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Overview

0 Introduction
e Locally Linear Embedding (LLE)
e t-distributed stochastic neighbor embedding (t-SNE)

0 Autoencoder
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o Introduction
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Introduction: Dimensionality Reduction

eigenv olues a‘f

Linear DR 7 Non-Linear D
Popular linear DR algorithms - A= 05 ,
o PCA Azz 0.8 A= 9-4'7 -
A= 001 A;—-,. °o. 4

@ LDA (supervised) :
@ Multidimensional Scaling (MDS)
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Tongxin Li (SDS, CUHK-SZ)

3313
2963
3175
3339
2762

Can we construct a map?

Introduction: Multidimensional Scaling (MDS)

@ Problem: Given euclidean distances among points, recover the
position of the points!

D e RVN 5 X e RPN

@ Example: The road distances between 21 European cities
(almost euclidean, but not quite) are as follows:

Athens Barcelona Brussels calais cherbourg

1318
1326
1294
1498
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Introduction: Multidimensional Scaling (MDS)

Road distance

Athens Barcelona Brussels Calais Cherbourg

Barcelona 3313
Brussels 2963 1318
calais 3175 1326 204
cherbourg 3339 1294 583 460
cologne 2762 1498 206 409 785
.
Constructed 2-D map (data visualization)
Athens
8 Rome
S 1
[Florattar Barcelona
~ Marseilles Milan
% Madria Lyoni@eneva Vienna
£ o - usbon Munich
o
3 cnemmfr’gggss«hw
Hook of Holland
o Hamburg
Q -
9. Copenhagen

Stockhoim

T
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Introduction: Multidimensional Scaling

Transform US city distances to city locations (2D)
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More about MDS

- https://www.stat.pitt.edu/sungkyu/course/2221Falll3/lec8_
mds_combined.pdf

- Cox, M., Cox, T. (2008). Multidimensional Scaling. In: Handbook of Data
Visualization. Springer Handbooks Comp.Statistics. Springer, Berlin,
Heidelberg. https://link.springer.com/content/pdf/10.1007/
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https://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_mds_combined.pdf
https://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_mds_combined.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-33037-0.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-33037-0.pdf

Introduction: A Toy Example of NLDR

Concentric circles

¥ coordinate

s

X coordinate

First principal component after Linear PCA First principal component after RBF Kernel PCA
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Introduction: A

Frst2 Linear PCA First 2 principal RBF Kernel PCA

4 KPCA:d=2
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Introduction: NLDR

Important NLDR algorithms

@ Kernel PCA' @ Autoencoder*
e

@ Locally Linear Embedding? @ t-SNE®
—

@ Isomap?® @ UMAPS

B. Scholkopf, A. Smola, and K.-R. Muller, Nonlinear component analysis as a
kernel eigenvalue problem, Neural Computation, vol. 10, no. 5, pp. 1299-1319, 1998.
2Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, v.290 no.5500 , Dec.22, 2000. pp.2323-2326

3J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

“Hinton, Geoffrey E. and Ruslan R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science 313, no. 5786 (2006): 504-507.

®Van der Maaten, L.J.P. and Hinton, G.E. Visualizing Data Using t-SNE. Journal of
Machine Learning Research. 2008, 9: 2579-2605.

®Mclnnes, Leland, John Healy, and James Melville. Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint arXiv:
1802.03426,2018.
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9 Locally Linear Embedding (LLE)
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Locally Linear Embedding (LLE)

@ Based on a simple geometric intuition of local linearity
@ Assume each sample and its neighbors lie on or close to a locally

linear h of the manifold
o Manifold:\low-dimentional surface embedded (nonlinearly) in
~dimentional spacej

o Examples of manifold

@ LLE assumption: projection should preserve the neigborhood

e Projected data point should have the same neigborhood as the
original point
o Locally linear representation should be preserved
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Locally Linear Embedding (LLE)
thic idea wil te MSel

° al me—("haofals p)
A gener j/G\ cgen  in leer  lectures |
@ Based on a simple geometric intuition of local linearity
@ Assume each sample and its neighbors lie on or close to a locally
linear patch of the manifold

o Manifold: low-dimentional surface embedded (nonlinearly) in
high-dimentional space. 1f distQXo X
e Examples of manifold ‘

