DDA4210/AIR6002 Advanced Machine Learning Lecture 06 Graph Neural Networks

Tongxin Li

School of Data Science, CUHK-Shenzhen
Spring 2024

Overview

(1) Introduction
(2) Graph Convolutional Network (GCN)

- Architecture of GCN
- Applications of GCN
(3) Other GNNs
- GraphSAGE
- GAT

4 Conclusions

Graph Convolutional Network (GCN)

- Architecture of GCN
- Applications of GCN

3) Other GNNs

- GraphSAGE
- GAT

4 Conclusions

Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

Grid games

Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

Grid games

- Strength: strong feature representation ability

- Limitation: not applicable to non-Euclidean data

Graph-Structured Data

A lot of real-world data do not "live" on grids

Standard CNN and RNN architectures don't work on these data

Graph Data and Related Tasks

- Graph data
- $G=(V, E)$
- Vertices/nodes $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, edges/links $E=\left\{e_{1}, e_{2}, \ldots, e_{l}\right\}$
- Affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
- Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)

Graph Data and Related Tasks

- Graph data
- $G=(V, E)$
- Vertices/nodes $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, edges/links $E=\left\{e_{1}, e_{2}, \ldots, e_{l}\right\}$
- Affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
- Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)
- Tasks
- Node embedding/representation
- Given a graph G, represent each node as a vector, i.e., $(\mathbf{A}, \mathbf{X}) \rightarrow \mathbf{Z} \in \mathbb{R}^{n \times k}$
- Graph embedding/representation
- Given a set of graphs $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{N}\right\}$, represent each graph as a vector, i.e., $\left(\mathbf{A}_{i}, \mathbf{X}_{i}\right) \rightarrow \mathbf{g}_{i} \in \mathbb{R}^{k}$

Graph Data and Related Tasks

- Graph data
- $G=(V, E)$
- Vertices/nodes $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, edges/links $E=\left\{e_{1}, e_{2}, \ldots, e_{l}\right\}$
- Affinity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
- Feature matrix of nodes $\mathbf{X} \in \mathbb{R}^{n \times d}$ (may not exist)
- Tasks
- Node embedding/representation
- Given a graph G, represent each node as a vector, i.e.,

$$
(\mathbf{A}, \mathbf{X}) \rightarrow \mathbf{Z} \in \mathbb{R}^{n \times k}
$$

- Graph embedding/representation
- Given a set of graphs $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{N}\right\}$, represent each graph as a vector, i.e., $\left(\mathbf{A}_{i}, \mathbf{X}_{i}\right) \rightarrow \mathbf{g}_{i} \in \mathbb{R}^{k}$
- Node classification: $v_{i} \rightarrow y_{i}, i=1, \ldots, n$
- Graph classification: $G_{i} \rightarrow y_{i}, i=1, \ldots, N$
- Link prediction, node or graph clustering, etc

Node and graph embeddings are crucial for node and graph classifications!

Traditional Embedding Methods

- Node embedding/representation
- Laplacian embedding [Belkin\&Niyogi 2003]
- Deepwalk [Perozzi et al. 2014]
- LINE [Tang et al. 2015]
- node2vec [Grover\&Leskovec 2016]

Traditional Embedding Methods

- Node embedding/representation
- Laplacian embedding [Belkin\&Niyogi 2003]
- Deepwalk [Perozzi et al. 2014]
- LINE [Tang et al. 2015]
- node2vec [Grover\&Leskovec 2016]
- Graph embedding/representation
- Methods based on node embeddings
- Graph kernels [Gartner et al 2003; Kriege et al. 2020]

Note that there are more methods for node and graph embeddings

Graph Neural Networks

Graph neural networks (GNNs) are NNs that operate on graph-structured data.

Main Idea: Pass massages between pairs of nodes and agglomerate Alternative Interpretation: Pass massages between nodes to refine node (and possibly edge) representations
(2) Graph Convolutional Network (GCN)

- Architecture of GCN
- Applications of GCN

3) Other GNNs

- GraphSAGE
- GAT

4 Conclusions

Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that produces a third function ($h=f * g$).

- 1-D convolution

$$
y[t]=\sum_{\tau=0}^{|k|-1} k[\tau] x[t+\tau]
$$

Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that produces a third function ($h=f * g$).

