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Overview

0 Introduction
@ Variational AutoEncoder (VAE)
e Adversarial Generative Networks (GANSs)

@ Diffusion Models
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Generative Models

@ Generative models: generate new data instances with similar
distribution as the training data
e Learn a probability distribution p(x) from D = {xy,...,Xs}
e Then sample from p(x) to generate new data instances

@ Deep Generative Models (DGMs) are formed through the
combination of generative models and deep neural networks.

@ DGMs achieved SOTA performances in many real cases (e.g.,
image generation, text generation, ChatGPT, etc)
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Generative Models

@ Generative models: generate new data instances with similar
distribution as the training data

e Learn a probability distribution p(x) from D = {xy,...,Xs}
e Then sample from p(x) to generate new data instances

@ Deep Generative Models (DGMs) are formed through the
combination of generative models and deep neural networks.

@ DGMs achieved SOTA performances in many real cases (e.g.,
image generation, text generation, ChatGPT, etc)
aPT4, ede3
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Generative Models

@ Generative models: generate new data instances with similar
distribution as the training data

e Learn a probability distribution p(x) from D = {xy,...,Xs}
e Then sample from p(x) to generate new data instances

@ Deep Generative Models (DGMs) are formed through the
combination of generative models and deep neural networks.

@ DGMs achieved SOTA performances in many real cases (e.g.,
image generation, text generation, ChatGPT, etc)

@ Types of Deep Generative Models

Variational AutoEncoder (VAE)

Generative Adversarial Networks (GANSs)

Diffusion Models
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Generation instances via deep generative models

-ﬂ

DDPM(2020)

@ Vahdat Arash and Jan Kautz. "NVAE: A Deep Hierarchical Variational Autoencoder".
NeurlPS 2020.
@ Ho Jonathan et al. "Denoising Diffusion Probabilistic Models", NeurlPS 2020.

@ Karras Tero et al. "A Style-Based Generator Architecture for Generative Adversarial
Networks". CVPR 2021.
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@ Variational AutoEncoder (VAE)
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AutoEncoder (AE)

@ AutoEncoder (AE) is a type of neural network designed to learn an
approximate identity transformation using an unsupervised way
and then to reconstruct high-dimensional data and consists of an
encoder network f, and a decoder network gy, parameterized by
¢, 0 respectively.

@ The middle layer of AE usually has a narrow bottleneck to
compress original high-dimensional data to low-dimensional
representations.

ENCODER f-—---—---------

- Encoder network fy : x — z

- Decoder network gy : 2 — X’

- Optimization objective:

RS
min > i = g (£, (%) + R(@.)
=

Input Layer
Output Layer
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AutoEncoder (AE)

@ AutoEncoder (AE) is a type of neural network designed to learn an
approximate identity transformation using an unsupervised way
and then to reconstruct high-dimensional data and consists of an
encoder network f, and a decoder network gy, parameterized by
¢, 0 respectively.

@ The middle layer of AE usually has a narrow bottleneck to
compress original high-dimensional data to low-dimensional

representations. > Tdea : Can we moke use =f this mddie lyer

ENCODER [ A |

[ttty T I

: ! i - Encoder network fs : x — 2

1 Code /i 1

I g | g - Decoder network gs : 2 — X’

' g oz | £ - Optimization objective:

P £ | : 3 1

| PR o mins ST - go(f(x0) 2+ R(6.0)

- : : : o
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AutoEncoder (AE)

@ AutoEncoder (AE) is a type of neural network designed to learn an
approximate identity transformation using an unsupervised way
and then to reconstruct high-dimensional data and consists of an
encoder network f, and a decoder network gy, parameterized by
¢, 0 respectively.

@ The middle layer of AE usually has a narrow bottleneck to
compress original high-dimensional data to low-dimensional
representations.

ENCODER f-—---—---------

- Encoder network fy : x — z

Decoder network gy : z — X’

Input Layer

Optimization objective:
1
min > 1% = go(fo (X)) 12 + R(,6)
’ i=1

- Can we generate new data using AE?

Output Layer

Image from Wikipedia.
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Variational AutoEncoder (VAE): Motivation

@ VAE aims to transform x into a prior distribution p, (rather than a
fixed vector z) using encoder f, and then o reconstruct x using
decoder gy.

