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Generative Models

Generative models: generate new data instances with similar
distribution as the training data

Learn a probability distribution p(x) from D = {x1, . . . , xn}
Then sample from p(x) to generate new data instances

Deep Generative Models (DGMs) are formed through the
combination of generative models and deep neural networks.
DGMs achieved SOTA performances in many real cases (e.g.,
image generation, text generation, ChatGPT, etc)

Types of Deep Generative Models
Variational AutoEncoder (VAE)
Generative Adversarial Networks (GANs)
Diffusion Models
· · ·
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Generation instances via deep generative models

Vahdat Arash and Jan Kautz. "NVAE: A Deep Hierarchical Variational Autoencoder".
NeurIPS 2020.
Ho Jonathan et al. "Denoising Diffusion Probabilistic Models", NeurIPS 2020.
Karras Tero et al. "A Style-Based Generator Architecture for Generative Adversarial
Networks". CVPR 2021.
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AutoEncoder (AE)

AutoEncoder (AE) is a type of neural network designed to learn an
approximate identity transformation using an unsupervised way
and then to reconstruct high-dimensional data and consists of an
encoder network f� and a decoder network g✓, parameterized by
�, ✓ respectively.
The middle layer of AE usually has a narrow bottleneck to
compress original high-dimensional data to low-dimensional
representations.

- Encoder network f� : x ! z

- Decoder network g✓ : z ! x0

- Optimization objective:

min
�,✓

1
n

nX

i=1

kxi � g✓(f�(xi))k2 +R(�, ✓)

- Can we generate new data using AE?
Image from Wikipedia.
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Variational AutoEncoder (VAE): Motivation

VAE aims to transform x into a prior distribution pz (rather than a
fixed vector z) using encoder f� and then to reconstruct x using
decoder g✓.
Given training data X = {x1, x2, . . . , xn} and a prior distribution pz .
Assume we have trained f� and g✓ of VAE successfully. In order to
generate a new sample that looks like a real data point xi , we
need the following steps:

First, sample a zi from the prior distribution pz .
Then, a new sample can be generated via the decoder, i.e., g✓(zi).

How to obtain the decoder g✓? Maximize the probability of
generating real data samples (maximum likelihood):

✓⇤ = argmax
✓

nX

i=1

log p(xi |✓)

For simplicity, p(xi |✓) abbreviates as p✓(xi).
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Variational AutoEncoder (VAE): Maximum Likelihood

Compute the marginal likelihood

p✓(x) =
Z

p✓(x, z)dz =

Z
p✓(x|z)p✓(z)dz

- Prior p✓(z), e.g. N (0, I)
- Likelihood p✓(x|z)
- But it is impossible to integrate over all z.

How about using Bayes’ theorem?

p✓(x) =
p✓(x|z)p✓(z)

p✓(z|x)

- p✓(z|x) cannot be computed.

Solution: Train another neural network (encoder) f� that learns

q�(z|x) ⇡ p✓(z|x)
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Variational AutoEncoder (VAE): Maximum Likelihood

Decompose the log-likelihood:

log p✓(x) = log
p✓(x|z)p(z)

p✓(z|x)
= log

p✓(x|z)p(z)q�(z|x)
p✓(z|x)q�(z|x)

= log p✓(x|z)� log
q�(z|x)

p(z)
+ log

q�(z|x)
p✓(z|x)

Take expectation:

log p✓(x) = Ez⇠q�(z|x)[log p✓(x)] =
Z

q�(z|x) log p✓(x)dz

=

Z
q�(z|x) log p✓(x|z)dz �

Z
q�(z|x) log

q�(z|x)
p(z)

dz

+

Z
q�(z|x) log

q�(z|x)
p✓(z|x)

dz

= Ez⇠q�(z|x)[log p✓(x|z)]� DKL(q�(z|x)kp(z))

+ DKL(q�(z|x)kp✓(z|x))
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Variational AutoEncoder (VAE): Evidence Lower
Bound

We have got
log p✓(x) = Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z))+DKL(q�(z|x)kp✓(z|x))

Because KL-divergence is always non-negative, we obtain

log p✓(x) � Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z)) , L�,✓(x)

L�,✓(x) is a lower bound (called evidence lower bound, ELBO) of
log p✓(x) and

log p✓(x) = L�,✓(x) + DKL(q�(z|x)kp✓(z|x))

ELBO is also known as the variational lower bound.
VAE maximizes ELBO, i.e.,

�⇤, ✓⇤ = argmax
�,✓

Ez⇠q�(z|x)[log p✓(x|z)]� DKL(q�(z|x)kp(z))

When L�,✓(x) = log p✓(x), it holds that q�(z|x) = p✓(z|x).
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Variational AutoEncoder (VAE): Evidence Lower
Bound

We have got
log p✓(x) = Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z))+DKL(q�(z|x)kp✓(z|x))

Because KL-divergence is always non-negative, we obtain

log p✓(x) � Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z)) , L�,✓(x)

L�,✓(x) is a lower bound (called evidence lower bound, ELBO) of
log p✓(x) and

log p✓(x) = L�,✓(x) + DKL(q�(z|x)kp✓(z|x))

ELBO is also known as the variational lower bound.