@ LLE assumption: projection should preserve the neigborhood

e Projected data point should have the same neigborhood as the
original point
Geel o Locally linear representation should be preserved
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LLE: Main Idea

@ Neighborhood-preserved projection

Tongxin Li (SDS, CUHK-SZ)

°. 0o _ (2) Selectneighbors
4.xé'ot &F
Xi . BGSZ— m> AéL.
L] o .,
® . Gme weighls
° ° L con clres-
(o] ]

Reconstruct with

How 4. ge+ +he weights 2

® How con wa mep +2

ewvedded (socdinates ?

Map to embedded coordinates
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LLE: Main Idea

@ Neighborhood-preserved projection

bakl on Seme distance.

o ..... o Frem & theoratical peink of ulew:
° \.". Johngen— Lindenstrauss Lemmo
° \‘ voadin modenal
° \ 9
o [¢]
@ Xj ~ E WiiX;
Reconstruct with je/\/.k
linear weights ]
jeNF

Map to embedded coordinates
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LLE: Algorithm

Crook ; Dimension Reductofl * PxN — dxn p> 4
@ Input: D-dimensional data points X1, Xz, ..., Xy, d, K (k > d + 1)
1 For each data point x;, find its k nearest neighbors N¥ \> % of

2 Find the locally linear reconstruction weights by solving

neiﬁLb-»/S‘
N
W =argmin [Ix; — > wx;[?, stV Y wy=1

LA JENF jENk
3 Use W to compute the low-dimensional projections

d x4 N N 1

2 Z = argmin zi— wizi||?, st ) z =0 —-2Z" =1
R gz ;” i j;k 2l ; i N

@ Output: Low-dimensional embedding Z € RY*N
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LLE: Algorithm

@ Input: D-dimensional data points x1,X2, ..., Xy, d, K (k > d + 1)
1 For each data point x;, find its k nearest neighbors N¥
2 Find the locally linear reconstruction weithts by solving

Il x -Xwliz
N /X/\___\
W= argminznxif Z wiX;[?, st Vi Z wij =1
Vot ] jenr L JENT

> r'iginel 4 \inear pPPrwd»-uhay, X
3 Use W to compute the low-dimensional projections

N N
’
_ i o >.]|12 R 777 —
Z= argzmanHz, > wizjlP, st )z =0, 22 =14

i=1 JENK i=1
@ Output: Low-dimensional embeddin@
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LLE: Algorithm

@ Input: D-dimensional data points X1,X»,..., Xy, d, kK (k > d + 1)
1 For each data point x;, find its k nearest neighbors N¥
2 Find the locally linear reconstruction weights by solving

N
W= argminz [I%; — Z w,-,-x,-||2, s.t. Vi Z wi =1
w5

je-/v,'k je'/\[ik (“n:ot dejmv./cl&.
Gouki 005 (Ut cevoriente)
3 Use W to compute the low-dimensional projections J
n !

N - ZW“/\; secjr_—e»}p%

i=1 /G/\/,»k i—1
remove  translakin fieed=m
heed +o be Conteed

@ Output: Low-dimensional embedding Z € RI*N (" gy

Wl’\ﬁu{f i« X ? How 4= CGMFM"@ it 2
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LLE: Algorithm

@ Computation of W —>  =lep2
See the paper 7 if your are interested in it.

@ Computationof Z ——=  siep =

N V24 ZC I—W)
S lzi— > wizl? = (12 - ZW|2 = trace <2(| —W)(1 - wT)zT)
i=1 je_/\/’ik A deralled deavarisn S in +he  reading morenals

on cowrse web opHonal Fimidac 4o PcA)

Therefore, Z should be composed of the d eigenvectors of
(1—W)(1 — WT) corresponding to the smallest d nonzero
eigenvalues, i.e., - why Ai=o0 7 Wher o v ?

Z= [V2,V3, s avd+1]T

’Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, v.290 no.5500 , Dec.22, 2000. pp.2323-2326
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LLE: Algorithm

@ Computation of W
See the paper 7 if your are interested in it.