@ Given training data X = {X1, Xo, ..., X,} and a prior distribution p;.
Assume we have trained f, and gy of VAE successfully. In order to
generate a new sample that looks like a real data point x;, we
need the following steps:

[ o First, sample a z; from the prior distribution p,.
e Then, a new sample can be generated via the decoder, i.e., gy(2;).
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Variational AutoEncoder (VAE): Motivation

@ VAE aims to transform x into a prior distribution p, (rather than a
fixed vector z) using encoder f; and then to reconstruct x using
decoder gy.

@ Given training data X = {X1, Xo, ..., X,} and a prior distribution p;.
Assume we have trained f, and gy of VAE successfully. In order to
generate a new sample that looks like a real data point x;, we
need the following steps:

o First, sample a z; from the prior distribution p,.
e Then, a new sample can be generated via the decoder, i.e., gy(2;).

oM /\
P s Sz 25 guzd)—> X
{
N(:,l)
PR . x;fff’—? =S
a « d
IRP iR ¢ D>
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Variational AutoEncoder (VAE): Motivation

@ VAE aims to transform x into a prior distributioather than a
fixed vector z) using encoder f; and then to recomnstruct x using
decoder gy.

@ Given training data X = {X1, Xo, ..., X,} and a prior distribution p;.
Assume we have trained f, and gy of VAE successfully. In order to
generate a new sample that looks like a real data point x;, we
need the following steps:

o First, sample a z; from the prior distribution p,.
e Then, a new sample can be generated via the decoder, i.e., gy(2;).

@ How to obtain the decoder gy? MaX|m|ze the probability of
generating real data samples (m m likelihood):

0" = arg

For simplicity, p(x;|0) abbreviates as py(X;).
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Variational AutoEncoder (VAE): Motivation

@ VAE aims to transform x into a prior distribution p, (rather than a
fixed vector z) using encoder f; and then to reconstruct x using
decoder gy.

@ Given training data X = {X1, Xo, ..., X,} and a prior distribution p;.
Assume we have trained f, and gy of VAE successfully. In order to

generate a new sample that looks like a real data point x;, we
need the following steps:

o First, sample a z; from the prior distribution p,.
e Then, a new sample can be generated via the decoder, i.e., gy(2;).

@ How to obtain the decoder gy? Maximize the probability of
generating real data samples (maximum likelihood):
> real dato . €9, imaje

n
0" = arg;nax Z log p(X;|6)

i=1 \_) decoder FOF”‘V’G"QP

i ici i B an we comput
For simplicity, p(x;|0) abbreviates as py(x;). &+ Hew « cmpute
Po(Xi) 7
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Variational AutoEncoder (VAE): Maximum Likelihood

@ Compute the marginal likelihood

po(X) = /pg(x,z)dz = /pg(x\z)pg(z)dz
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Variational AutoEncoder (VAE): Maximum Likelihood

@ Compute the marginal likelihood

Po(X) —/pg(x,z)dz— /pg(x\z)pg(z)dz 4P
Firet Trial : j

() : How +o compute 7

fs(2) prorm. e M(et)

Pe(x12) eq. tenditional  Gaussian
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Variational AutoEncoder (VAE): Maximum Likelihood

@ Compute the marginal likelihood

po(X) = /pg(x,z)dz = /pg(x\z)pg(z)dz

‘nehzoho equivesS
- Prior pe(z), e.g. _/\/'(o7|) o Mor Ginchzokion  requ e
- Likelihood py(x|z) J
- But it is impossible to integrate over all z.

@ How about using Bayes’ theorem?

ZbenMr\HaL 4me +eo Computl

_ Pa(X|2)py(2)
P = )

- po(z|x) cannot be computed.
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Variational AutoEncoder (VAE): Maximum Likelihood

@ Compute the marginal likelihood

po(X) = /pg(x,z)dz = /pg(x\z)pg(z)dz

- Prior py(2), e.g. N(0,1)
- Likelihood py(x|2)
- But it is impossible to integrate over all z.

@ How about using Bayes’ theorem?

Po(X|2)py(2)
X)=——""--
P = (i)
- Ppo(z|Xx) gannot be computed.
@ Solution: Train another neural network (encoder) f; that learns

\ 0u(21%) =~ py(z]x)
wJ ol — (’cnjq-(—.

r,\??nx-‘»c’ﬂ"’l
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Variational AutoEncoder (VAE): Maximum Likelihood

@ Compute the marginal likelihood

po(X) = /pg(x,z)dz = /pg(x\z)pg(z)dz

- Prior py(2), e.g. N(0,1)
- Likelihood py(x|2)
- But it is impossible to integrate over all z.

