DDA4210/AIR6002 Advanced Machine Learning Lecture 08 Generative Models

Tongxin Li

School of Data Science, CUHK-Shenzhen

Spring 2024

Overview

- Introduction
- Variational AutoEncoder (VAE)
- 3 Adversarial Generative Networks (GANs)
- 4 Diffusion Models

- Introduction
- Variational AutoEncoder (VAE)
- Adversarial Generative Networks (GANs
- Diffusion Models

Generative Models

- Generative models: generate new data instances with similar distribution as the training data
 - Learn a probability distribution $p(\mathbf{x})$ from $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
 - Then sample from $p(\mathbf{x})$ to generate new data instances
- Deep Generative Models (DGMs) are formed through the combination of generative models and deep neural networks.
- DGMs achieved SOTA performances in many real cases (e.g., image generation, text generation, ChatGPT, etc)

Generative Models

- Generative models: generate new data instances with similar distribution as the training data
 - Learn a probability distribution $p(\mathbf{x})$ from $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
 - Then sample from $p(\mathbf{x})$ to generate new data instances
- Deep Generative Models (DGMs) are formed through the combination of generative models and deep neural networks.
- DGMs achieved SOTA performances in many real cases (e.g., image generation, text generation, ChatGPT, etc)
- Types of Deep Generative Models
 - Variational AutoEncoder (VAE)
 - Generative Adversarial Networks (GANs)
 - Diffusion Models
 -

Generation instances via deep generative models

DDPM(2020)

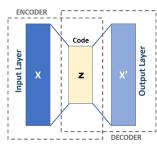
StyleGAN(2018)

- Vahdat Arash and Jan Kautz. "NVAE: A Deep Hierarchical Variational Autoencoder". NeurIPS 2020.
- Ho Jonathan et al. "Denoising Diffusion Probabilistic Models", NeurIPS 2020.
- Karras Tero et al. "A Style-Based Generator Architecture for Generative Adversarial Networks", CVPR 2021.

- Introduction
- Variational AutoEncoder (VAE)
- 3 Adversarial Generative Networks (GANs)
- Diffusion Models

AutoEncoder (AE)

- AutoEncoder (AE) is a type of neural network designed to learn an approximate identity transformation using an unsupervised way and then to reconstruct high-dimensional data and consists of an encoder network f_{ϕ} and a decoder network g_{θ} , parameterized by ϕ , θ respectively.
- The middle layer of AE usually has a narrow bottleneck to compress original high-dimensional data to low-dimensional representations.

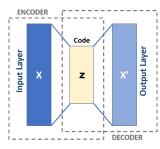


- Encoder network $\mathit{f}_{\phi}: \mathbf{x}
 ightarrow \mathbf{z}$
- Decoder network $g_{ heta}: \mathbf{z}
 ightarrow \mathbf{x}'$
- Optimization objective:

$$\min_{\phi, \theta} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - g_{\theta}(f_{\phi}(\mathbf{x}_i))\|^2 + \mathcal{R}(\phi, \theta)$$

AutoEncoder (AE)

- AutoEncoder (AE) is a type of neural network designed to learn an approximate identity transformation using an unsupervised way and then to reconstruct high-dimensional data and consists of an encoder network f_{ϕ} and a decoder network g_{θ} , parameterized by ϕ , θ respectively.
- The middle layer of AE usually has a narrow bottleneck to compress original high-dimensional data to low-dimensional representations.



- Encoder network $f_{\phi}: \mathbf{X}
 ightarrow \mathbf{Z}$
- Decoder network $g_{ heta}: \mathbf{z} o \mathbf{x}'$
- Optimization objective:

$$\min_{\phi, \theta} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - g_{\theta}(f_{\phi}(\mathbf{x}_i))\|^2 + \mathcal{R}(\phi, \theta)$$

- Can we generate new data using AE?

Variational AutoEncoder (VAE): Motivation

- VAE aims to transform ${\bf x}$ into a prior distribution p_z (rather than a fixed vector ${\bf z}$) using encoder f_ϕ and then to reconstruct ${\bf x}$ using decoder g_θ .
- Given training data $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ and a prior distribution p_z . Assume we have trained f_ϕ and g_θ of VAE successfully. In order to generate a new sample that looks like a real data point \mathbf{x}_i , we need the following steps:
 - First, sample a \mathbf{z}_i from the prior distribution p_z .
 - Then, a new sample can be generated via the decoder, i.e., $g_{\theta}(\mathbf{z}_i)$.