@ Computation of Z 2
i 2¢z-willz

. N /4
NNz - S wizgl? = (12 - ZWE = trace <2(| —W)(1 - wT)zT)
. !

Therefore, Z should be composed of the d eigenvectors of
(1 — W)(I — WT) corresponding to the smallest d nonzero
eigenvalues, i.e., Remmning €igenvelues ove ofien
g / am-zeros N prectic.
all-en& ued-ﬂ‘
I = [V2,V3,...,Vgi1] ",
Note wWi=1 = (I- w):L_-o=:>(I W)(I-w) 1 =0

’Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, v.290 no.5500 , Dec.22, 2000. pp.2323-2326
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LLE: Applications

Toy examples
LLE: d=2 LLE: d=1

oo
L e ———
o

o006

LLE: d=2

3 -
R

g £ ) [

LR © A

5 g F ‘,f oo
. A~ ot " . :\ 0
w e ) 2% " s‘
Py ol

Spring 2024 16/33
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LLE: Applications

Face images

Eh
ool 24l oyl sl aslzel 26l a6l 26l 26l 26l 2dd 2dd a¥ v 4.‘ ¥
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Limitations of Local Methods

v [ocal Method @ LLE serSikve 4o naise

PCA , ond +WVE( Il be

discussed |ater f) m-re

@ Sensitive to noise o Gilobal Meth-d :

Nois .
Clean Y robus+ 4o neise,
16.4
MDS: 16,3535 PCA: 0.0625 MDS 15 43¢ p&:u 032
2 1 2 o 0 os| K
N 005 » o
05 ! 1 ¥ .
0 ' o DC.. 0
0 0 .
SN 1 4 . A -
7 005 2 LF 005 4
oM 2 o o
P25 0 2 _ 0 005 0 005 2 e 2 2,68 05 9e 9%
ISOMAP: 19.703s LLE: 02815 Hessian LLE: 36885 ISOMAP: 19,6565 LLE: 02815 Hessian LLE: 3.719s
10 008 004
1 5 1 002
N bl ‘\ / 0
o o o o 0 202
5 a5 s \ 004
0 ) 005 L - 008
0 0 0 40 1 005 0005 5 0 5 10 ENR 005 0 005
Laplacian: 02815 Difusion Map: 3 4075 KNN Diffsion; 03445 Laplacian 0.297s Diffusion Map: 4.188s KNN Difusion: 08132
005 ' 005 005 : 005
05
0 0 0 o N 0
as
1 005
205 90! ] 00 4
a5 o o005 T8 1 0 o oos o 0 005 ) o5 0 oo
=g Alpha =1 Sigma =0.3 KNN=8 Alpha =1 Sigma =03
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Limitations of Local Methods

@ Cannot handle disconnected data

Two Swiss Rolls (parallel) Broken S-curve Four Moons Two Swiss Rolls (arbitrary)

40

20

-20

Isomap HLLE HLLE LLE
20 6 . 10 0.04 l
i 8 [
10 4 i 0.02
2 L ; 0
ol
0 : -0.02
m : |
10| -0.04-
2 0 -
L i A4 -0.06 .
20 20 0 20 3 2% 0 5 002 0 002 004
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e t-distributed stochastic neighbor embedding (t-SNE)
Recall: » LLE Aecuses on local informotion .

s Sencvhue Ao noise
¢ How +e imr'ﬁ\le 7
o~ neigh=* 7 ) ochethic.
Y R — > ' i
D\ard,— -Wlméh’ldvj Es-,_{—..{- constraints]
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t-SNE: Neighborhood Probability

@ Given D high-dimensional data points X1, Xs, ..., Xy, let
exp(—[X; — X,1I/207) .y
Pjii = D ki XP(— X — Xx|[2/25?)
0, if i =j
14
= P = 4
- e

- pjj; denotes the probability that x; is a
neighbor of x;

- The parameter o; sets the size of the ®
neighborhood of x;