VAE maximizes ELBO, i.e.,

�⇤, ✓⇤ = argmax
�,✓

Ez⇠q�(z|x)[log p✓(x|z)]� DKL(q�(z|x)kp(z))

When L�,✓(x) = log p✓(x), it holds that q�(z|x) = p✓(z|x).

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 11 / 43

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Variational AutoEncoder (VAE): Evidence Lower
Bound

We have got
log p✓(x) = Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z))+DKL(q�(z|x)kp✓(z|x))

Because KL-divergence is always non-negative, we obtain

log p✓(x) � Ez⇠q�(z|x)[log p✓(x|z)]�DKL(q�(z|x)kp(z)) , L�,✓(x)

L�,✓(x) is a lower bound (called evidence lower bound, ELBO) of
log p✓(x) and

log p✓(x) = L�,✓(x) + DKL(q�(z|x)kp✓(z|x))

ELBO is also known as the variational lower bound.
VAE maximizes ELBO, i.e.,

�⇤, ✓⇤ = argmax
�,✓

Ez⇠q�(z|x)[log p✓(x|z)]� DKL(q�(z|x)kp(z))

When L�,✓(x) = log p✓(x), it holds that q�(z|x) = p✓(z|x).
Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 11 / 43

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Variational Auto-Encoder (VAE): Optimization

max
�,✓

Ez⇠q�(z|x)[log p✓(x|z)]

� DKL(q�(z|x)kp(z))

- maximize Ez⇠q�(z|x)[log p✓(x|z)]:
reconstruct x

- minimize DKL(q�(z|x)kp(z)):
approximate prior

Suppose p(z) = N (z; 0, I). Then let
q�(z|x) = N (µ�(x), diag(�2

�(x))).

The expectation term in the loss function
requires sampling z ⇠ q�(z|x), which is a
stochastic process. Therefore we cannot
backpropagate the gradient.

Image from Kingma and Welling. An Introduction to Variational Autoencoders.2019.
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VAE: Reparameterization Trick

z ⇠ q�(z|x) = N (z;µ�(x), diag(�2
�(x)))

z = µ�(x) + ��(x)� ✏, where ✏ ⇠ N (0, I) Reparameterization Trick

Image from https://lilianweng.github.io/posts/2018-08-12-vae/
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Variational AutoEncoder (VAE): Details about Loss

DKL(q�(z|x)kp(z)): consider one element of z

� DKL (q� (z|x) kp(z))

=

Z
1q

2⇡�2
q

exp
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Ez⇠q�(z|x)[log p✓(x|z)]: p✓(x|z) = N (x; g✓(z),⌃x)

Ez⇠q�(z|x)[log p✓(x|z)] _ kx � g✓(z)k2
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Variational AutoEncoder (VAE)

References
[Kingma and Welling, 2013] Auto-Encoding Variational Bayes
[Higgins et al., 2020] beta-VAE: Learning Basic Visual Concepts
with a Constrained Variational Framework
[Oord et al., 2017] VQ-VAE: Neural Discrete Representation
Learning
[Razavi et al., 2019] Generating Diverse High-Fidelity Images with
VQ-VAE-2
https://lilianweng.github.io/posts/2018-08-12-vae/
https://en.wikipedia.org/wiki/Variational_autoencoder
https://en.wikipedia.org/wiki/Autoencoder

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 15 / 43

Mobile User



1 Introduction

2 Variational AutoEncoder (VAE)

3 Adversarial Generative Networks (GANs)

4 Diffusion Models

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 16 / 43

Mobile User



Generative Adversarial Networks (GANs)

Generative Adversarial Networks is a kind of well-known and
popular generative model designed by Ian J. Goodfellow and his
colleagues in June 2014.

https://www.aminer.cn/search/pub?q=generative%20adversarial%20networks&t=b
Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 17 / 43

Mobile User



Generative Adversarial Networks

Inspired by game theory, GAN estimates generator via an adversarial
process, in which we simultaneously train two neural networks

A generator G that is trained to capture the real data distribution
so that the generated samples can be as real as possible.
A discriminator D that estimates the probability that a sample
came from the training data rather than the generator G.
Adversarial process: training D to maximize the probability of
assigning the correct label to both training examples and samples
from G and simultaneously training G to maximize the probability
of D making a mistake.