Variational AutoEncoder (VAE): Motivation

- VAE aims to transform ${\bf x}$ into a prior distribution ${\bf p}_{z}$ (rather than a fixed vector ${\bf z}$) using encoder f_{ϕ} and then to reconstruct ${\bf x}$ using decoder g_{θ} .
- Given training data $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ and a prior distribution p_z . Assume we have trained f_ϕ and g_θ of VAE successfully. In order to generate a new sample that looks like a real data point \mathbf{x}_i , we need the following steps:
 - First, sample a \mathbf{z}_i from the prior distribution p_z .
 - Then, a new sample can be generated via the decoder, i.e., $g_{\theta}(\mathbf{z}_i)$.
- How to obtain the decoder g_{θ} ? Maximize the probability of generating real data samples (maximum likelihood):

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n \log p(\mathbf{x}_i | \theta)$$

For simplicity, $p(\mathbf{x}_i|\theta)$ abbreviates as $p_{\theta}(\mathbf{x}_i)$.

Compute the marginal likelihood

$$ho_{ heta}(\mathbf{x}) = \int
ho_{ heta}(\mathbf{x},\mathbf{z}) d\mathbf{z} = \int
ho_{ heta}(\mathbf{x}|\mathbf{z})
ho_{ heta}(\mathbf{z}) d\mathbf{z}$$

Compute the marginal likelihood

$$p_{ heta}(\mathbf{x}) = \int p_{ heta}(\mathbf{x},\mathbf{z}) d\mathbf{z} = \int p_{ heta}(\mathbf{x}|\mathbf{z}) p_{ heta}(\mathbf{z}) d\mathbf{z}$$

- Prior $p_{\theta}(\mathbf{z})$, e.g. $\mathcal{N}(\mathbf{0}, \mathbf{I})$
- Likelihood $p_{\theta}(\mathbf{x}|\mathbf{z})$
- But it is impossible to integrate over all z.
- How about using Bayes' theorem?

$$ho_{ heta}(\mathbf{x}) = rac{
ho_{ heta}(\mathbf{x}|\mathbf{z})
ho_{ heta}(\mathbf{z})}{
ho_{ heta}(\mathbf{z}|\mathbf{x})}$$

- $p_{\theta}(\mathbf{z}|\mathbf{x})$ cannot be computed.

Compute the marginal likelihood

$$p_{ heta}(\mathbf{x}) = \int p_{ heta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int p_{ heta}(\mathbf{x}|\mathbf{z}) p_{ heta}(\mathbf{z}) d\mathbf{z}$$

- Prior $p_{\theta}(\mathbf{z})$, e.g. $\mathcal{N}(\mathbf{0}, \mathbf{I})$
- Likelihood $p_{\theta}(\mathbf{x}|\mathbf{z})$
- But it is impossible to integrate over all z.
- How about using Bayes' theorem?

$$ho_{ heta}(\mathbf{x}) = rac{
ho_{ heta}(\mathbf{x}|\mathbf{z})
ho_{ heta}(\mathbf{z})}{
ho_{ heta}(\mathbf{z}|\mathbf{x})}$$

- $p_{\theta}(\mathbf{z}|\mathbf{x})$ cannot be computed.
- ullet Solution: Train another neural network (encoder) f_{ϕ} that learns

$$q_{\phi}(\mathbf{z}|\mathbf{x}) pprox p_{ heta}(\mathbf{z}|\mathbf{x})$$

Decompose the log-likelihood:

$$egin{aligned} \log p_{ heta}(\mathbf{x}) &= \log rac{p_{ heta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p_{ heta}(\mathbf{z}|\mathbf{x})} = \log rac{p_{ heta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{ heta}(\mathbf{z}|\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x})} \ &= \log p_{ heta}(\mathbf{x}|\mathbf{z}) - \log rac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} + \log rac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{ heta}(\mathbf{z}|\mathbf{x})} \end{aligned}$$

Take expectation:

$$\begin{split} \log p_{\theta}(\mathbf{x}) &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x})] = \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}) d\mathbf{z} \\ &= \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})} d\mathbf{z} \\ &+ \int q_{\phi}(\mathbf{z}|\mathbf{x}) \log \frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})} d\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p(\mathbf{z})) \\ &+ D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x})) \end{split}$$