@ How about using Bayes’ theorem?

_ Pa(X|2)py(2)
P = )

- po(z|x) cannot be computed.
@ Solution: Train another neural network (encoder) f; that learns

Qs(2[X) = P(Z[X) & How 4= ft Ty 2
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Variational AutoEncoder (VAE): Maximum Likelihood

@ Decompose the log-likelihood:
po(x|z)p(z) ~ log po(X|z)p(2)9s(2(X)
po(z|x) po(z|x)qs(z[X)
)

)

= log pp(X|2) — log qq;((zz|;() +log PHEZ;X

log py(x) = log

@ Take expectation:

log Py(X) = Ezq,(zix)[log Po(X)] = /Q¢>(Z|X) log py(x)dz

3 ., 9(zX)
/q¢ z|x) log py(x|z)dz /q (z|x) log p(z) dz
9s(2I%) o,
+ [ atapoon 2 on
= EZqu, (z|x) [|0gP9(X|Z)] - DKL(%,(Z’X)H,O(Z))
+ Drki(9(2[x)lpe(2[x))
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Variational AutoEncoder (VAE): Maximum Likelihood

@ Decompose the log-likelihood:

- pe(§|7§)gb(zrgle Po(X[2)p(2) 95 (2/x)
e 18 T ) T e @)
—togputxiz) —log TER +es o 20

TG hevdk 4o conpete

@ Take expecjation:

log po(X) = EZN% (zlx) [|ng9(X)] = /q¢(z|x )dz

. _ 9(zlx)
/q¢ z|x) log py(x|z)dz /q (z|x) log () dz
9s(2I%) o,
/q (z|x) log o(2 |X)
= EZqu, (z|x) [|0gP9(X|Z)] - DKL(%,(Z’X)H,O(Z))
+ DKL(CI¢>(Z\’4iHP9(Z’XP
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Variational AutoEncoder (VAE): Maximum Likelihood

@ Decompose the log-likelihood:

L px2p@) . pa(X(2)p(2)qs(zlx)
g py(x) =log = o = %8 py@wa,

X)
= log pg(X|z) — log qq;((zzl;() - log PeEZI‘X;

@ Take expectation:

108 Po(X) = Fzq, 108 Po(X)] = / G (2IX) log py(x)dz

O Can we charadt enze

qs(2|x)
z|x) | xzdz/ (z|x)lo dz
o V 9(z|x) log py(X| qlﬂ,
@ _JA /qu Z|X |Og q¢( ‘ ) ® KL diva’/?ente.
®_7 po(zx)

A~
= Ez~q¢ (z|x) [IOg Po( - DKL(%,(Z’X)H,O(Z))
+ Dre(Ge(2[X)1(@s(2]%))
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Variational AutoEncoder (VAE): Evidence Lower

Bound

@ We have got e
log o (X) = Ezwq,,(zix)[log Pa (X|2)] - Die (s (2[X)[|P(2))+ Dke (qe (2]X) [ e (2]X))
“

@ Because KL-divergence is always non-negative, we obtain

log Py(X) = Ez~q, (zjx)[l0g Po(X|2)]— Dk (qy(2/X)[|p(2)) = Ly,6(X)

. P (PIR) = = P ,,jP_GQ [~ have seen +his EJ

e KR n the —rrn-'nfnj of +S0
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Variational AutoEncoder (VAE): Evidence Lower

Bound

@ We have got
log Py (X) = Ez~q,(zix) [log po (X[2)]— Dki(qs (2|X)[|p(2))+ Dir(gs (2]X) [ Po (2]X))
@ Because KL-divergence is always non-negative, we obtain

log Py(X) = Ez~q, (zjx)[l0g Po(X|2)]— Dk (qy(2/X)[|p(2)) = Ly,6(X)

@ L,0(x) is a lower bound (called evidence lower bound, ELBO) of
log pg(x) and _» P(z21%:0)
log po(X) = L,0(X) + Drr(qe(2|X) | pe(2]X))

ELBO is also known as the variational lower bound.