- 2-D convolution

$$
\begin{aligned}
& y[s, t]=\sum_{\tau=0}^{n-1} \sum_{\gamma=0}^{w-1} k[\tau, \gamma] x[s+\tau, t+\gamma] \\
& \mathbf{X} \bullet=
\end{aligned}
$$

Convolution in CNN

Convolution of image and filter

activation map

Convolution on graph

Convolution of a graph G and a feature matrix $\mathbf{H}^{(l)} \in \mathbb{R}^{n \times d_{l}}$

$$
\mathbf{H}^{(l+1)}=\sigma\left(\hat{\mathbf{A}} \mathbf{H}^{(/)} \mathbf{W}^{(l)}\right)
$$

- σ : activation function, e.g., ReLU and Sigmoid
- $\mathbf{W}^{(I)} \in \mathbb{R}^{d_{l} \times d_{l+1}}$: parameter matrix
- $\hat{\mathbf{A}}=\tilde{\mathbf{D}}^{-1 / 2} \tilde{\mathbf{A}}^{\tilde{\mathbf{D}}^{-1 / 2}}, \tilde{\mathbf{A}}=\mathbf{A}+\mathbf{I}, \tilde{\mathbf{D}}=\operatorname{diag}\left(\sum_{i} \tilde{\mathbf{A}}_{i 1}, \ldots, \sum_{i} \tilde{\mathbf{A}}_{i n}\right)$
- $\mathbf{H}^{(l+1)} \in \mathbb{R}^{n \times d_{l+1}}$: output of l-th GCN layer
- $\mathbf{H}^{(0)}=\mathbf{X} \in \mathbb{R}^{n \times d}$

Example of GCN layer

$\hat{\mathbf{A}}=\tilde{\mathbf{D}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1 / 2}, \tilde{\mathbf{A}}=\mathbf{A}+\mathbf{I}, \tilde{\mathbf{D}}=\operatorname{diag}\left(\sum_{i} \tilde{\mathbf{A}}_{i 1}, \ldots, \sum_{i} \tilde{\mathbf{A}}_{i n}\right)$

Example of GCN layer

$$
\hat{\mathbf{A}}=\left[\begin{array}{ccccc}
0.5 & 0.41 & 0 . & 0 . & 0 . \\
0.41 & 0.33 & 0.33 & 0 . & 0 . \\
0 . & 0.33 & 0.33 & 0.41 & 0 . \\
0 . & 0 . & 0.41 & 0.5 & 0 . \\
0 . & 0 . & 0 . & 0 . & 1 .
\end{array}\right]
$$

Except for the diagonals, $\hat{\text { A }}$ has the same pattern of non-zero entries with \mathbf{A}

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\mathbf{x}_{3} \\
\mathbf{x}_{4} \\
\mathbf{x}_{5}
\end{array}\right] \Rightarrow \hat{\mathbf{A}} \mathbf{X}=\left[\begin{array}{c}
0.5 \mathbf{x}_{1}+0.41 \mathbf{x}_{2} \\
0.41 \mathbf{x}_{1}+0.33 \mathbf{x}_{2}+0.33 \mathbf{x}_{3} \\
0.33 \mathbf{x}_{2}+0.33 \mathbf{x}_{3}+0.41 \mathbf{x}_{4} \\
0.41 \mathbf{x}_{4}+0.5 \mathbf{x}_{5} \\
\mathbf{x}_{5}
\end{array}\right]
$$

Example of GCN layer

$\mathbf{X}=\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5}\end{array}\right] \Rightarrow \hat{\mathbf{A}} \mathbf{X}=\left[\begin{array}{c}0.5 \mathbf{x}_{1}+0.41 \mathbf{x}_{2} \\ 0.41 \mathbf{x}_{1}+0.33 \mathbf{x}_{2}+0.33 \mathbf{x}_{3} \\ 0.33 \mathbf{x}_{2}+0.33 \mathbf{x}_{3}+0.41 \mathbf{x}_{4} \\ 0.41 \mathbf{x}_{4}+0.5 \mathbf{x}_{5} \\ \mathbf{x}_{5}\end{array}\right]$ (V)

