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Overview

1 Introduction

2 Locally Linear Embedding (LLE)

3 t-distributed stochastic neighbor embedding (t-SNE)

4 Autoencoder
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Introduction: Dimensionality Reduction

Linear DR Non-Linear DR

Popular linear DR algorithms
PCA
LDA (supervised)
Multidimensional Scaling (MDS)
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Introduction: Multidimensional Scaling (MDS)

Problem: Given euclidean distances among points, recover the
position of the points!

D 2 RN⇥N �! X 2 RD⇥N

Example: The road distances between 21 European cities
(almost euclidean, but not quite) are as follows:

Can we construct a map?
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Introduction: Multidimensional Scaling (MDS)
Road distance

Constructed 2-D map (data visualization)
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Introduction: Multidimensional Scaling
Transform US city distances to city locations (2D)

More about MDS
- https://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_
mds_combined.pdf

- Cox, M., Cox, T. (2008). Multidimensional Scaling. In: Handbook of Data
Visualization. Springer Handbooks Comp.Statistics. Springer, Berlin,
Heidelberg. https://link.springer.com/content/pdf/10.1007/
978-3-540-33037-0.pdfTongxin Li (SDS, CUHK-SZ) Lecture 07 NLDR Spring 2024 7 / 33
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Introduction: A Toy Example of NLDR
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Introduction: NLDR

Important NLDR algorithms

Kernel PCA1

Locally Linear Embedding2

Isomap3

Autoencoder4

t-SNE5

UMAP6

1B. Scholkopf, A. Smola, and K.-R. Muller, Nonlinear component analysis as a
kernel eigenvalue problem, Neural Computation, vol. 10, no. 5, pp. 1299-1319, 1998.

2Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, v.290 no.5500 , Dec.22, 2000. pp.2323-2326

3J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

4Hinton, Geoffrey E. and Ruslan R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science 313, no. 5786 (2006): 504-507.

5Van der Maaten, L.J.P. and Hinton, G.E. Visualizing Data Using t-SNE. Journal of
Machine Learning Research. 2008, 9: 2579-2605.

6McInnes, Leland, John Healy, and James Melville. Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint arXiv:
1802.03426,2018.
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1 Introduction

2 Locally Linear Embedding (LLE)

3 t-distributed stochastic neighbor embedding (t-SNE)

4 Autoencoder
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Locally Linear Embedding (LLE)

Based on a simple geometric intuition of local linearity
Assume each sample and its neighbors lie on or close to a locally
linear patch of the manifold

Manifold: low-dimentional surface embedded (nonlinearly) in
high-dimentional space.
Examples of manifold

LLE assumption: projection should preserve the neigborhood
Projected data point should have the same neigborhood as the
original point
Locally linear representation should be preserved
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LLE: Main Idea

Neighborhood-preserved projection

xi ⇡
X

j2N k

i

wijxj

X

j2N k

i

wij = 1
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LLE: Algorithm

Input: D-dimensional data points x1, x2, . . . , xN , d , k (k � d + 1)
1 For each data point xi , find its k nearest neighbors N k

i

2 Find the locally linear reconstruction weights by solving

W = argmin
W

NX

i=1

kxi �
X

j2N k

i

wijxjk2, s.t. 8i

X

j2N k

i

wij = 1

3 Use W to compute the low-dimensional projections

Z = argmin
Z

NX

i=1

kzi �
X

j2N k

i

wijzjk2, s.t.
NX

i=1

zi = 0,
1
N

ZZ> = I

Output: Low-dimensional embedding Z 2 Rd⇥N
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LLE: Algorithm

Computation of W
See the paper 7 if your are interested in it.

Computation of Z

NX

i=1

kzi �
X

j2N k

i

wijzjk2 = kZ � ZWk2
F
= trace

⇣
Z(I � W)(I � W>)Z>

⌘

Therefore, Z should be composed of the d eigenvectors of
(I � W)(I � W>) corresponding to the smallest d nonzero
eigenvalues, i.e.,

Z = [v2, v3, . . . , vd+1]
>

7Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, v.290 no.5500 , Dec.22, 2000. pp.2323-2326

Tongxin Li (SDS, CUHK-SZ) Lecture 07 NLDR Spring 2024 15 / 33

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



LLE: Algorithm

Computation of W
See the paper 7 if your are interested in it.

Computation of Z

NX

i=1

kzi �
X

j2N k

i

wijzjk2 = kZ � ZWk2
F
= trace

⇣
Z(I � W)(I � W>)Z>

⌘

Therefore, Z should be composed of the d eigenvectors of
(I � W)(I � W>) corresponding to the smallest d nonzero
eigenvalues, i.e.,

Z = [v2, v3, . . . , vd+1]
>

7Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, v.290 no.5500 , Dec.22, 2000. pp.2323-2326

Tongxin Li (SDS, CUHK-SZ) Lecture 07 NLDR Spring 2024 15 / 33

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



LLE: Applications
Toy examples
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LLE: Applications
Face images
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Limitations of Local Methods

Sensitive to noise
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Limitations of Local Methods

Cannot handle disconnected data
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1 Introduction

2 Locally Linear Embedding (LLE)

3 t-distributed stochastic neighbor embedding (t-SNE)

4 Autoencoder
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t-SNE: Neighborhood Probability

Given D high-dimensional data points x1, x2, . . . , xN , let

pj|i =

8
><

>:

exp(�kxi � xjk2/2�2
i
)

P
k 6=i

exp(�kxi � xkk2/2�2
i
)
, if i 6= j

0, if i = j

- pj|i denotes the probability that xj is a
neighbor of xi

- The parameter �i sets the size of the
neighborhood of xi

- Set �i differently for each data point
(according to “Perplexity")

- Results depend heavily on �i -it defines
the neighborhoods we are trying to
preserve
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t-SNE: Neighborhood Probability

Given D high-dimensional data points x1, x2, . . . , xN , let

pj|i =

8
><

>:

exp(�kxi � xjk2/2�2
i
)

P
k 6=i

exp(�kxi � xkk2/2�2
i
)
, if i 6= j

0, if i = j

- Let pij =
pj|i + pi|j

2N

- Then pij = pji , pii = 0,
P

i,j pij = 1
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t-SNE: Perplexity (to determine �i) (optional)
For each data point, define the perplexity:

perp(i) = 2H(pj|i ), H(pj|i) = �
NX

j=1

pj|i log pj|i

- A low perplexity indicates the probability distribution is good at
predicting the sample.