I”ﬂ 7 () ()()
~
(}fs )
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Variational AutoEncoder (VAE): Evidence Lower

Bound

@ We have got / decder encode
log pG(X) = ]Ez~q<i>(z\x) [Iog p"(x|z)]_DKL(q¢(z|X)||P(Z))+DKL(Q¢(Z|X)|\p9(z|x))
@ Because KL-divergence is always non-negative, we obtain

log Py(X) = Ez~q, (zjx)[l0g Po(X|2)]— Dk (qy(2/X)[|p(2)) = Ly,6(X)

@ L,0(x) is a lower bound (called evidence lower bound, ELBO) of
log pp(Xx) and

log pg(X) = Ly 9(X) + Dki(qs(2]X)[|ps(2x))

ELBO is also known as the variational lower bound.
@ VAE maximizes ELBO, i.e.,

¢*, 0" = ar%rgax Ezq,(z/x) (108 Po(X|2)] — Dke(qs(2]X)[|p(2))

When L, o(x) = log py(X), it holds that g4(z|x) = ps(z|X).
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Variational Auto-Encoder (VAE): Optimization

Prior distribution: pe(z)

z-space

Encoder: qq(z|x)

A

Decoder: pe(x|z)

X-space

Dataset: D

Tongxin Li (SDS, CUHK-SZ)

clecde
r’gsaex Ezwq¢(z|x) Iog p@(x\E)]

- DKL(%(Z|X\)HP(Z))

S encod 1.

- maximize E,.q, (z/x)[log po (X|2)]:

reconstruct x

- minimize Dic(qs(2[X)]|p(2)):

approximate prior
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Variational Auto-Encoder (VAE): Optimization

Prior distribution: pe(z)

z-space

Encoder: qq(z|x)

Decoder: pe(x|z)

A

X-space

Dataset: D

Tongxin Li (SDS, CUHK-SZ)

max Ez-.q, (zlx) [log po(X|2)]

— Dra(94(2[x) [p(2))

- maximize E,.q, (z/x)[log po (X|2)]:

reconstruct x

- minimize Dy (qy(2[X)[|p(2)):
approximate prior

Suppose p(z) = N(z;0,1). Then let
90 (2[x) = N(ps(x), diag(o3 (x))).
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Variational Auto-Encoder (VAE): Optimization

Prior distribution: pe(z)

z-space

Encoder: qq(z|x)

Decoder: pe(x|z)

A

X-space

Dataset: D

Tongxin Li (SDS, CUHK-SZ)

wen o g

#.0 2
() — r’gaex Bz~ q,(zi%)[log po(X[2)]
— Dra(q4(2[x)|p(2))
- maximize Ez-q, zx [log po (X|2)]:

reconstruct x

- minimize Dy (qy(2[X)[|p(2)):
approximate prior

Suppose p(z) = N(z;0,1). Then let
90 (2[x) = N(ps(x), diag(o3 (x))).
?a‘(ﬁ\’ﬂ( 473::«{ mean a-vﬁ
(ovanant

Q: How tan we opimize. (1) 7

e Can we (amrud'e +he 3va0[|'ey\+s Df A
w.rd. g and © 2
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Variational Auto-Encoder (VAE): Optimization

Prior distrib'ution: pe(z) rg?ex EZNQ¢(Z|X) [lOg pg(X|Z)]

— Dki(gy(2[x)[[p(2))

z-space L.
- maximize E,.q, (z/x)[log po (X|2)]:
., reconstruct x
‘ - minimize Dii(qs(z|X)||p(2)):
approximate prior
Encoder: qq(z|x) Decoder: pe(x|z)
T 7 Suppose p(z) = N(z;0,1). Then let
: 90 (2[x) = N(ps(x), diag(o3 (x))).
The expectation term in the loss function
X-space

requires sampling z ~ g,(z|x), which is a
stochastic process. Therefore we cannot
bat{kpropagate the gradient.

no4  deterministic

Dataset: D

Image from Kingma and Welling. An Introduction to Variational Autoencoders.2019.
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Variational Auto-Encoder (VAE): Optimization

deser ministic

Prior distribiution: pe(z) T rg?ex m“og pG(X|Z)]
Tf 2= hg(x), we on Dki(9s(z[x)]|p(z))

(omp(04) 52 24 .
z-space °¢ - 29 2&
- maximize Ez~q¢(z\x)[|0gpe(x|z)]3

. our gsal reconstruct x
""-.‘ ( - minimize Dk (qs(z|X)||p(2)):

approximate prior
Encoder: qq(z|x) Decoder: pe(x\s\)

Y Te Suppose p(z) = N(z;0,1). Then let

: R Qs (2[X) = N (1o(x). diag (0% (x))).