Convolution is just weighted sum of a node's feature and its neighbors' features, aka message passing and aggregation

$$
\begin{aligned}
\mathbf{H}^{(1)} & =\sigma\left(\hat{\mathbf{A}} \mathbf{X} \mathbf{W}^{(1)}\right) \\
\mathbf{H}^{(2)} & =\sigma\left(\hat{\mathbf{A}} \mathbf{H}^{(1)} \mathbf{W}^{(2)}\right) \\
& \vdots \\
\mathbf{H}^{(I+1)} & =\sigma\left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l+1)}\right)
\end{aligned}
$$

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal $\mathbf{x} \in \mathbb{R}^{n}$ (each node has a scalar) and a filter g_{θ} (e.g. $g_{\theta}(\Lambda)=\operatorname{diag}(\theta)$) parameterized by $\theta \in \mathbb{R}^{n}$ in Fourier domain. \mathbf{x} is filtered by g_{θ} as

$$
\begin{aligned}
g_{\theta} * \mathbf{x} & \stackrel{(1)}{=} g_{\theta}(\mathbf{L}) \mathbf{x}=\mathbf{U} g_{\theta}(\Lambda) \mathbf{U}^{\top} \mathbf{x} \\
& \stackrel{(2)}{\approx} \mathbf{U}\left(\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\Lambda})\right) \mathbf{U}^{\top} \mathbf{x}=\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{x} \\
& \stackrel{(3)}{\approx} \theta_{0} \mathbf{x}-\theta_{1} \mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2} \mathbf{x} \\
& \stackrel{(4)}{\approx} \theta\left(\mathbf{I}_{N}+\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right) \mathbf{x} \\
& \stackrel{(5)}{\approx} \theta \tilde{\mathbf{D}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1 / 2} \mathbf{x}
\end{aligned}
$$

- In (1) \mathbf{U} : eigenvectors of $\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}=\mathbf{U} \wedge \mathbf{U}^{\top}$ (time consuming!)
- (2) uses K-th order Chebyshev polynomials, $\tilde{\Lambda}=\frac{2}{\lambda_{\text {max }}} \Lambda-\mathbf{I}, \tilde{\mathbf{L}}=\frac{2}{\lambda_{\text {max }}} \mathbf{L}-\mathbf{I}$. The Chebyshev polynomials are recursively defined as $T_{k}(a)=2 a T_{k-1}(a)-T_{k-2}(a)$, with $T_{0}(a)=1$ and $T_{1}(a)=a$.

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal $\mathbf{x} \in \mathbb{R}^{n}$ (each node has a scalar) and a filter g_{θ} (e.g. $\left.g_{\theta}(\Lambda)=\operatorname{diag}(\theta)\right)$ parameterized by $\theta \in \mathbb{R}^{n}$ in Fourier domain. \mathbf{x} is filtered by g_{θ} as

$$
\begin{aligned}
g_{\theta} * \mathbf{x} & \stackrel{(1)}{=} g_{\theta}(\mathbf{L}) \mathbf{x}=\mathbf{U} g_{\theta}(\Lambda) \mathbf{U}^{\top} \mathbf{x} \\
& \stackrel{(2)}{\approx} \mathbf{U}\left(\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\Lambda})\right) \mathbf{U}^{\top} \mathbf{x}=\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{x} \\
& \stackrel{(3)}{\approx} \theta_{0} \mathbf{x}-\theta_{1} \mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2} \mathbf{x} \\
& \stackrel{(4)}{\approx} \theta\left(\mathbf{l}_{N}+\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right) \mathbf{x} \\
& \stackrel{(5)}{\approx} \theta \tilde{\mathbf{D}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1 / 2} \mathbf{x}
\end{aligned}
$$

- (3) sets $K=1$ and $\lambda_{\text {max }} \approx 2$
- (4) assumes $\theta_{0}+\theta_{1}=0$
- (5) uses the renormalization trick $\tilde{\mathbf{A}}=\mathbf{A}+\mathbf{I}$