Variational AutoEncoder (VAE): Evidence Lower Bound

We have got

$$\log p_{\theta}(\mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathsf{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p(\mathbf{z})) + D_{\mathsf{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p_{\theta}(\mathbf{z}|\mathbf{x}))$$

Because KL-divergence is always non-negative, we obtain

$$\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z})) \triangleq \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

Variational AutoEncoder (VAE): Evidence Lower Bound

We have got

$$\log p_{\theta}(\mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathcal{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p(\mathbf{z})) + D_{\mathcal{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p_{\theta}(\mathbf{z}|\mathbf{x}))$$

• Because KL-divergence is always non-negative, we obtain

$$\log \rho_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log \rho_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| \rho(\mathbf{z})) \triangleq \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

• $\mathcal{L}_{\phi,\theta}(\mathbf{x})$ is a lower bound (called evidence lower bound, ELBO) of $\log p_{\theta}(\mathbf{x})$ and

$$\log p_{ heta}(\mathbf{x}) = \mathcal{L}_{\phi, heta}(\mathbf{x}) + D_{ extit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{ heta}(\mathbf{z}|\mathbf{x}))$$

ELBO is also known as the variational lower bound.

Variational AutoEncoder (VAE): Evidence Lower Bound

We have got

$$\log p_{\theta}(\mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathcal{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p(\mathbf{z})) + D_{\mathcal{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p_{\theta}(\mathbf{z}|\mathbf{x}))$$

Because KL-divergence is always non-negative, we obtain

$$\log \rho_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log \rho_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| \rho(\mathbf{z})) \triangleq \mathcal{L}_{\phi,\theta}(\mathbf{x})$$

• $\mathcal{L}_{\phi,\theta}(\mathbf{x})$ is a lower bound (called evidence lower bound, ELBO) of $\log p_{\theta}(\mathbf{x})$ and

$$\log
ho_{ heta}(\mathbf{x}) = \mathcal{L}_{\phi, heta}(\mathbf{x}) + D_{ extit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \|
ho_{ heta}(\mathbf{z}|\mathbf{x}))$$

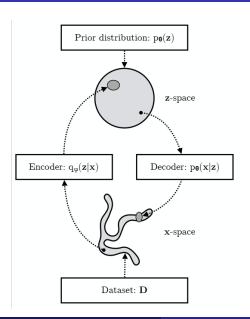
ELBO is also known as the variational lower bound.

VAE maximizes ELBO, i.e.,

$$\phi^*, \theta^* = \operatorname*{argmax}_{\phi, \theta} \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

When $\mathcal{L}_{\phi,\theta}(\mathbf{x}) = \log p_{\theta}(\mathbf{x})$, it holds that $q_{\phi}(\mathbf{z}|\mathbf{x}) = p_{\theta}(\mathbf{z}|\mathbf{x})$.

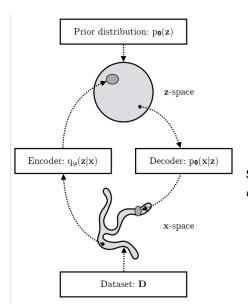
Variational Auto-Encoder (VAE): Optimization



$$egin{array}{l} \max_{\phi, heta} \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{ heta}(\mathbf{x}|\mathbf{z})] \\ &- D_{ extit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z})) \end{array}$$

- maximize $\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]$: reconstruct \mathbf{x}
- minimize $D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$: approximate prior

Variational Auto-Encoder (VAE): Optimization

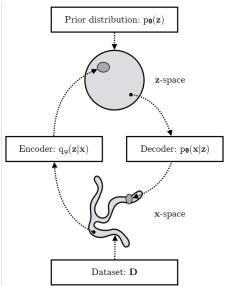


$$egin{array}{l} \max_{\phi, heta} \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{ heta}(\mathbf{x}|\mathbf{z})] \\ &- D_{ extit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z})) \end{array}$$

- maximize $\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]$: reconstruct \mathbf{x}
- minimize $D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p(\mathbf{z}))$: approximate prior

Suppose $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$. Then let $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \operatorname{diag}(\sigma_{\phi}^{2}(\mathbf{x})))$.