The expectation term in the loss function
requires sampling z ~ g,(z|x), which is a
stochastic process. Therefore we cannot
backpropagate the gradient.

X-space

Dataset: D

Image from Kingma and Welling. An Introduction to Variational Autoencoders.2019.
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VAE: Reparameterization Trick

Input «-----ooooooooocoe o Ideally they are identical.  ---------------------- . Reconstructed
, input
XXX
Probabilistic Encoder
70(2[x)
Mean Sampled
K latent vector

Probabilistic
Decoder

Po(x|2)

x| __.._.

o
Std. dev
An compressed low dimensional
z=pt+o0e representation of the input.
e~ N(0,I)

z ~ qy(2|X) = N(2; py(x), diag(5(x)))
Z = (15(X) + 04(X) © €, where € ~ N(0, 1) _Reparameterization Trick

Image from https://lilianweng.github.io/posts/2018-08-12-vae/
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Variational AutoEncoder (VAE): Details about Loss

@ Dy (q4(z|x)||p(z)): consider one element of z

— D (g4 (21X) ||p(2)) [/"7 and 69 depend on /]

2 1 exp (—7(2_@)2)
(2 = 1) )Iog Vet 2 )|

/ : (
exp | — . >
\/2702 20g 1 (2=1a)
2mog o exp (f 202
q
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Variational AutoEncoder (VAE): Details about Loss

@ Dy (q4(z|x)||p(z)): consider one element of z

— Di (gs (21X) [Ip(2))

. Oq oq+ (kg — pp) 1
s () 27 2
1
() o]
exam[?le
©® E,q,(zix)[log Po(X(2)]: po(X[Z) = N(X; 96(2), 2x),~ q,cz)=0"%

IEz~q¢,(z|x [log py(x|2)] oc [|X — go(z H2
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Variational AutoEncoder (VAE)

References
@ [Kingma and Welling, 2013] Auto-Encoding Variational Bayes

@ [Higgins et al., 2020] beta-VAE: Learning Basic Visual Concepts
with a Constrained Variational Framework

@ [Oord et al., 2017] VQ-VAE: Neural Discrete Representation
Learning

@ [Razavi et al., 2019] Generating Diverse High-Fidelity Images with
VQ-VAE-2

@ https://lilianweng.github.io/posts/2018-08-12-vae/
@ https://en.wikipedia.org/wiki/Variational_autoencoder
@ https://en.wikipedia.org/wiki/Autoencoder
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e Adversarial Generative Networks (GANS)
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Generative Adversarial Networks (GANS)

@ Generative Adversarial Networks is a kind of well-known and
popular generative model designed by lan J. Goodfellow and his
colleagues in June 2014.

Papers of GANs
4500
4131 4033
4000
3500 3418
3000 2844
2500
2000
1699
1500
1000
562
500
8 17 79
0 -
2014 2015 2016 2017 2018 2019 2020 2021 2022

https://www.aminer.cn/search/pub?g=generative%20adversarial%20networks&t=b
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Generative Adversarial Networks

Inspired by game theory, GAN estimates generator via an adversarial
process, in whi imultaneously train two neural networks

@ A generator G that is trained to capture the real data distribution
ated samples can be as real as possible.

@ A discriminator D that estimates the probability that a sample
ining data rather than the generator G.

Adversarial process: training D to maximize the probability of

g label to both training examples and samples
from G and simultaneously training G to maximize the probability
of D making a mistake.
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Generative Adversarial Networks

Tue or TFaolse

Discriminator

Training steps:
1 Fix parameters of generator G,
train discriminator D

L

2 Fix parameters of Real data Fake data
discriminator D, train
generator G t 4
3 Repeat step 1,2 Dat;aset Genefrator
Random Random
index into latent
dataset variable

Image from Generative Adversarial Networks (https://dl.acm.org/doi/10.1145/3422622)
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Generative Adversarial Networks

Model architecture of GAN

Differentiable module
Realworld —— Sample

images D Real D(x)

o

G Discriminator
2 o

G(2)

ss07

Fake D(G(Z))

Generator Sample

Latent random variable

Differentiable module

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf
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Generative Adversarial Networks

Train the discriminator

Realworld ——
images

o]
ssoq

Discriminator .

