DDA4210/AIR6002 Advanced Machine Learning

Lecture 06 Graph Neural Networks

Tongxin Li (SDS, CUHK-SZ)

Tongxin Li
School of Data Science, CUHK-Shenzhen

Spring 2024

Lecture 06 Graph Neural Networks Spring 2024

1/38

Overview

0 Introduction
e Graph Convolutional Network (GCN)
@ Architecture of GCN
@ Applications of GCN
© Other GNNs
@ GraphSAGE
o GAT

0 Conclusions

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 2/38

0 Introduction

@ Architecture of GCN
@ Applications of GCN

@ GraphSAGE
o GAT

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 3/38

Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

| M J‘- G E N E T Speech data ‘ Grid games

nnnnnnnn

Natural language
processing (NLP) Predicate / Verb Phrase

Noun Phrase

Noun Phrase

Anlltlz Naluvv Verb Preposition Arlllclt Nnrn
The cat sat on the mat.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 4/38

Traditional Neural Networks

Traditional neural networks: MLP, CNN, RNN, Transformer

Speech data Grid games
4

nnnnnnnn

Natural language
processing (NLP) Predicate / Verb Phrase
/>w e

Noun Phrase

Noun Phrase

Arite N Verh Prepiiton Arkle Now
The cat sat on the mat.

@ Strength: strong feature representation ability

@ Limitation: not applicable to non-Euclidean data

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 4/38

Graph-Structured Data

A lot of real-world data do not “live” on grids

Social networks

Citation networks
Communication networks
Multi-agent systems

Protein interaction
networks

Road maps

Standard CNN and RNN architectures don’t work on these data

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 5/38

Graph Data and Related Tasks

@ Graph data

e G=(V,E)

o Vertices/nodes V = {vy, vo,..., vy}, edges/links E = {ey, €2,..., €6}
o Affinity matrix A € R™<"

e Feature matrix of nodes X € R"*9 (may not exist)

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 6/38

Graph Data and Related Tasks

@ Graph data
o G=(V,E)
o Vertices/nodes V = {vy, vo,..., vy}, edges/links E = {ey, €2,..., €6}
o Affinity matrix A € R™"
e Feature matrix of nodes X € R"*9 (may not exist)
@ Tasks
o Node embedding/representation
@ Given a graph G, represent each node as a vector, i.e.,
(A, X) — Z c R™K
o Graph embedding/representation

@ Given a set of graphs G = {Gy, Gz, ..., Gy}, represent each graph as
a vector, i.e., (A, X;) — g; € R

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 6/38

Graph Data and Related Tasks

@ Graph data
o G=(V,E)
o Vertices/nodes V = {vy, vo,..., vy}, edges/links E = {ey, €2,..., €6}
o Affinity matrix A € R™"
e Feature matrix of nodes X € R"*9 (may not exist)
@ Tasks
o Node embedding/representation
@ Given a graph G, represent each node as a vector, i.e.,
(A, X) > Zc R™K
o Graph embedding/representation
@ Given a set of graphs G = {Gy, Gz, ..., Gy}, represent each graph as
a vector, i.e., (A, X;) — g; € R
o Node classification: v; — y;,i=1,...,n
o Graph classification: G; — y;,i=1,...,N
e Link prediction, node or graph clustering, etc

Node and graph embeddings are crucial for node and graph classifications!

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 6/38

Traditional Embedding Methods

@ Node embedding/representation

Laplacian embedding [Belkin&Niyogi 2003]
Deepwalk [Perozzi et al. 2014]

LINE [Tang et al. 2015]

node2vec [Grover&Leskovec 2016]

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 7/38

Traditional Embedding Methods

@ Node embedding/representation

o Laplacian embedding [Belkin&Niyogi 2003]
o Deepwalk [Perozzi et al. 2014]

o LINE [Tang et al. 2015]

@ node2vec [Grover&Leskovec 2016]

@ Graph embedding/representation

e Methods based on node embeddings
o Graph kernels [Gartner et al 2003; Kriege et al. 2020]

Note that there are more methods for node and graph embeddings

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 7/38

Graph Neural Networks

Graph neural networks (GNNs) are NNs that operate on
graph-structured data.