Variational Auto-Encoder (VAE): Optimization



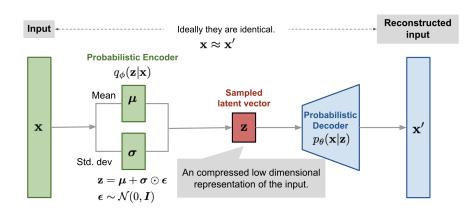
$$\max_{\phi, \theta} \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] \\ - D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))$$

- maximize $\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]$: reconstruct \mathbf{x}
- minimize $D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$: approximate prior

Suppose
$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$$
. Then let $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \operatorname{diag}(\sigma_{\phi}^{2}(\mathbf{x})))$.

The expectation term in the loss function requires sampling $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$, which is a stochastic process. Therefore we cannot backpropagate the gradient.

VAE: Reparameterization Trick



$$\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \mu_{\phi}(\mathbf{x}), \mathrm{diag}(\sigma_{\phi}^2(\mathbf{x})))$$

$$\mathbf{z} = \mu_{\phi}(\mathbf{x}) + \sigma_{\phi}(\mathbf{x}) \odot \epsilon$$
, where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ Reparameterization Trick

Image from https://lilianweng.github.io/posts/2018-08-12-vae/

Variational AutoEncoder (VAE): Details about Loss

• $D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$: consider one element of \mathbf{z}

$$\begin{split} &-D_{\mathit{KL}}\left(q_{\phi}\left(z|x\right)\|p(z)\right)\\ &=\int\frac{1}{\sqrt{2\pi\sigma_{q}^{2}}}\exp\left(-\frac{\left(z-\mu_{q}\right)^{2}}{2\sigma_{q}^{2}}\right)\log\left(\frac{\frac{1}{\sqrt{2\pi\sigma_{p}^{2}}}\exp\left(-\frac{\left(z-\mu_{p}\right)^{2}}{2\sigma_{p}^{2}}\right)}{\frac{1}{\sqrt{2\pi\sigma_{q}^{2}}}\exp\left(-\frac{\left(z-\mu_{q}\right)^{2}}{2\sigma_{q}^{2}}\right)}\right)dz\\ &=\log\left(\frac{\sigma_{q}}{\sigma_{p}}\right)-\frac{\sigma_{q}^{2}+\left(\mu_{q}-\mu_{p}\right)^{2}}{2\sigma_{p}^{2}}+\frac{1}{2}\\ &=\frac{1}{2}\left[1+\log\left(\sigma_{q}^{2}\right)-\sigma_{q}^{2}-\mu_{q}^{2}\right] \end{split}$$

Variational AutoEncoder (VAE): Details about Loss

• $D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$: consider one element of **z**

$$\begin{split} &-D_{\mathit{KL}}\left(q_{\phi}\left(z|x\right)\|p(z)\right) \\ &= \int \frac{1}{\sqrt{2\pi\sigma_{q}^{2}}} \exp\left(-\frac{\left(z-\mu_{q}\right)^{2}}{2\sigma_{q}^{2}}\right) \log\left(\frac{\frac{1}{\sqrt{2\pi\sigma_{p}^{2}}} \exp\left(-\frac{\left(z-\mu_{p}\right)^{2}}{2\sigma_{p}^{2}}\right)}{\frac{1}{\sqrt{2\pi\sigma_{q}^{2}}} \exp\left(-\frac{\left(z-\mu_{q}\right)^{2}}{2\sigma_{q}^{2}}\right)}\right) dz \\ &= \log\left(\frac{\sigma_{q}}{\sigma_{p}}\right) - \frac{\sigma_{q}^{2} + \left(\mu_{q} - \mu_{p}\right)^{2}}{2\sigma_{p}^{2}} + \frac{1}{2} \\ &= \frac{1}{2}\left[1 + \log\left(\sigma_{q}^{2}\right) - \sigma_{q}^{2} - \mu_{q}^{2}\right] \end{split}$$

 $\bullet \ \mathbb{E}_{\mathbf{z} \sim g_{\theta}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] \colon p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; g_{\theta}(\mathbf{z}), \Sigma_{\mathbf{x}})$

$$\mathbb{E}_{\mathbf{z} \sim q_{\theta}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] \propto \|\mathbf{x} - g_{\theta}(\mathbf{z})\|^2$$

Variational AutoEncoder (VAE)