- Set o differently for each data point
(according to “Perplexity") ® @

- Results depend heavily on oj-it defines o ()
the neighborhoods we are trying to
preserve
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t-SNE: Neighborhood Probability

@ Given D high-dimensional data points x4, Xo, ..., Xy, let

exp(—x; — x||*/207)

Yy
Pjii = S ki (= IXi — Xk |2 /207)
0, if i =
[
L ® °
et o PP s g
- Then pj=pj, pi=0, > pj="1 ® °
e [
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t-SNE: Neighborhood Probability

@ Given D high-dimensional data points x4, Xo, ..., Xy, let

exp(—x; — x||*/207)

Y
P =14 ki (=X — Xi[[2/207)
0, ifi=j
L
o ® °
- Let PF% L y
- Then pj=pj, pi=0, > ;pj=1 ®
Pv Pz - P .
P- [ = {F.'J‘Z.»,j ®
i O P '

later we il we +his moemx
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t-SNE: Neighborhood Probability

X\

@ Given D high-dimensional data points x4, Xo, ..\, Xy, let
ﬂxp(_”xi - Xj||2/20" |f I ;é]
?sj“ = Zk;éi exp(—||x; — ka2/20i2)
0, ifi=j
Q: How +o choose {€ 2
o
o @ °
i Py Py @
Let pi = =N o
- Then pj=pj, pi=0, >;;pj=1 [ o
e °
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t-SNE: Neighborhood Probability

@ Given D high-dimensional data points x4, Xo, ..., Xy, let

exp(—x; — x||*/207)

i)
Pjji = Zk;éi exp(—||x; — XkH2/20,'2)
0, it i =
Tdea: C‘\ooéinﬂ {63} = had » but we
Can define o sew infermotion P
theoreic.  mewic [ next s\ide:“ () @
' o
- Let p,/: % . .
- Then plj = pj/a Pii = 07 Z/,]plj =1 ‘ .
o
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t-SNE: Perplexity (to determine o;) (optional)

@ For each data point, define the perplexity:

perp(i) = 2@,

N
H(pji) = =Y _ pjjilog pyi
=1

- A low perplexity indicates the probability distribution is good at

predicting the sample.

- Define the desired perplexity and set o; to get that (e.g. bisection)
- Values between 5-50 usually work well

Sigma = 0.05 Sigma = 0.5
1.0
Entropy of 1.055 0.12 Entropy of 3.800
08 Perplexity of 2.078 *®%e  Perplexity of 13.929
R 0.10 A
_ o5 008 ! .
= x | .
. o ' .
* 04 2 0.06 : e
. 0.04 ] ' °
0.2 | | .
002 3 3 N
0 * 0.0 ‘ i I SN
90 35 2.0 4.5 5.0 5.5 0g 35 2.0 4.5 5.0 5.5
x X
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t-SNE: Perplexity (to determine o;) (optional)

S R

H(pji) = — ijli log pji
Jj=1

@ For each data point, define the perplexity:

perp(/) =
a(hg Fel,{‘;«wmnce_ of 4-

- Values between 5-50 usually work well( ¢

under

di

2H(pj\i)’

SNE

/

s (abus+

forr)y

Herent serings,

- Alow perpIeX|ty indicates the probability distribution is good at
predicting the sample.
- Define the desired perplexity and set o, to get that (e.g. bisection)

en \hj on +he densi y °£‘

the  datn?) |

Sigma = 0.05 S|gma = 0.5
denser ’]‘ (orger /r
1.0
Entropy of 1.055 0.12 Entropy of 3.800
08 Perplexity of 2.078 *®%e  Perplexity of 13.929
. 0.10 S
_ 08 _oo8f s | o
= x i e
* ol 2 0.06f ¢ e
» 0.04 °
0.2 ' '
0.02 ] i 9.
] ' i )
0, ® 0.0 ‘ . I SN
90 35 70 4.5 5.0 55 9% 35 2.0 45 5.0 5.5
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t-SNE: Objective

Ancther  ecample =5
approxweting  using 9.
This is calied SNE

.