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal $\mathbf{x} \in \mathbb{R}^{n}$ (each node has a scalar) and a filter g_{θ} (e.g. $\left.g_{\theta}(\Lambda)=\operatorname{diag}(\theta)\right)$ parameterized by $\theta \in \mathbb{R}^{n}$ in Fourier domain. \mathbf{x} is filtered by g_{θ} as

$$
\begin{aligned}
g_{\theta} * \mathbf{x} & \stackrel{(1)}{=} g_{\theta}(\mathbf{L}) \mathbf{x}=\mathbf{U} g_{\theta}(\Lambda) \mathbf{U}^{\top} \mathbf{x} \\
& \stackrel{(2)}{\approx} \mathbf{U}\left(\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\Lambda})\right) \mathbf{U}^{\top} \mathbf{x}=\sum_{k=0}^{K} \theta_{k} T_{k}(\tilde{\mathbf{L}}) \mathbf{x} \\
& \stackrel{(3)}{\approx} \theta_{0} \mathbf{x}-\theta_{1} \mathbf{D}^{-1 / 2} \mathbf{A D ^ { - 1 / 2 }} \mathbf{x} \\
& \stackrel{(4)}{\approx} \theta\left(\mathbf{l}_{N}+\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right) \mathbf{x} \\
& \stackrel{(5)}{\approx} \theta \tilde{\mathbf{D}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1 / 2} \mathbf{x}
\end{aligned}
$$

Note that $g_{\theta} * \mathbf{x} \approx \tilde{\mathbf{D}}^{-1 / 2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1 / 2} \mathbf{x} \theta=\hat{\mathbf{A}} \mathbf{x} \theta$. The form $\hat{\mathbf{A}} \mathbf{H}^{(/)} \mathbf{W}^{(1)}$ in GCN is the generalization of the formula. More details can be found in [Kipf and Welling 2017; Defferrard et al. 2016].

Why GCNs work

- Commonly used architecture

$$
\mathbf{Z}=f(\mathbf{X}, \mathbf{A})=\operatorname{softmax}\left(\hat{\mathbf{A}} \operatorname{ReLu}\left(\hat{\mathbf{A}} \mathbf{X} \mathbf{W}^{(0)}\right) \mathbf{W}^{(1)}\right)
$$

- Why only two layers?
- Deep GCNs do not perform well.
- An intuitive explanation is, graph convolution can be viewed as information exchange between neighbors, and if we keep doing this, all nodes' features will become more and more similar.
- Graph Laplacian Â has a smoothing effect. [Li et al. 2018] proved that if we apply the graph Laplacian enough times, all nodes' features will converge to the same value. Hence the name over-smoothing.
- There are still some deep GCNs, with modified architectures. But the gains are tiny or even negative.

GCN: node classification

amazon

- Classify papers into topics on citation networks
- Classify posts into subgroups on Reddit networks
- Classify products into categories on Amazon co-purchase graphs

GCN: node classification

- Setting: some nodes are labeled (black circle), all other nodes are unlabeled
- \mathcal{Y}_{L} : set of labeled node indices
- $\mathbf{Y} \in\{0,1\}^{L \times K}$: label matrix
- $\mathbf{X} \in \mathbb{R}^{n \times d}$: feature matrix
- Â: preprocessed adjacency matrix
- Task: predict node labels of
 unlabeled nodes

GCN: node classification

GCN: node classification

- Output of GCN:

$$
\mathbf{Z}=f(\mathbf{X}, \mathbf{A})=\operatorname{softmax}\left(\hat{\mathbf{A}} \operatorname{ReLu}\left(\hat{\mathbf{A}} \mathbf{X} \mathbf{W}^{(0)}\right) \mathbf{W}^{(1)}\right)
$$

- Objective function (semi-supervised):

$$
\mathcal{L}=-\sum_{i \in \mathcal{Y}_{L}} \sum_{k=1}^{K} Y_{i k} \ln Z_{i k}
$$

GCN: node classification

Experiments

- Datasets [Yang et al. 2016]

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

- Classification accuracy [Kipf \& Welling 2017]

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	$64.7(26 \mathrm{~s})$	$75.7(13 \mathrm{~s})$	$77.2(25 \mathrm{~s})$	$61.9(185 \mathrm{~s})$
GCN (this paper)	$\mathbf{7 0 . 3}(7 \mathrm{~s})$	$\mathbf{8 1 . 5}(4 \mathrm{~s})$	$\mathbf{7 9 . 0}(38 \mathrm{~s})$	$\mathbf{6 6 . 0}(48 \mathrm{~s})$

GCN: graph classification

Task: given a set of graphs $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{j}, \ldots\right\}$ with $\left\{\mathbf{X}_{j} \in \mathbb{R}^{n_{j} \times d}, \hat{\mathbf{A}}_{j} \in \mathbb{R}^{n_{j} \times n_{j}}\right\}$, train a model to classify them into K classes.