Generator ||

o

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf

Backprop error to
update discriminator
weights

Latent random variable
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Generative Adversarial Networks

Train the generator

o

Discriminator .

Generator |———+ Sample

Backprop error to
update generator
weights

Latent random variable

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf
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Generative Adversarial Networks

@ Notations

- pr: data distribution over real samples x
- pg: the generator’s distribution over data x
- pz: aprior on input noise variable z
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Generative Adversarial Networks

@ Notations

- pr: data distribution over real samples x
- pg: the generator’s distribution over data x
- pz: aprior on input noise variable z

@ Ensure the discriminator D’s decisions over real data are accurate
by
maximizep Ey.p,(x)[log D(X)]
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Generative Adversarial Networks

@ Notations
- pr: data distribution over real samples x
- pg: the generator’s distribution over data x
- pz: aprior on input noise variable z
@ Ensure the discriminator D's decisions over real data are accurate
by
vee\  dekar maximizep Ey.p, (x)[log D(X)]
@ Given a fake sample G(z),z ~ pz(z), the discriminator is expected
to output a probability, D(G(z)), close to zero by

folce datan

maximizep E,.p,(z)[log(1 — D(G(2)))]

@ On the other hand, the generator is trained to increase the
chances of D producing a high probability for generated samples,
thus

minimizeg Ezwpz(z)[logﬁ — D(G(2)))]
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Generative Adversarial Networks

@ Therefore, D and G play the following two-player minimax game
with loss function £(G, D) :

mGin max L(D, G) = Exp,(x)llog D(X)] + Ezp,z)llog(1 — D(G(2)))]
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Pseudo Code of GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

o Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior py(z).
Discriminator e Sample minibatch of m examples {z(™),..., (™} from data generating distribution

Paata(T)-
updates o Update the discriminator by ascending its stochastic gradient:

1 X ) )
m ©) +1og (1-0 (¢ (=)))]
ngm;[logD(a: +log(1-D|(G(=z ) .
end for _
o Sample minibatch of m noise samples {2/, ..., 2{")} from noise prior py(z).
Generator o Update the generator by descending its stochastic gradient:
updates

Vo, 3 o (10 (6(:))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf
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Advantages and Disadvantages of GAN

@ Advantages
e Sampling (or generation).is.intuitive and
o Compared to VAE, the training of GAN does
o Compared to VAE, the generated samples of GAN
realistic.
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Advantages and Disadvantages of GAN

@ Advantages
e Sampling (or generation) is intuitive and straightforward.
o Compared to VAE, the training of GAN doesn’t involve MLE.
o Compared to VAE, the generated samples of GAN are more
realistic.

@ Disadva
robability distribution is implici
straightforw pute p(x)

@ Thus only good for generating new samples
e The training is hard
e NG Convergence guarantee

@ May encounter mode collapse
\
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A Dbrief history of GANs

@ [Goodfellow et al., 2014]: Generative Adversarial Networks (GAN)
@ [Mirza et al. 2014]: Conditional GAN

@ [Radford et al. 2015]: Deep Convolutional GAN

@ [Ming-Yu Liu et al., 2016]: Coupled GAN

@ [Karras et al. 2017]: Progressive Growing of GANs

@ [Arjovsky et al. 2017]: Wasserstein GAN

@ [Zhu et al. 2017]: CycleGAN

@ [Han Zhang et al. 2018]: Self-Attention GAN

@ [Brock et al. 2018]: Large-scale GAN training (BigGAN)

@ [Karras et al. 2018]: A style-based generator architecture for GAN
(StyleGAN)
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Progress of GANs on image generation

@ human face

S5

2014 (GAN) 2015 (DCGAN) 2016 (CoGAN) 2017 (ProGAN) 2018 (StyleGAN)
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Progress of GANs on image generation
@ human face

S &

2014 (GAN) 2015 (DCGAN) 2016 (CoGAN)

@ other objects

2014 (GAN) 2015 (DCGAN)

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 28/43


Mobile User


@ Diffusion Models
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Diffusion Models: Overview