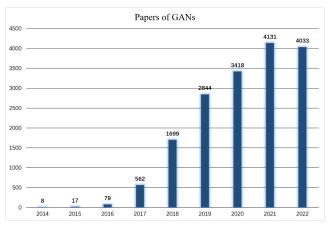
References

- [Kingma and Welling, 2013] Auto-Encoding Variational Bayes
- [Higgins et al., 2020] beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
- [Oord et al., 2017] VQ-VAE: Neural Discrete Representation Learning
- [Razavi et al., 2019] Generating Diverse High-Fidelity Images with VQ-VAE-2
- https://lilianweng.github.io/posts/2018-08-12-vae/
- https://en.wikipedia.org/wiki/Variational_autoencoder
- https://en.wikipedia.org/wiki/Autoencoder

- Introduction
- Variational AutoEncoder (VAE)
- 3 Adversarial Generative Networks (GANs)
- Diffusion Models

Generative Adversarial Networks (GANs)

 Generative Adversarial Networks is a kind of well-known and popular generative model designed by Ian J. Goodfellow and his colleagues in June 2014.



https://www.aminer.cn/search/pub?q=generative%20adversarial%20networks&t=b

Inspired by game theory, GAN estimates generator via an adversarial process, in which we simultaneously train two neural networks

- A generator *G* that is trained to capture the real data distribution so that the generated samples can be as real as possible.
- A discriminator *D* that estimates the probability that a sample came from the training data rather than the generator *G*.
- Adversarial process: training D to maximize the probability of assigning the correct label to both training examples and samples from G and simultaneously training G to maximize the probability of D making a mistake.

Training steps:

- 1 Fix parameters of generator *G*, train discriminator *D*
- 2 Fix parameters of discriminator *D*, train generator *G*
- 3 Repeat step 1,2

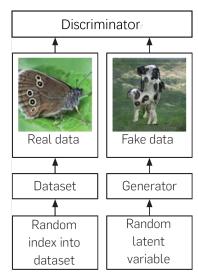


Image from Generative Adversarial Networks (https://dl.acm.org/doi/10.1145/3422622)

Model architecture of GAN

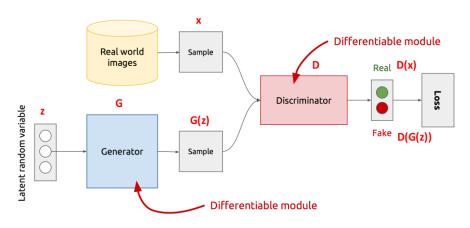


Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf

Train the discriminator

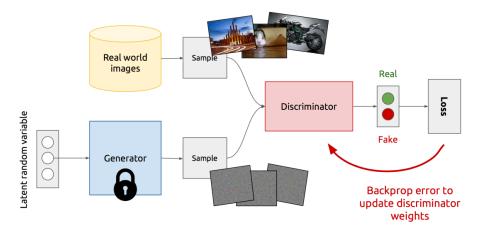


Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf

Train the generator

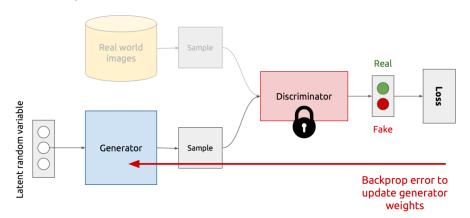


Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf

Notations

- p_r: data distribution over real samples x
- p_g : the generator's distribution over data ${\bf x}$
- p_z : a prior on input noise variable **z**

- Notations
 - p_r: data distribution over real samples x
 - p_g : the generator's distribution over data **x**
 - p_z : a prior on input noise variable **z**
- Ensure the discriminator D's decisions over real data are accurate by

$$\mathsf{maximize}_D \; \mathbb{E}_{\mathbf{x} \sim p_r(\mathbf{x})}[\mathsf{log} \; D(\mathbf{x})]$$

- Notations
 - p_r: data distribution over real samples x
 - p_g : the generator's distribution over data ${\bf x}$
 - p_z : a prior on input noise variable **z**
- Ensure the discriminator D's decisions over real data are accurate by

$$\mathsf{maximize}_D \; \mathbb{E}_{\mathbf{x} \sim p_r(\mathbf{x})}[\mathsf{log} \; D(\mathbf{x})]$$

 Given a fake sample G(z), z ∼ p_z(z), the discriminator is expected to output a probability, D(G(z)), close to zero by

$$\mathsf{maximize}_D \; \mathbb{E}_{\mathbf{z} \sim p_z(\mathbf{z})}[\mathsf{log}(\mathsf{1} - D(G(\mathbf{z})))]$$