Input

Hidden layer

Hidden layer

RelU

RelLU

Output

Main Idea: Pass massages between pairs of nodes and agglomerate
Alternative Interpretation: Pass massages between nodes to refine
node (and possibly edge) representations

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks

Spring 2024 8/38

e Graph Convolutional Network (GCN)
@ Architecture of GCN
@ Applications of GCN

@ GraphSAGE
o GAT

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 9/38

Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that
produces a third function (h = f % g).

@ 1-D convolution

[kl-1
y[t] = Z klt]x[t + 7]

Amplitude

[P,

Amplitude

o
:

Amplitude

ook
n

— T
0 10 20 30 40 50 60 70 S
Sample number

gttt —t—t——+
0 10 20 30 0 10 20 30 40 S0 60 70 S0 9 100 110
Sample number Sample number

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 10/38

Convolution in signal processing

Convolution is a mathematical operation on two functions (f and g) that
produces a third function (h = f x g).

@ 2-D convolution

h—1w-1

yls, t] = Z Z klt,ylx[s +1,t + V]
7=0 y=0

X @

L
X
[]
Il
o

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 11/38

Convolution in CNN

Convolution of image and filter

activation map

32x32x3 image
5x5x3 filter

V

28

=\

convolve (slide) over all

spatial locations
A 28

|
—

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 12/38

Convolution on graph

Convolution of a graph G and a feature matrix H() € R
HHD = o (AHOWO)

- o activation function, e.g., ReLU and Sigmoid

- W) € R¥*d1: parameter matrix

- A=D""2AD""2, A=A +1,D=diag(>;Ax,...,>;An)
- HU+1) e R™<d+1: output of /-th GCN layer

- HO = X ¢ R4

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 13/38

Example of GCN layer

A=D""2AD" /2, A=A +1,D =diag(>;Aj1,..., > Ap)

® @ 010 0 0] 1100 0
\ 10100 _ 11100
@) A=1]|0 1 01 0/,A=1|0 1 1 10
00100 00110
/@ 000 0 0O 000 0 f
071 0. 0. 0 O r05 041 0. 0. O
3 0. 058 0. 0 0| _ |04 033 033 0. O
D'2=]0 0o 05 o0 o|,A=|0 033 033 041 0.
0. 0 0 071 O 0. 0. 041 05 0
oo o0 0 0 1 Lo. o o0 0 1.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 14/38

Example of GCN layer

05 041 O 0.
041 033 033 O

Except for the diagonals, A has the
A=|o0 03 033 041

same pattern of non-zero entries

~ooo0o0

0. 0. 041 05 with A
0. 0. 0. 0.
X1 0.5x4 + 0.41x>
X2| |0.41x) +0.33xp +0.33%g
X = |x3| = AX = |0.33x, + 0.33X5 + 0.41x4

Xa 0.41x4 + 0.5x5
X5 X5

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 15/38

Example of GCN layer

Xi 0.5%1 + 0.41%, »—®
x| 0.41X4 + 0.33X, + 0.33X3 \
X = |xg| = AX= |0.33x; +0.33%3 + 0.41x4s | @)

X4 0.41x4 + 0.5x5 /@
X5 X5

Convolution is just weighted sum of a node’s feature and its neighbors’
features, aka message passing and aggregation

H() = (AXW(™)
H®@) — U(AHU)W(?))

HUFD = o (AHOWUH1)

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 16/38

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x € R” (each node has a scalar) and a filter gy (e.g.
go(N) = diag(0)) parameterized by 6 € R" in Fourier domain. x is filtered by gy as

9o * X w 9o(L)x = Ugy(A)U " x

K K

Qu <Z b1 Tk(7\)) UTx =3 6 Ti(D)x
k=0 k=0

9 gox — 6,0~ /2AD1/2x

@ 01y + D2AD2)x

Q op-172AD1/2x

- In (1) U: eigenvectors of L=1—D~"/2AD~'/2 = UAUT (time consuming!)

- (2) uses K-th order Chebyshev polynomials, A = {2 A —I, L = (2L 1.

max A
The Chebyshev polynomials are recursively defined as
Tk(a) = 2aTk—_1(a) — Tk—2(a), with To(a) = 1 and Ty(a) = a.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 17/38

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x € R" (each node has a scalar) and a filter gy (e.g.
go(N) = diag(0)) parameterized by 0 € R” in Fourier domain. x is filtered by gy as

g0 +x 2 go(L)x = Ugs(A)U x
@ K ~ - K ~
U 0Te(A) | UTx =" 0k Ti(D)x
k=0 k=0

3
2 gox — 0,0 /2AD"/2x
4
@ o(ly + D2AD/2)x

2 9p-1/2AD"/2x

- (B)sets K=1and \nax = 2
- (4) assumes 6y + 61 =0
- (5) uses the renormalization trick A = A + |

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 17/38

Why GCNs work (optional)

In essence, GCN layer is an approximated spectral convolution.
Consider a signal x € R" (each node has a scalar) and a filter gy (e.g.
ge(N) = diag(0)) parameterized by 0 € R” in Fourier domain. x is filtered by g as

g0 +x = go(L)x = Ugy(A)U " x

@ K . K .