How to define the feature vector of a graph?

GCN: graph classification

READOUT function: compute graph feature from nodes' features

$$
\mathbf{h}_{G}=\operatorname{READOUT}\left(\left\{\mathbf{h}_{v}\right\}_{v \in \mathcal{V}}\right)
$$

E.g.: sum, average, min/max pooling of node embeddings

GCN: graph classification

READOUT function using different ways

- Sum: $\mathbf{h}_{G}=\sum_{i=1}^{n_{G}} \mathbf{h}_{i}$
- Average: $\mathbf{h}_{G}=\frac{1}{N_{G}} \sum_{i=1}^{n_{G}} \mathbf{h}_{i}$
- Min/Max: $\mathbf{h}_{G}=\min / \max \left(\left[\mathbf{h}_{1} ; \ldots ; \mathbf{h}_{n_{G}}\right]\right)$

Which one is better? Sum ${ }^{1}$.
${ }^{1}$ Xu et al. How powerful are graph neural networks? ICLR 2019.

GCN: graph classification

Task: given a set of graphs $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{j}, \ldots\right\}$ with $\left\{\mathbf{X}_{j} \in \mathbb{R}^{n \times d}, \hat{\mathbf{A}}_{j} \in \mathbb{R}^{n \times n}\right\}$, train a model to classify them into K classes.

*In this chart, feature of graph is computed as the sum of the features of its nodes.
Objective function (supervised): $\mathcal{L}=-\sum_{j} \sum_{k=1}^{K} Y_{j k} \ln Z_{j k}$

GCN: graph classification

Experiments: graph classification accuracy (\%) of different GNNs with different readout functions

	Datasets	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB	MUTAG	PROTEINS	PTC	NCI1
	\# graphs	1000	1500	2000	5000	5000	188	1113	344	4110
	\# classes	2	3	2	5	3	2	2	2	2
	Avg \# nodes	19.8	13.0	429.6	508.5	74.5	17.9	39.1	25.5	29.8
	WL subtree	73.8 ± 3.9	50.9 ± 3.8	81.0 ± 3.1	52.5 ± 2.1	78.9 ± 1.9	90.4 ± 5.7	75.0 ± 3.1	59.9 ± 4.3	86.0 ± 1.8 *
	DCNN	49.1	33.5	-	-	52.1	67.0	61.3	56.6	62.6
	Patchysan	71.0 ± 2.2	45.2 ± 2.8	86.3 ± 1.6	49.1 ± 0.7	72.6 ± 2.2	92.6 ± 4.2 *	75.9 ± 2.8	60.0 ± 4.8	78.6 ± 1.9
	DGCNN	70.0	47.8	-	-	73.7	85.8	75.5	58.6	74.4
	AWL	74.5 ± 5.9	51.5 ± 3.6	87.9 ± 2.5	54.7 ± 2.9	73.9 ± 1.9	87.9 ± 9.8	-	-	-
GNN variants	SUM-MLP (GIN-0)	75.1 ± 5.1	$\mathbf{5 2 . 3} \pm 2.8$	92.4 ± 2.5	57.5 ± 1.5	80.2 ± 1.9	89.4 ± 5.6	76.2 ± 2.8	64.6 ± 7.0	82.7 ± 1.7
	SUM-MLP (GIN- ϵ)	74.3 ± 5.1	52.1 ± 3.6	92.2 ± 2.3	57.0 ± 1.7	80.1 ± 1.9	89.0 ± 6.0	75.9 ± 3.8	63.7 ± 8.2	$\mathbf{8 2 . 7} \pm \mathbf{1 . 6}$
	SUM-1-LAYER	74.1 ± 5.0	52.2 ± 2.4	90.0 ± 2.7	55.1 ± 1.6	80.6 ± 1.9	90.0 ± 8.8	76.2 ± 2.6	63.1 ± 5.7	82.0 ± 1.5
	MEAN-MLP	73.7 ± 3.7	$\mathbf{5 2 . 3} \pm \mathbf{3 . 1}$	50.0 ± 0.0	20.0 ± 0.0	79.2 ± 2.3	83.5 ± 6.3	75.5 ± 3.4	$\mathbf{6 6 . 6} \pm \mathbf{6 . 9}$	80.9 ± 1.8
	MEAN-1-LAYER (GCN)	74.0 ± 3.4	51.9 ± 3.8	50.0 ± 0.0	20.0 ± 0.0	79.0 ± 1.8	85.6 ± 5.8	76.0 ± 3.2	64.2 ± 4.3	80.2 ± 2.0
	MAX-MLP	73.2 ± 5.8	51.1 ± 3.6	-	-	-	84.0 ± 6.1	76.0 ± 3.2	64.6 ± 10.2	77.8 ± 1.3
	MAX-1-LAYER (GraphSAGE)	72.3 ± 5.3	50.9 ± 2.2	-	-	-	85.1 ± 7.6	75.9 ± 3.2	63.9 ± 7.7	77.7 ± 1.5