 On the other hand, the generator is trained to increase the chances of D producing a high probability for generated samples, thus

minimize_G
$$\mathbb{E}_{\mathbf{z} \sim p_z(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

• Therefore, D and G play the following two-player minimax game with loss function $\mathcal{L}(G, D)$:

$$\min_{G} \max_{D} \mathcal{L}(D,G) = \mathbb{E}_{\mathbf{x} \sim p_r(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_z(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

Pseudo Code of GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Discriminator updates

Generator updates

Image from https://www.cs.toronto.edu/ rgrosse/courses/csc321_2018/slides/lec19.pdf

Advantages and Disadvantages of GAN

Advantages

- Sampling (or generation) is intuitive and straightforward.
- Compared to VAE, the training of GAN doesn't involve MLE.
- Compared to VAE, the generated samples of GAN are more realistic.

Advantages and Disadvantages of GAN

Advantages

- Sampling (or generation) is intuitive and straightforward.
- Compared to VAE, the training of GAN doesn't involve MLE.
- Compared to VAE, the generated samples of GAN are more realistic.

Disadvantages

- Probability distribution is implicit
 - Not straightforward to compute $p(\mathbf{x})$
 - Thus only good for generating new samples
- The training is hard
 - No convergence guarantee
 - May encounter mode collapse

A brief history of GANs

- [Goodfellow et al., 2014]: Generative Adversarial Networks (GAN)
- [Mirza et al. 2014]: Conditional GAN
- [Radford et al. 2015]: Deep Convolutional GAN
- [Ming-Yu Liu et al., 2016]: Coupled GAN
- [Karras et al. 2017]: Progressive Growing of GANs
- [Arjovsky et al. 2017]: Wasserstein GAN
- [Zhu et al. 2017]: CycleGAN
- [Han Zhang et al. 2018]: Self-Attention GAN
- [Brock et al. 2018]: Large-scale GAN training (BigGAN)
- [Karras et al. 2018]: A style-based generator architecture for GAN (StyleGAN)

Progress of GANs on image generation

human face

2014 (GAN)

2015 (DCGAN)

2016 (CoGAN)

Progress of GANs on image generation

human face

2014 (GAN) other objects

2014 (GAN)

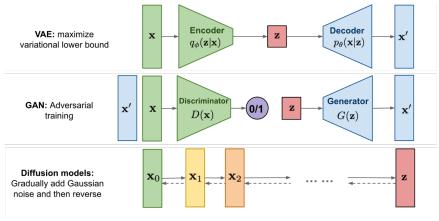
2015 (DCGAN)

2018 (BigGAN)

- Introduction
- Variational AutoEncoder (VAE)
- 3 Adversarial Generative Networks (GANs)
- Diffusion Models

Diffusion Models: Overview

- Diffusion models, also known as diffusion probabilistic models, are a class of latent variable models introduced in 2015 with inspiration from non-equilibrium thermodynamics.
- Overview of different types of generative models



Diffusion Models: Forward Diffusion Process

• Given a data point sampled from a real data distribution $\mathbf{x}_0 \sim q(\mathbf{x})$, a forward diffusion process adds small noise (e.g. Gaussian noise) to the sample in T steps slowly, which produces a sequence of noisy samples $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T$:

$$\mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}$$

The step sizes are controlled by a variance schedule $\{\beta_t \in (0,1)\}_{t=1}^T$.

• When $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, we have

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Diffusion Models: Forward Diffusion Process

• Given a data point sampled from a real data distribution $\mathbf{x}_0 \sim q(\mathbf{x})$, a forward diffusion process adds small noise (e.g. Gaussian noise) to the sample in T steps slowly, which produces a sequence of noisy samples $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T$:

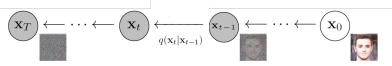
$$\mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}$$

The step sizes are controlled by a variance schedule $\{\beta_t \in (0,1)\}_{t=1}^T$.

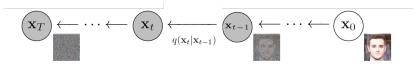
• When $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, we have

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

• The sample \mathbf{x}_0 gradually loses its distinguishable features as t becomes larger. Eventually when $T \to \infty$, \mathbf{x}_T becomes isotropic Gaussian.