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 18 / 43
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Generative Adversarial Networks

Training steps:
1 Fix parameters of generator G,

train discriminator D
2 Fix parameters of

discriminator D, train
generator G

3 Repeat step 1,2

Image from Generative Adversarial Networks (https://dl.acm.org/doi/10.1145/3422622)
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Generative Adversarial Networks

Model architecture of GAN

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf
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Generative Adversarial Networks

Train the discriminator

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf
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Generative Adversarial Networks

Train the generator

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf
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Generative Adversarial Networks

Notations
- pr : data distribution over real samples x
- pg : the generator’s distribution over data x
- pz : a prior on input noise variable z

Ensure the discriminator D0s decisions over real data are accurate
by

maximizeD Ex⇠pr (x)[logD(x)]

Given a fake sample G(z), z ⇠ pz(z), the discriminator is expected
to output a probability, D(G(z)), close to zero by

maximizeD Ez⇠pz(z)[log(1 � D(G(z)))]

On the other hand, the generator is trained to increase the
chances of D producing a high probability for generated samples,
thus

minimizeG Ez⇠pz(z)[log(1 � D(G(z)))]
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Generative Adversarial Networks

Therefore, D and G play the following two-player minimax game
with loss function L(G,D) :

min
G

max
D

L(D,G) = Ex⇠pr (x)[logD(x)] + Ez⇠pz(z)[log(1 � D(G(z)))]

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 24 / 43
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Pseudo Code of GAN

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf
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Advantages and Disadvantages of GAN

Advantages
Sampling (or generation) is intuitive and straightforward.
Compared to VAE, the training of GAN doesn’t involve MLE.
Compared to VAE, the generated samples of GAN are more
realistic.

Disadvantages
Probability distribution is implicit

Not straightforward to compute p(x)
Thus only good for generating new samples

The training is hard
No convergence guarantee
May encounter mode collapse

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 26 / 43
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A brief history of GANs

[Goodfellow et al., 2014]: Generative Adversarial Networks (GAN)
[Mirza et al. 2014]: Conditional GAN
[Radford et al. 2015]: Deep Convolutional GAN
[Ming-Yu Liu et al., 2016]: Coupled GAN
[Karras et al. 2017]: Progressive Growing of GANs
[Arjovsky et al. 2017]: Wasserstein GAN
[Zhu et al. 2017]: CycleGAN
[Han Zhang et al. 2018]: Self-Attention GAN
[Brock et al. 2018]: Large-scale GAN training (BigGAN)
[Karras et al. 2018]: A style-based generator architecture for GAN
(StyleGAN)
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Progress of GANs on image generation

human face

other objects
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Diffusion Models: Overview
Diffusion models, also known as diffusion probabilistic models, are
a class of latent variable models introduced in 2015 with
inspiration from non-equilibrium thermodynamics.
Overview of different types of generative models

Image from https://lilianweng.github.io/posts/2021-07-11-diffusion-models
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Diffusion Models: Forward Diffusion Process
Given a data point sampled from a real data distribution x0 ⇠ q(x),
a forward diffusion process adds small noise (e.g. Gaussian
noise) to the sample in T steps slowly, which produces a
sequence of noisy samples x1, x2, . . . , xT:

xt =
p

1 � �txt�1 +
p
�t✏t�1

The step sizes are controlled by a variance schedule {�t 2 (0, 1)}T
t=1.

When ✏t ⇠ N (0, I), we have

q(xt |xt�1) = N (xt ;
p

1 � �txt�1,�t I)

The sample x0 gradually loses its distinguishable features as t
becomes larger. Eventually when T ! 1, xT becomes isotropic
Gaussian.

Image from Ho et al. Denoising Diffusion Probabilistic Models. 2020.
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The sample x0 gradually loses its distinguishable features as t
becomes larger. Eventually when T ! 1, xT becomes isotropic
Gaussian.
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Diffusion Models: Forward Diffusion Process

q(xt |xt�1) = N (xt ;
p

1 � �txt�1,�t I)

We can sample xt at any arbitrary time step t in a closed form. Let
↵t = 1 � �t and ↵̄t =

Qt
s=1 ↵s, then

xt =
p
↵txt�1 +

p
1 � ↵t✏t�1

=
p
↵t↵t�1xt�2 +

p
1 � ↵t↵t�1✏̄t�2

= · · ·

=
p
↵̄tx0 +

p
1 � ↵̄t✏

* ✏̄t�2 merged ✏t�1 and ✏t�2. ✏ ⇠ N (0, I). It follows that

q(xt |x0) = N (xt ;
p
↵̄tx0, (1 � ↵̄t)I).
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Diffusion Models: Reverse Diffusion Process

If the diffusion process can be reversed, using q(xt�1|xt), we can
create a true sample from a Gaussian noise input xT ⇠ N (0, I).
If �t is small enough, q(xt�1|xt) will also be Gaussian.