Table from: Xu et al. How powereful are graph neural networks? ICLR 2019.

GCN: link prediction

Link prediction: given a graph $G=(V, E)$, predict new edges, i.e.,

$$
E=\left(e_{1}, \ldots, e_{l}\right) \longrightarrow \tilde{E}=\left(e_{1}, \ldots, e_{l}, e_{l+1}, \ldots, e_{l+m}\right)
$$

Applications: recommendation system, knowledge graph mining, etc

GCN: link prediction

Task: given a graph G with $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\hat{\mathbf{A}}$, predict the potential edges of G

Objective function: $\mathcal{L}=-\sum_{(i, j) \in \Omega} A_{i j} \ln \sigma\left(\mathbf{z}_{i}^{\top} \mathbf{z}_{j}\right)$

GCN: link prediction

Experiments: link prediction task in citation networks Datasets: Cora, Citeseer, and Pubmed Evaluation metrics: AUC and AP

Method	Cora		Citeseer		Pubmed	
	AUC	AP	AUC	AP	AUC	AP
SC [5]	84.6 ± 0.01	88.5 ± 0.00	80.5 ± 0.01	85.0 ± 0.01	84.2 ± 0.02	87.8 ± 0.01
DW [6]	83.1 ± 0.01	85.0 ± 0.00	80.5 ± 0.02	83.6 ± 0.01	84.4 ± 0.00	84.1 ± 0.00
GAE* $_{\text {VGAE }^{*}}$	84.3 ± 0.02	88.1 ± 0.01	78.7 ± 0.02	84.1 ± 0.02	82.2 ± 0.01	87.4 ± 0.00
GAE $^{24.0} \pm$	87.7 ± 0.01	78.9 ± 0.03	84.1 ± 0.02	82.7 ± 0.01	87.5 ± 0.01	
VGAE	91.0 ± 0.02	9.0 ± 0.03	89.5 ± 0.04	89.9 ± 0.05	$\mathbf{9 6 . 4} \pm 0.00$	$\mathbf{9 6 . 5} \pm 0.00$

Table from: Kipf and Welling. Variational Graph Auto-Encoders. 2016.
(2) Graph Convolutional Network (GCN)

- Architecture of GCN
- Applications of GCN
(3) Other GNNs
- GraphSAGE
- GAT

4 Conclusions

GraphSAGE (optional)

- Limitations of GCN
- Require that all nodes are presented in the training stage
- Do transductive learning but not inductive learning

GraphSAGE (optional)

- Limitations of GCN
- Require that all nodes are presented in the training stage
- Do transductive learning but not inductive learning

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
Input : Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$; input features $\left\{\mathbf{x}_{v}, \forall v \in \mathcal{V}\right\}$; depth K; weight matrices $\mathbf{W}^{k}, \forall k \in\{1, \ldots, K\}$; non-linearity σ; differentiable aggregator functions AGGREGATE $_{k}, \forall k \in\{1, \ldots, K\} ;$ neighborhood function $\mathcal{N}: v \rightarrow 2^{\mathcal{V}}$
Output: Vector representations \mathbf{z}_{v} for all $v \in \mathcal{V}$

```
\(\mathbf{1} \mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V}\);
\(\mathbf{2}\) for \(k=1 \ldots K\) do
\(3 \quad\) for \(v \in \mathcal{V}\) do
\(4 \quad \mid \quad \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \operatorname{AGGREGATE}_{k}\left(\left\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\right\}\right)\);
    \(5 \quad \mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \operatorname{CONCAT}\left(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k}\right)\right)\)
6 end
\({ }_{7} \quad \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k} /\left\|\mathbf{h}_{v}^{k}\right\|_{2}, \forall v \in \mathcal{V}\)
8 end
\({ }^{9} \mathbf{z}_{v} \leftarrow \mathbf{h}_{v}^{K}, \forall v \in \mathcal{V}\)
```

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurIPS 2017.