~U <Z Ok Tk(/\)> U'x=> 0kTi(L)x

k=0 k=0
9 gox — 6,0~ /2AD1/2x
@ 601y + D2AD/2)x
2 pp-1/2AD"/2x

Note that gy * x ~ D~1/2AD~"/2x9 = Ax6. The form AHOW(in GCN is the

generalization of the formula. More details can be found in [Kipf and Welling 2017;
Defferrard et al. 2016].

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 17/38

Why GCNs work

@ Commonly used architecture
Z = f(X,A) = softmax(A ReLu(AXW(®)w())

@ Why only two layers?

o Deep GCNs do not perform well.

e An intuitive explanation is, graph convolution can be viewed as
information exchange between neighbors, and if we keep doing
this, all nodes’ features will become more and more similar.

@ Graph Laplacian A has a smoothing effect. [Li et al. 2018] proved
that if we apply the graph Laplacian enough times, all nodes’
features will converge to the same value. Hence the name
over-smoothing.

o There are still some deep GCNSs, with modified architectures. But
the gains are tiny or even negative.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 18/38

GCN: node classification

Node
classification

@ reddit

@ Classify papers into topics on citation networks

@ Classify posts into subgroups on Reddit networks

@ Classify products into categories on Amazon co-purchase
graphs

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 19/38

GCN: node classification

@ Setting: some nodes are labeled
(black circle), all other nodes are o
unlabeled

- Y.: set of labeled node indices ° <8 :
- Y € {0, 1}:%K: label matrix @,
- X € R™Y: feature matrix e
- A preprocessed adjacency matrix . . o
@ Task: predict node labels of ¢ 4
unlabeled nodes

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 20/38

GCN: node classification

Hidden layer Hidden layer Node classification:
A (. softmax(zy,)
. . e.g. Kipf & Welling (ICLR 2017)
\ :
Input S - Output
. — RelU | o /" ReLU
TP s D
~VY'\ toe () s ()
\ &
X =HO A A Z=HWY
L2 » . »
. .
b L] . L]

HAED — (AH”)W(”)

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 21/38

GCN: node classification

@ Output of GCN:
Z = f(X,A) = softmax(A ReLu(AXW(©®))w())
@ Objective function (semi-supervised):
K
L=- Z Z Yik In Zik
i€y k=1

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 22/38

GCN: node classification

Experiments

@ Datasets [Yang et al. 2016]

Dataset Type Nodes Edges Classes Features Label rate
Citeseer Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.001

@ Classification accuracy [Kipf & Welling 2017]

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1
ICA [18] 69.1 75.1 73.9 23.1

Planetoid* [29] 64.7 (26s) 75.7(13s) 77.2(25s) 61.9 (185s)
GCN (this paper) 70.3(7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 23/38

GCN: graph classification

Task: given a set of graphs G = {Gj, Ga, .

.., Gj,...} with

{X; € RM*, f\j e R"*M}, train a model to classify them into K classes.

Hidden layer Hidden layer NOde CIaSSification:
. . softmax(zy,)
. .
i . e.g. Kipf & Welling (ICLR 2017)
. .
Input v . v . Output
. 2 2 Graph classification:
. _ &7 RelU | o /" RelU
L4 ~ —
SR e = e B S l o S softmax(}_,, zn)
= o) o0 e.g. Duvenaud et al. (NIPS 2015)
X =HO . N 7 — M
. A = - A =
- L] d o
L

HGD — 4 (AH(”W“))

How to define the feature vector of a graph?

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 24/38

GCN: graph classification

READOUT function: compute graph feature from nodes’ features
hg = READOUT({h, },cy)

E.g.: sum, average, min/max pooling of node embeddings

Graph classification

hg = ReADOUT(RP, hP, ..., B

'\\

2 (2)
it h{

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 25/38

GCN: graph classification

READOUT function using different ways
- Sum: hg = 2761 h;
- Average: hg = N ST hy
- Min/Max: hg = min / max([h1, el hnG])

Which one is better? Sum?.