7

3 53
35-’553 3 3'3
J‘B 33333 333,

’ ée leOVI
0 107 ¢ - -
/,//,// Py 5 1€
/,//’,/,/////’ //:’
1,’ 7, ’, %

L0bs07 Fr
,17: 2 /,I
7 4 yer
r, 7

s

&
7
7

¥
s
s

exp(—2i—7?)
Zk E/#k exp(— Hzl—zk||2)

®Not g =

, which corresponds to SNE. It has a crowding

problem: in 2D or 3D, we do not have enough room to accommodate all neighbors

when using Gaussian distribution.
gxin Li (SDS, CUHK-SZ)
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t-SNE: Objective

Y Ideq; Moke Hig lover dimensional distionhon more,  wniform
so the datapeiris= sfreao( out-.

® HoUJ,7

; o G W
KR
*u/»i 0
8. B
0 o Y . i X
NI Sk &
sy “
-20 o
- =%
-30
-20 —io 0 lb 26 =20 -10 0 10 20
Crowding Problem TSNE solves crowding problem
8 exp(—l1zi—z11%) . .
i= ich corr n NE. It h rowdin
Not g ZkE/#keXP(—Hzl—zkHZ),WhC corresponds to S t has a crowding

problem: in 2D or 3D, we do not have enough room to accommodate all neighbors
when using Gaussian distribution.
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t-SNE: Objective

@ Learn a d-dimensional embedding z1,2,,...,2zy (d < D and

usually d = 2 or 3)8
(1+lz —z]*)

qij = =
DY D oiek(1+l1zk — 2]2)
Such that Q = [gj]nxn is close to P = [pj]nxn-

exp(—2i—7?)
Zk E/#k e><P(—Hzl—zk||2 .
problem: in 2D or 3D, we do not have enough room to accommodate all neighbors
when using Gaussian distribution.
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t-SNE: Objective

@ Learn a d-dimensional embedding z1,2,,...,2zy (d < D and

usually d = 2 or 3)8
(1+lz —z]*)

qij = -
DY D oiek(1+l1zk — 2]2)
Such that Q = [gj]nxn is close to P = [pj]nxn-

Student-t probability density 2;2
vl 0.30}

(et 2 2
p(x) = ) 14+ x 2020
Nz r(%) v Zo.20f
0.15f
- When v = oo, p(x) is Gaussian 0-10¢
- When v =1, p(x) o (1+x2) " ook

. 2 4
X

. 7.112
= zejp(k ”pz(’ ﬁjz‘,‘ )zk“Z), which corresponds to SNE. It has a crowding
# ex| —_ —_

problem: in 2D or 3D, we do not have enough room to accommodate all neighbors
when using Gaussian distribution.
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t-SNE: Objective

@ Minimize the KL-divergence?®

L=KL(P| Q) —Zpuloggu

i#] Y
@ Gradient based optimization:
oL .
oz; Z(p// qi)(zi —z;)(1 + HZ,—Z/HZ) i=1,...N

J

%A loss function to measure the difference between two distributions, similar to the
cross entropy loss.
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t-SNE: Applications

@ Synthetic data

LLE (0.23 sec) LTSA (0.37 sec) Hessian LLE (0.52 sec) Modified LLE (0.43 sec)

g /A

Isomap (0.46 sec) MDS (2.1 sec) SpectralEmbedding (0.22 sec) t-SNE (17 sec)

X |
o

i

ot £ N
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t-SNE: Applications

@ MNIST handwritten digits (10 classes)

t-SNE

LLE
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t-SNE: Applications
)

@ COIL20 image data (20 objects with 72 different poses

<

Do
&7
o
£
s v
X
A :
-y ..
-Vv. .
. S
o .
a -
2

() Visualization by Isomap.

