pubmed		
Method	AUC	AP	AUC	AP	AUC	AP	
SC [5]	84.6 ± 0.01	88.5 ± 0.00	80.5 ± 0.01	85.0 ± 0.01	84.2 ± 0.02	87.8 ± 0.01	
DW [6]	83.1 ± 0.01	85.0 ± 0.00	80.5 ± 0.02	83.6 ± 0.01	84.4 ± 0.00	84.1 ± 0.00	
GAE*	84.3 ± 0.02	88.1 ± 0.01	78.7 ± 0.02	84.1 ± 0.02	82.2 ± 0.01	87.4 ± 0.00	
VGAE*	84.0 ± 0.02	87.7 ± 0.01	78.9 ± 0.03	84.1 ± 0.02	82.7 ± 0.01	87.5 ± 0.01	
GAE	91.0 ± 0.02	92.0 ± 0.03	89.5 ± 0.04	89.9 ± 0.05	96.4 ± 0.00	96.5 ± 0.00	
VGAE	91.4 ± 0.01	92.6 ± 0.01	90.8 ± 0.02	92.0 ± 0.02	94.4 ± 0.02	94.7 ± 0.02	

Table from: Kipf and Welling. Variational Graph Auto-Encoders. 2016.

- Introduction
- Graph Convolutional Network (GCN)
 - Architecture of GCN
 - Applications of GCN
- Other GNNs
 - GraphSAGE
 - GAT
- Conclusions

GraphSAGE (optional)

- Limitations of GCN
 - Require that all nodes are presented in the training stage
 - Do transductive learning but not inductive learning

GraphSAGE (optional)

- Limitations of GCN
 - Require that all nodes are presented in the training stage

 $\mathbf{W}^k, \forall k \in \{1, ..., K\}$; non-linearity σ ; differentiable aggregator functions

Do transductive learning but not inductive learning

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm **Input**: Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$; depth K; weight matrices

```
\begin{array}{c|c} \operatorname{AGGREGATE}_k, \forall k \in \{1,...,K\}; \operatorname{neighborhood} \operatorname{function} \mathcal{N}: v \rightarrow 2^{\mathcal{V}} \\ \textbf{Output:} \operatorname{Vector} \operatorname{representations} \mathbf{z}_v \operatorname{for} \operatorname{all} v \in \mathcal{V} \\ \mathbf{1} \ \mathbf{h}_v^0 \leftarrow \mathbf{x}_v, \forall v \in \mathcal{V} \ ; \\ \mathbf{2} \ \operatorname{for} \ k = 1...K \ \operatorname{do} \\ \mathbf{3} \ \mid \ \mathbf{for} \ v \in \mathcal{V} \ \operatorname{do} \\ \mathbf{4} \ \mid \ \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \operatorname{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\}); \\ \mathbf{5} \ \mid \ \mathbf{h}_v^k \leftarrow \sigma \left(\mathbf{W}^k \cdot \operatorname{CONCAT}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right) \\ \mathbf{6} \ \mid \ \mathbf{end} \\ \mathbf{7} \ \mid \ \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V} \\ \mathbf{8} \ \operatorname{end} \end{array}
```

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurIPS 2017.

9 $\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}$

Graph Attention Network (GAT) (optional)

- Self-attention: $e_{ij} = a(\mathbf{Wh}_i, \mathbf{Wh}_j)$
 - \mathbf{h}_i and \mathbf{h}_i are the *d*-dimensional features of nodes *i* and *j*
 - $\mathbf{W} \in \mathbb{R}^{d' \times d}$, $\mathbf{a} : \mathbb{R}^{d'} \times \mathbb{R}^{d'} \to \mathbb{R}$
 - $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$, it is a normalized e_{ij}
 - $\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\mathsf{T}}\left[\mathbf{W}\mathbf{h}_{i}\|\mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\mathsf{T}}\left[\mathbf{W}\mathbf{h}_{i}\|\mathbf{W}\mathbf{h}_{k}\right]\right)\right)}$, \parallel is the concatenation operation. Here a is a single-layer feedforward neural network.

Graph Attention Network (GAT) (optional)

- Self-attention: $e_{ij} = a(\mathbf{Wh}_i, \mathbf{Wh}_j)$
 - \mathbf{h}_i and \mathbf{h}_i are the *d*-dimensional features of nodes *i* and *j*
 - $\mathbf{W} \in \mathbb{R}^{d' \times d}$, $\mathbf{a} : \mathbb{R}^{d'} \times \mathbb{R}^{d'} \to \mathbb{R}$
 - $\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$, it is a normalized e_{ij}
 - $\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\mathsf{T}}\left[\mathbf{W}\mathbf{h}_{i}\|\mathbf{W}\mathbf{h}_{j}\right]\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\mathsf{T}}\left[\mathbf{W}\mathbf{h}_{i}\|\mathbf{W}\mathbf{h}_{k}\right]\right)\right)}$, \parallel is the concatenation operation. Here a is a single-layer feedforward neural network.
- Compute the next layer

$$\mathbf{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \mathbf{h}_j \right)$$

or with multi-head attention $\mathbf{h}_i' = \prod_{m=1}^{M} \sigma\left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^{(m)} \mathbf{W}^{(m)} h_j\right)$ Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.

Graph Attention Network (optional)

Figure 1: Left: The attention mechanism $a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$ employed by our model, parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$, applying a LeakyReLU activation. Right: An illustration of multihead attention (with K=3 heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent attention computations. The aggregated features from each head are concatenated or averaged to obtain \vec{h}_1' .

Velickovic et al. Graph Attention Networks. ICLR 2018.

- Introduction
- Graph Convolutional Network (GCN)
 - Architecture of GCN
 - Applications of GCN
- Other GNNs
 - GraphSAGE
 - GAT
- 4 Conclusions

Conclusions

- Deep learning on graphs works and is very effective!
- Exciting area: lots of new applications and extensions (hard to keep up)

Relational reasoning

Multi-Agent RL

GCN for recommendation on 16 billion edge graph!

Learning Outcomes

- Understand the motivation of GCN
- Understand the architectures of GCN
- Know the applications of GNNs
- Be able to conduct some experiments (e.g. node classification) using GNN