"Xu et al. How powerful are graph neural networks? ICLR 2019.
Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 26/38

GCN: graph classification

Task: given a set of graphs G = { Gy, Ga, ..

., Gj,.

..} with

{X; € R™9, A; € R™"}, train a model to classify them into K classes.

Hidden layer

Hidden layer

RelLU

a()

HGD — 4 (AH(l)WU))

Output

Z=H®

Node classification:
softmax(zy)
e.g. Kipf & Welling (ICLR 2017)

Graph classification:

softmax(}", zn)

e.g. Duvenaud et al. (NIPS 2015)

*In this chart, feature of graph is computed as the sum of the features of its nodes.

Objective function (supervised): £ = — 3, 31, Vi In Zj

Tongxin Li (SDS, CUHK-SZ)

Lecture 06 Graph Neural Networks

Spring 2024 27/38

GCN: graph classification

Experiments: graph classification accuracy (%) of different GNNs with
different readout functions

Datasets IMDB-B IMDB-M RDT-B RDT-MSK COLLAB MUTAG PROTEINS PTC NCI
2 #graphs 1000 1500 2000 5000 5000 188 1113 344 4110
& #classes 2 3 2 5 3 2 2 2 2
A Avg#nodes 198 130 4296 508.5 74.5 179 39.1 255 298
WL subtree 738439 S09+38 8L0£31 525421 78919 904£57 75.0+£31 599+43 860+ 18"
5 DCNN 491 335 - - 2.1 67.0 613 56.6 626
£ patcHySaN TL0£22 452+28 86316 49.1+£07 726+22 926+42% 759+28 60.0£48 786+ 1.9
% DoCNN 700 478 - - 737 85.8 755 58.6 744
AWL 745459 51536 879425 54729 739+19 879498 - - -
SUM-MLP (GIN-0) 751451 523+£28 92425 ST5:15 802+19 89456 762+28 64670 82717
2 SUM-MLP (GIN-9) 743451 521+36 922+23 ST0+17 801+19 890+60 759+38 63782 82716
£ sum-l-Laver 741450 522+24 900£27 55.1+16 80.6+£19 900+88 762+26 631+57 820+15
2 Mean-MLP 737437 523+31 500£00 20000 792+23 835463 15534 666+69 809+ 18
Z MeAN-I-LAYER (GON) 740434 S19+38 500200 20000 790+18 856+58 760+£32 642+43 §02+20
MAX-MLP 732458 SL1£36 - - - 84061 760+£32 646+102 77.8+13
MAX-1-LAYER (GraphSAGE) 72353 509 2.2 - - - 85.1£7.6 759432 63977 TLIE1S

Table from: Xu et al. How powereful are graph neural networks? ICLR 2019.

CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 28/38

GCN: link prediction

Link prediction: given a graph G = (V, E), predict new edges, i.e.,
E=(er,....e) — E=(er,....e1.611,....€4m)
Applications: recommendation system, knowledge graph mining, etc

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 29/38

GCN: link prediction

Task: given a graph G with X € R"*9 and A, predict the potential

edges of G
Hidden layer Hidden layer
Input P ° o . Output
_ &7 ReLU | e— /- ReLU
A = I e
Yo a() = ()
X = H(O) . . 7 = H(N)
HOHD (AH(I)W)

Obijective function: £ =

Tongxin Li (SDS, CUHK-SZ)

=2 (ij)eq Ajln o(z/)

Lecture 06 Graph Neural Networks

Node classification:
softmax(zn)
e.g. Kipf & Welling (ICLR 2017)

Graph classification:

softmax(} ", zn)

e.g. Duvenaud et al. (NIPS 2015)

Link prediction:
p(Aij) = o(z{ z;)

Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”

Spring 2024 30/38

GCN: link prediction

Experiments: link prediction task in citation networks
Datasets: Cora, Citeseer, and Pubmed
Evaluation metrics: AUC and AP

Cora Citeseer Pubmed
AUC AP AUC AP AUC AP

SC [5] 84.6+0.01 88.5+0.00 80.5+0.01 85.0+0.01 8424002 87.8+0.01
DWI[6] 8314001 85.04+0.00 80.5+£0.02 83.6+0.01 8444000 84.1+0.00