Tongxin Li (SDS, CUHK-SZ)

(d) Visualization by LLE
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6 Autoencoder
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Autoencoder: Basic Structure

@ Recall PCA: Z=UTX, X =UZ =UUTX

-]~
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Autoencoder: Basic Structure

@ Recall PCA: Z=UTX, X =UZ =UUTX

)/2 5> s s an encwﬂinj
:)é X \’

*Nelw
|

nerolize His dea

=z e Con we ¢

o aeavs\ unexworks 7
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Autoencoder: Basic Structure

@ Recall PCA: Z=UTX, X =UZ =UUTX
Y D v
e
x 5%

@ Autoencoder: a neural network with output=input
Input Layor Output Layer Encoder/Decoder architecture
> veighS
- Encoder: f = o(Wx)
- Decoder: g = o(W’h)
-_Hidden layer dimension<input
dimension

- Predict the input by itself:
X ~ g(f(x
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Autoencoder: Deep Model

@ Stacked Autoencoders (SAE)

o Use the middle layer as a
representation

e Out-of-sample extension: just feed
new data into the encoder

@ Question: out-of-sample extension
for PCA, LLE, and t-SNE?
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Autoencoder: Deep Model

@ Stacked Autoencoders (SAE)

o Use the middle layer as a
representation G.: whar § we obtain come
e Out-of-sample extension: just feed
new data into the encoder
@ Question: out-of-sample extension the models ?
for PCA, LLE, and t-SNE? need +o reivan the medel.

new data atter getting

(nnl-‘n&/ <‘+ream-'hj versions

A
h X
o} PCA- LLE. +SANE W)

D___> D_ﬂ )

new = w(xw)
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Autoencoder: Deep Model

@ Stacked Autoencoders (SAE)
o Use the middle layer as a

e Out-of-sample extension: just feed

new data into the encoder Decoder ™ “ K

@ Question: out-of-sample extension

for PCA, LLE, and t-SNE? e

s~
@ Train the Autoencoder = || Xi’,\l e
o For example, solve *~!
o o L@ 00 @
minimize fZHx, f(x,))||2

T~

Autoencoder can be
extended to convolutional

0: network parameters neural networks—CAE
e Backpropagation

e Gradient-based optimization
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Autoencoder: Application-Data Compression

# | Org
I
2 sae
-

- MN."I-'

Org
SAE

PCA

G. E. Hinton and R. R. Salakhutdinov. Science.
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Autoencoder: Application-Data Visualization

MNIST 2D visualization

Pe i awtoenceder

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

CENONBWN = O

G. E. Hinton and R. R. Salakhutdinov. Science. 2006
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Autoencoder: Application-Image Denoising

@ Denoising Autoencoder

Reconstruction from corrupted data:

For each input sample, some of its components are
randomly selected and set to 0, but the reconstruction
error is computed by comparing to the original,
non-corrupted data.
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Autoencoder: Application-Image Denoising

@ Denoising Autoencoder

Reconstruction from corrupted data:

For each input sample, some of its components are
randomly selected and set to 0, but the reconstruction
error is computed by comparing to the original,

non-corrupted data.
different from the nsrmel Se‘H'inj_

The size of hidden layer can be larger than the input size.
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Autoencoder: Application-Image Denoising

@ Train denoising Autoencoder, e.g.,

N

o NI

minimize E ||Xi—Q(f@)||
i=1

carfufi'eae-

- X;: corrupted x;
- May use other loss such as L1 norm
- May add regularization to the loss function

Encoder —>E—> Decoder

Lecture 07 NLDR
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Generative Models

Limitation of Autoencoder
@ Cannot generate meaningful data using the decoder
Generative models

@ Variational Autoencoder (VAE) (Kingma and Welling.ICLR 2014)

@ Generative Adversarial Network (GAN) (Goodfellow et al. arXiv 2014)
I ——
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Generative Models

Limitation of Autoencoder

@ Cannot generate meaningful data using the decoder
Generative models

@ Variational Autoencoder (VAE) (Kingma and Welling.ICLR 2014)

@ Generative Adversarial Network (GAN) (Goodfellow et al. arXiv 2014)
Examples of generated images (CelebA dataset)
Left: VAE. Right: GAN. Image from Pieters and Wiering 2018.
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Learning Outcomes

@ Understand the basic ideas of LLE, t-SNE, and Autoencoder
@ Know the limitations of LLE, t-SNE, and Autoencoder

@ Be able to use t-SNE to visualize real data

@ Be able to use Autoencoder to reduce the noise of real data
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