Graph Attention Network (GAT) (optional)

- Self-attention: $e_{i j}=a\left(\mathbf{W h}_{i}, \mathbf{W h}_{j}\right)$
- \mathbf{h}_{i} and \mathbf{h}_{j} are the d-dimensional features of nodes i and j
- $\mathbf{W} \in \mathbb{R}^{d^{\prime} \times d}, \quad a: \mathbb{R}^{d^{\prime}} \times \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}$
$-\alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(e_{i k}\right)}$, it is a normalized $e_{i j}$
$-\alpha_{i j}=\frac{\exp \left(\operatorname{LeakyReLU}\left(\mathbf{a}^{T}\left[W_{i} \mid W_{j}\right]\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(\operatorname{LeakyReLU}\left(\mathbf{a}^{T}\left[W h_{i} \mid W \mathbf{W}_{k}\right]\right)\right)}$, \|is the concatenation operation. Here a is a single-layer feedforward neural network.

Graph Attention Network (GAT) (optional)

- Self-attention: $e_{i j}=a\left(\mathbf{W h}_{i}, \mathbf{W h}_{j}\right)$
- \mathbf{h}_{i} and \mathbf{h}_{j} are the d-dimensional features of nodes i and j
$-\mathbf{W} \in \mathbb{R}^{d^{\prime} \times d}, \quad a: \mathbb{R}^{d^{\prime}} \times \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}$
- $\alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(e_{i k}\right)}$, it is a normalized $e_{i j}$
$-\alpha_{i j}=\frac{\exp \left(\operatorname{LeakyReLU}\left(\mathbf{a}^{T}\left[W_{i} \| \mathbf{W h}_{j}\right]\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp \left(\operatorname{LeakyReLU}\left(\mathbf{a}^{T}\left[W h_{i} \mid W \mathbf{W}_{k}\right]\right)\right)}$, \|is the concatenation operation. Here a is a single-layer feedforward neural network.
- Compute the next layer

$$
\mathbf{h}_{i}^{\prime}=\sigma\left(\sum_{j \in \mathcal{N}_{i}} \alpha_{i j} \mathbf{W} \mathbf{h}_{j}\right)
$$

or with multi-head attention $\mathbf{h}_{i}^{\prime}=\|_{m=1}^{M} \sigma\left(\sum_{j \in \mathcal{N}_{i}} \alpha_{i j}^{(m)} \mathbf{W}^{(m)} h_{j}\right)$
Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.

Graph Attention Network (optional)

Figure 1: Left: The attention mechanism $a\left(\mathbf{W} \vec{h}_{i}, \mathbf{W} \vec{h}_{j}\right)$ employed by our model, parametrized by a weight vector $\overrightarrow{\mathbf{a}} \in \mathbb{R}^{2 F^{\prime}}$, applying a LeakyReLU activation. Right: An illustration of multihead attention (with $K=3$ heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent attention computations. The aggregated features from each head are concatenated or averaged to obtain \vec{h}_{1}^{\prime}.

Velickovic et al. Graph Attention Networks. ICLR 2018.
(2) Graph Convolutional Network (GCN)

- Architecture of GCN
- Applications of GCN

(3) Other GNNs

- GraphSAGE
- GAT
(4) Conclusions

Conclusions

- Deep learning on graphs works and is very effective!
- Exciting area: lots of new applications and extensions (hard to keep up)

Relational reasoning

[Santoro et al., NIPS 2017]

Multi-Agent RL

GCN for recommendation on 16 billion edge graph!

Learning Outcomes

- Understand the motivation of GCN
- Understand the architectures of GCN
- Know the applications of GNNs
- Be able to conduct some experiments (e.g. node classification) using GNN