We learn a model p✓ to conduct the reverse diffusion process:

p✓(xt�1|xt) = N (xt�1;µ✓(xt , t),⌃✓(xt , t))

µ✓ and ⌃✓ are the outputs of a neural network parameterized by ✓.
The inputs are xt and t .

Image from the https://lilianweng.github.io/posts/2021-07-11-diffusion-models
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Diffusion Models: Reverse Diffusion Process

The reverse conditional probability is tractable when conditioned on x0:

q(xt�1|xt , x0) = N (xt�1; µ̃t(xt , x0), �̃t I)

�̃t =
1�↵̄t�1

1�↵̄t
�t , µ̃t(xt , x0) =

p
↵t (1�↵̄t�1)

1�↵̄t
xt +

p
↵̄t�1�t
1�↵̄t

x0

The derivation is a little complex and hence omitted. See [Sohl-Dickstein et al. 2015].
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Diffusion Models: Training (optional)
Minimize the variational bound on negative log-likelihood:

E [� log p✓ (x0)] Eq


� log

p✓ (x0:T )
q (x1:T |x0)

�

=Eq

2

4� log p (xT )�
X

t�1

log
p✓ (xt�1|xt)
q (xt |xt�1)

3

5

=Eq

h
DKL (q (xT |x0) kp (xT ))| {z }

LT

+
X

t>1

DKL (q (xt�1|xt , x0) kp✓ (xt�1|xt))| {z }
Lt�1

� log p✓ (x0|x1)| {z }
L0

i

Lt�1 =Eq


1

2�2
t
kµ̃t (xt , x0)� µ✓ (xt , t)k2

�
+ C

=Ex0,✏

"
1

2�2
t

����
1p
↵t

✓
xt (x0, ✏)�

�tp
1 � ↵̄t

✏

◆
� µ✓ (xt (x0, ✏) , t)

����
2
#
+ C

For derivations, refer to [Sohl-Dickstein et al. 2015] and [Ho et al. 2020].
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For derivations, refer to [Sohl-Dickstein et al. 2015] and [Ho et al. 2020].
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Diffusion Models: Training (optional)

Reparameterization

Lt�1 =Ex0,✏

"
1

2�2
t

����
1p
↵t

✓
xt (x0, ✏)�

�tp
1 � ↵̄t

✏

◆
� µ✓ (xt (x0, ✏) , t)

����
2
#
+ C

=Ex0,✏


�2

t

2�2
t ↵t (1 � ↵̄t)

���✏� ✏✓
⇣p

↵̄tx0 +
p

1 � ↵̄t✏, t
⌘���

2
�
+ C

A simplified objective [Ho et al. 2020] that ignores the weighting term
and the final optimization objective is:

Lsimple (✓) := Et ,x0,✏

���✏� ✏✓
⇣p

↵̄tx0 +
p

1 � ↵̄t✏, t
⌘���

2
�

(1)

Optimization: SGD
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Diffusion Models: Training (optional)

Reparameterization

Lt�1 =Ex0,✏
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1

2�2
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����
1p
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✓
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�tp
1 � ↵̄t

✏

◆
� µ✓ (xt (x0, ✏) , t)

����
2
#
+ C

=Ex0,✏


�2

t

2�2
t ↵t (1 � ↵̄t)

���✏� ✏✓
⇣p

↵̄tx0 +
p

1 � ↵̄t✏, t
⌘���

2
�
+ C

A simplified objective [Ho et al. 2020] that ignores the weighting term
and the final optimization objective is:

Lsimple (✓) := Et ,x0,✏

���✏� ✏✓
⇣p

↵̄tx0 +
p

1 � ↵̄t✏, t
⌘���

2
�

(1)

Optimization: SGD

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 36 / 43

Mobile User



Diffusion Models: Training and Sampling

Image from Ho et al. 2020.
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Diffusion Models: Examples

Image from Sohl-Dickstein et al. 2015.
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Diffusion Models: Examples
CIFAR10 progressive generation [Ho et al. 2020]
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Diffusion Models: Examples
CelebA-HQ 256 ⇥ 256 generated samples [Ho et al. 2020]
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Diffusion Models: Advantages and Disadvantages

Advantages
The quality of generated samples are often higher than VAE and
GAN.
Probability distribution is explicit.

Disadvantages
The training process is time-consuming.
It is very slow to generate a sample from DDPM since T is often
very large, i.e. 1000.
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Diffusion Models
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Learning Outcomes

Understand the main ideas of VAE, GAN, and diffusion model
Understand the derivation of the objective function of VAE
Know the advantages and disadvantages of VAE, GAN, and
diffusion model
Be able to use at least one of VAE, GAN, and diffusion model to
generate realistic data samples.
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