@ Diffusion models, also known as diffusion probabilistic models, are
a class of latent variable models introduced in 2015 with
inspiration from non-equilibrium thermodynamic

@ Overview of different types of generative_ mgdels

Decoder

VAE: maximize X
po(x|2)

variational lower bound

6\

GAN: Adversarial x'
training

Generator

Diffusion models:
Gradually add Gaussian
noise and then reverse

Image from https://lilianweng.github.io/posts/2021-07-11-diffusion-models
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Diffusion Models: Forward Diffusion Process

@ Given a data point sampled from a real data distribution xg ~ g(x),
a forward diffusion process adds small noise (e.g. Gaussian
noise) to the sample in T steps slowly, which produces a
sequence of noisy samples X{,X2,. ..,

\/Wm 1

The step sizes are controlled by a variance schedule {5 € (0,1)}/;.

@ When ¢; ~ N(0,1), we have
q(X¢|Xi—1) = N(Xt; /1 — BiXi—1, Bil)

\%T

Wwec
oV etnce
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Diffusion Models: Forward Diffusion Process

@ Given a data point sampled from a real data distributio@w q(x),
a forward diffusion process adds small noise (e.g. Gaussian
noise) to the sample in T steps slowly, which produces a
sequence of noisy samples X1, Xo, ..., XT:

Xt: \/1 —thz‘71 +@

The step sizes are controlled by a variance schedule {5 € (0,1)}/;.

@ When €; ~ N(0,1), we have a0 | %D oD
q(X¢|Xi—1) = N(Xt; /1 — BiXi—1, Bil)

@ The sample x, gradually loses its distinguishable features as t
becomes larger. Eventually when T — oo, X7 becomes isotropic
Gaussian.

@H A Dol Tem H
q(x¢|x¢—1)
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@(— <—@ xfx”@<— <—

q(Xe[X¢—1) = N (Xt; /1 — BiXe—1, Bil)
We can sample x; at any arbitrary time step t in a closed form. Let
ar=1-frand a; = [[L_, as, then

Xt = orXi—q + /1 — arer_q
= Vot 1 Xe_2 + /1 —arar_1€ 2

= VaXg + /1 — aze
* & o merged ;1 and e;_2. € ~ N(0,1). It follows that
q(x¢|x0) = N(Xt; v/arXo, (1 — ap)l).
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Diffusion Models: Reverse Diffusion Process

@ If the diffusion process can be reversed, using q(x;_1|X;), we can
create a true sample from a Gaussian noise input xr ~ N(0,1).
@ If B¢ is small enough, g(x;_1|x;) will also be Gaussian.
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Diffusion Models: Reverse Diffusion Process

@ If the diffusion process can be reversed, using q(x;_1|X;), we can
create a true sample from a Gaussian noise input xr ~ N(0,1).

@ If g; is small enough, g(x;—1|x;) will also be Gaussian.

@ We learn a model py to conduct the reverse diffusion process:

P(Xe—1 X N (Xe—1; po (Xt 1), o (X1, 1))

g and 3y are the outputs of a neural network parameterized by 6.
The inputs are x; and t.

Image from the https://lilianweng.github.io/posts/2021-07-11-diffusion-models
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Diffusion Models: Reverse Diffusion Process

Po(Xe—1]X¢) 5
O @ O ~Ep

xt|xt 1) ,'
,

\
-’
SO _-

q(x¢—1]%¢) is unknown

The reverse conditional probability is tractable when conditioned on Xg:

q(Xe—1|X¢, X0) = N (X¢—1; fie(Xt, Xo), 5il)

N 1—ap_1q ~ . a1(176¢t,1) \/0_41—1ﬁt
Bt = =5, B, Bt(Xt,Xo) = ‘F1_C—” Xt + 55— Xo
The derivation is a little complex and hence omitted. See [Sohl-Dickstein et al. 2015].
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Diffusion Models: Training (optional)

Minimize the variational bound on negative log-likelihood:

B[~ og s (x0)] <Eg |- og

Po (Xt—1|Xt)
[ log p (x7) — > _ log 9()(,|)(H)]

t>1

Po (Xo:7) }
q (X1:7/X0)

=Eq [ D (g (x7]%0) || (XT))

Ly

+ 37 Diw (g (Xe—1]x1, Xo) [|po (Xi-1/x:)) —log po (Xolx+) |

t>1
L1 Lo
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Diffusion Models: Training (optional)