GAE* 84.3+0.02 881+0.01 787+£0.02 84.14+£0.02 822+0.01 87.4+0.00
VGAE* 84.0+0.02 87.7+0.01 789+0.03 84.1+0.02 8274001 87.5+0.01
GAE 91.0+0.02 92.0+0.03 89.5+0.04 89.9+0.05 9644000 96.5=+0.00
VGAE 9144001 92.6+0.01 90.8+0.02 92.0£0.02 9444002 94.74+0.02

Method

Table from: Kipf and Welling. Variational Graph Auto-Encoders. 2016.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 31/38

@ Architecture of GCN
@ Applications of GCN

e Other GNNs
@ GraphSAGE
o GAT

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 32/38

GraphSAGE (optional)

@ Limitations of GCN
e Require that all nodes are presented in the training stage
e Do transductive learning but not inductive learning

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 33/38

GraphSAGE (optional)

@ Limitations of GCN
e Require that all nodes are presented in the training stage
e Do transductive learning but not inductive learning

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
Input : Graph G(V,£); input features {x,, Vv € V}; depth K’; weight matrices
Wk VEk € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEg, Vk € {1, ..., K'}; neighborhood function A : v — 2V
Output: Vector representations z, for allv € V
1 h?«x,,YoeV;
2 fork=1..K do
3 forveVdo

4 h}(,) < AGGREGATE({h{™",Vu € N'(v)});
5 h* < o (W’C - coNCAT(hF—1, h}“\/(v)))

6 end

7 b < hE/||hk |2, Vo € V

s end

9 zvehff,VUEV

Hamilton et al. Inductive Representation Learning on Large Graphs. NeurlPS 2017.
Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 33/38

Graph Attention Network (GAT) (optional)

@ Self-attention: e; = a (Wh;, Wh)
- h; and h; are the d-dimensional features of nodes / and j

- WeRI*d, a:RY xRY 5 R
exp(e))

BV seser=ricnl it is a normalized e;
~ exp(LeakyReLU(a” [Wh;|Wh/])) : ;
= s Tk R U@ W [Wh) || is the concatenation

operation. Here a is a single-layer feedforward neural network.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 34/38

Graph Attention Network (GAT) (optional)

@ Self-attention: e; = a (Wh;, Wh)
- h; and h; are the d-dimensional features of nodes / and j

- WeRI*d, a:RY xRY 5 R
exp(e))

BV seser=ricnl it is a normalized e;
o exp(LeakyReLU(aT[Wh/‘||Wh/'])) i i
= s Tk R U@ W [Wh) || is the concatenation

operation. Here a is a single-layer feedforward neural network.

@ Compute the next layer
hi=o > a;Wh;
JEN;
or with multi-head attention h!, = |M_, o (ZjeN,- a,(jm)W(’")hj)
Compare GAT with GCN: What are the differences?

Velickovic et al. Graph Attention Networks. ICLR 2018.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 34/38

Graph Attention Network (optional)

concat/avg /7,
hq

Figure 1: Left: The attention mechanism a(VVﬁi, WI;]) employed by our model, parametrized

by a weight vector & € R2F ', applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain l-{’l.

Velickovic et al. Graph Attention Networks. ICLR 2018.

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 35/38

@ Architecture of GCN
@ Applications of GCN

@ GraphSAGE

o GAT

e Conclusions

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 36/38

Conclusions

@ Deep learning on graphs works and is very effective!
@ Exciting area: lots of new applications and extensions (hard to

keep up)
Relational reasoning Multi-Agent RL GCN for recommendation on 16 billion edge graph!
O (@ Pinterest £ o
- . # ‘ SUCCESSFUL
‘ RECOMMENDATION
. . 3 possivle k}i\‘&m \
[Santoro et al., NIPS 2017] [Sukhbaat:: :t al,, O i Source pin
NIPS 2016] [e

[Leskovec lab, Stanford] BAD RECOMMENDATION

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 37/38

Learning Outcomes

@ Understand the motivation of GCN
@ Understand the architectures of GCN
@ Know the applications of GNNs

@ Be able to conduct some experiments (e.g. node classification)
using GNN

Tongxin Li (SDS, CUHK-SZ) Lecture 06 Graph Neural Networks Spring 2024 38/38

	Introduction
	Graph Convolutional Network (GCN)
	Other GNNs
	Conclusions