- Define the desired perplexity and set �i to get that (e.g. bisection)
- Values between 5-50 usually work well
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t-SNE: Objective

Learn a d-dimensional embedding z1, z2, . . . , zN (d < D and
usually d = 2 or 3)8

qij =
(1 + kzi � zjk2)�1

P
k

P
l 6=k

(1 + kzk � zlk2)�1

Such that Q = [qij ]N⇥N is close to P = [pij ]N⇥N .

Student-t probability density

p(x) =
�(⌫+1

2 )
p
⌫⇡ �(⌫2 )

✓
1 +

x2

⌫

◆� ⌫+1
2

- When ⌫ = 1, p(x) is Gaussian
- When ⌫ = 1, p(x) /

�
1 + x2��1

8Not qji =
exp(�kzi�zjk2)

P
k

P
l 6=k

exp(�kzl�zkk2)
, which corresponds to SNE. It has a crowding

problem: in 2D or 3D, we do not have enough room to accommodate all neighbors
when using Gaussian distribution.
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t-SNE: Objective

Minimize the KL-divergence9

L := KL (P k Q) =
X

i 6=j

pij log
pij

qij

Gradient based optimization:

@L
@zi

=
X

j

(pij � qij)(zi � zj)(1 + kzi � zjk2)�1, i = 1, . . .N

9A loss function to measure the difference between two distributions, similar to the
cross entropy loss.
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t-SNE: Applications

Synthetic data
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t-SNE: Applications

MNIST handwritten digits (10 classes)
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t-SNE: Applications

COIL20 image data (20 objects with 72 different poses)
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1 Introduction

2 Locally Linear Embedding (LLE)

3 t-distributed stochastic neighbor embedding (t-SNE)

4 Autoencoder
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Autoencoder: Basic Structure

Recall PCA: Z = U>X, bX = UZ = UU>X

Autoencoder: a neural network with output=input
Encoder/Decoder architecture

- Encoder: f = �(Wx)

- Decoder: g = �(W0h)

- Hidden layer dimension<input
dimension

- Predict the input by itself:
x ⇡ g(f (x))
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Autoencoder: Deep Model

Stacked Autoencoders (SAE)
Use the middle layer as a
representation
Out-of-sample extension: just feed
new data into the encoder
Question: out-of-sample extension
for PCA, LLE, and t-SNE?

Train the Autoencoder
For example, solve

minimize
✓

1
2

NX

i=1

kxi � g(f (xi))k2

✓: network parameters
Backpropagation
Gradient-based optimization

* Autoencoder can be
extended to convolutional
neural networks—CAE

Tongxin Li (SDS, CUHK-SZ) Lecture 07 NLDR Spring 2024 29 / 33

Mobile User



Autoencoder: Deep Model

Stacked Autoencoders (SAE)
Use the middle layer as a
representation
Out-of-sample extension: just feed
new data into the encoder
Question: out-of-sample extension
for PCA, LLE, and t-SNE?

Train the Autoencoder
For example, solve

minimize
✓

1
2

NX

i=1

kxi � g(f (xi))k2

✓: network parameters
Backpropagation
Gradient-based optimization

* Autoencoder can be
extended to convolutional
neural networks—CAE

Tongxin Li (SDS, CUHK-SZ) Lecture 07 NLDR Spring 2024 29 / 33

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Autoencoder: Deep Model

Stacked Autoencoders (SAE)
Use the middle layer as a
representation
Out-of-sample extension: just feed
new data into the encoder
Question: out-of-sample extension
for PCA, LLE, and t-SNE?
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For example, solve
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Autoencoder: Application-Data Compression
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Autoencoder: Application-Data Visualization

MNIST 2D visualization

Tongxin Li (SDS, CUHK-SZ) Lecture 07 NLDR Spring 2024 31 / 33

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Autoencoder: Application-Image Denoising
Denoising Autoencoder

Reconstruction from corrupted data:
For each input sample, some of its components are
randomly selected and set to 0, but the reconstruction
error is computed by comparing to the original,
non-corrupted data.

The size of hidden layer can be larger than the input size.
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Autoencoder: Application-Image Denoising

Train denoising Autoencoder, e.g.,

minimize
✓

1
2

NX

i=1

kxi � g(f (x̃i))k2

- x̃i : corrupted xi

- May use other loss such as L1 norm
- May add regularization to the loss function
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Generative Models
Limitation of Autoencoder

Cannot generate meaningful data using the decoder
Generative models

Variational Autoencoder (VAE) (Kingma and Welling.ICLR 2014)
Generative Adversarial Network (GAN) (Goodfellow et al. arXiv 2014)

Examples of generated images (CelebA dataset)
Left: VAE. Right: GAN. Image from Pieters and Wiering 2018.
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Learning Outcomes

Understand the basic ideas of LLE, t-SNE, and Autoencoder
Know the limitations of LLE, t-SNE, and Autoencoder
Be able to use t-SNE to visualize real data
Be able to use Autoencoder to reduce the noise of real data
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