Minimize the variational bound on negative log-likelihood:

B[~ og s (x0)] <Eg |- og

Po (Xt—1|Xt)
[ |08P(XT)—Z|° B(XtIXt1)]

t>1

Po (Xo:7) }
q (X1:7/X0)

=Eq [ D (g (x7]%0) || (XT))

Ly

+ 37 Diw (g (Xe—1]x1, Xo) [|po (Xi-1/x:)) —log po (Xolx+) |

t>1
L1 Lo

1
Lics =g | g e (0,0 s 0, O + €
t
B ?

1 1
By o | — |[—
et (om0

For derivations, refer to [Sohl-Dickstein et al. 2015] and [Ho et al. 2020].

X (Xo,e)f +C

6> — Mo (X; (Xo, 6) s t)
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Diffusion Models: Training (optional)

Reparameterization
Loy =Bxye | = L(x(x ) — 2 e)— N 1
t—1 —1xg,e 20't2 \/OT{ t \ A0, m Mo t \ARQ, )

e [ty e~ oo (Vamo + Vi ae) [ + o
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Diffusion Models: Training (optional)

Reparameterization
Loy =Bxye | = L(x(x ) — 2 e)— N 1
t—1 =lixg,e 2(7{2 \ﬁ t (Xo, m Mo (Xt (Xo,€),

=Exy,e [m He—ee <\/7Xo+\/1 — Qie, 2‘)H } +C

A simplified objective [Ho et al. 2020] that ignores the weighting term
and the final optimization objective is:

e — e (Vaxo + V1 are, t)ﬂ (1)

Lsimple (9) = Et,xo,e [

Optimization: SGD
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Diffusion Models: Training and Sampling

Algorithm 1 Training

: repeat

X0 ~ q(xo)

e ~N(0,1I)

Take gradient descent step on

Vo ||le — eo(varxo + v1— dte,t)||2

1
2:
3: t ~ Uniform({1,...,T})
4.
5

6: until converged

Algorithm 2 Sampling
1: X7 ~ N(U, I)
2: fort=T,...,1do
3: z~N(0,T)ift > 1,elsez=0
4: X411 = \/%7 X — \}%eg(xt,t)) + 04z
5: end for
6: return xo

Image from Ho et al. 2020.
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Diffusion Models: Examples

t=0 t= % t="T
2 2 z 2,
o~ !
The forward trajectory o .

- _al -
-2 0 2 -2 0 2 -2 0 2

2 2 2,

The reverse trajectory } A A%
,:i 5 ¥
Po(xo7) ; ; 43 :
3 . 2

- ol -

-2 0 2 -2 0 2 -2 0 2

Image from Sohl-Dickstein et al. 2015.
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Diffusion Models: Examples

AR10 progre e generatio 0 eta 020
8 s Y
.| o | x|
| e e [ e | e | e | e [ [ e | e [
:
) % 99999 (2 (2D
- - ~ ~ N
i
= ¥ 3 TN N FIEN F TN Y LS gl
= - - ,\ 1
§ N
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Diffusion Models: Examples

CelebA-HQ 256 x 256 generated samples [Ho et al. 2020]
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Diffusion Models: Advantages and Disadvantages

L\ea .

ot ool
° Advantag(ef/
e The duality of generated samples are often higher than VAE and

GAN.
e Probability distribution is explicit.
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Diffusion Models: Advantages and Disadvantages

@ Advantages
e The quality of generated samples are often higher than VAE and
GAN.
e Probability distribution is explicit.
@ Disadvantages

e The training process is time-consuming.
o ltis very slow to generate a sample from DDPM since T is often
very large, i.e. 1000. T
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Diffusion Models
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Learning Outcomes

@ Understand the main ideas ffusion model
@ Understand the derivation of the objective function of VAE

r\_
@ Know the advantages and disadvantages of VAE, GAN, and
diffusion model

@ Be able to use at least one of VAE, GAN, and diffusion model to
generate realistic data samples.

Tongxin Li (SDS, CUHK-SZ) Lecture 08 Generative Models Spring 2024 43/43


Mobile User

Mobile User

Mobile User


	Introduction
	Variational AutoEncoder (VAE)
	Adversarial Generative Networks (GANs)
	Diffusion Models