Diffusion Models: Forward Diffusion Process



$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

We can sample \mathbf{x}_t at any arbitrary time step t in a closed form. Let $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$, then

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon_{t-1}$$

$$= \sqrt{\alpha_{t} \alpha_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t} \alpha_{t-1}} \bar{\epsilon}_{t-2}$$

$$= \cdots$$

$$= \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon$$

* $\bar{\epsilon}_{t-2}$ merged ϵ_{t-1} and ϵ_{t-2} . $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. It follows that

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I}).$$

Diffusion Models: Reverse Diffusion Process

- If the diffusion process can be reversed, using $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$, we can create a true sample from a Gaussian noise input $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- If β_t is small enough, $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ will also be Gaussian.

Diffusion Models: Reverse Diffusion Process

- If the diffusion process can be reversed, using $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$, we can create a true sample from a Gaussian noise input $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- If β_t is small enough, $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ will also be Gaussian.
- We learn a model p_{θ} to conduct the reverse diffusion process:

$$\rho_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

 μ_{θ} and Σ_{θ} are the outputs of a neural network parameterized by θ . The inputs are \mathbf{x}_t and t.

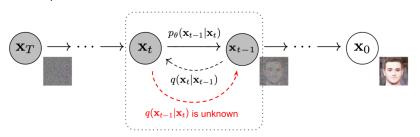
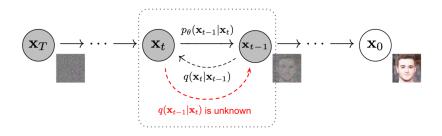


Image from the https://lilianweng.github.io/posts/2021-07-11-diffusion-models

Diffusion Models: Reverse Diffusion Process



The reverse conditional probability is tractable when conditioned on \mathbf{x}_0 :

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$$

$$\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t, \quad \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0$$

The derivation is a little complex and hence omitted. See [Sohl-Dickstein et al. 2015].

Minimize the variational bound on negative log-likelihood:

$$\begin{split} \mathbb{E}\left[-\log p_{\theta}\left(\mathbf{x}_{0}\right)\right] \leq & \mathbb{E}_{q}\left[-\log \frac{p_{\theta}\left(\mathbf{x}_{0:T}\right)}{q\left(\mathbf{x}_{1:T}|\mathbf{x}_{0}\right)}\right] \\ = & \mathbb{E}_{q}\left[-\log p\left(\mathbf{x}_{T}\right) - \sum_{t\geq1}\log \frac{p_{\theta}\left(\mathbf{x}_{t-1}|\mathbf{x}_{t}\right)}{q\left(\mathbf{x}_{t}|\mathbf{x}_{t-1}\right)}\right] \\ = & \mathbb{E}_{q}\left[\underbrace{D_{\text{KL}}\left(q\left(\mathbf{x}_{T}|\mathbf{x}_{0}\right)\|p\left(\mathbf{x}_{T}\right)\right)}_{L_{T}} + \sum_{t>1}\underbrace{D_{\text{KL}}\left(q\left(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}\right)\|p_{\theta}\left(\mathbf{x}_{t-1}|\mathbf{x}_{t}\right)\right)}_{L_{t-1}} - \log p_{\theta}\left(\mathbf{x}_{0}|\mathbf{x}_{1}\right)}\right] \end{split}$$

Minimize the variational bound on negative log-likelihood:

$$\begin{split} \mathbb{E}\left[-\log p_{\theta}\left(\mathbf{x}_{0}\right)\right] \leq & \mathbb{E}_{q}\left[-\log \frac{p_{\theta}\left(\mathbf{x}_{0:T}\right)}{q\left(\mathbf{x}_{1:T}|\mathbf{x}_{0}\right)}\right] \\ = & \mathbb{E}_{q}\left[-\log p\left(\mathbf{x}_{T}\right) - \sum_{t \geq 1}\log \frac{p_{\theta}\left(\mathbf{x}_{t-1}|\mathbf{x}_{t}\right)}{q\left(\mathbf{x}_{t}|\mathbf{x}_{t-1}\right)}\right] \\ = & \mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{T}|\mathbf{x}_{0}\right)\|p\left(\mathbf{x}_{T}\right)\right)}_{L_{T}} + \sum_{t \geq 1}\underbrace{D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}\right)\|p_{\theta}\left(\mathbf{x}_{t-1}|\mathbf{x}_{t}\right)\right)}_{L_{t-1}} - \log p_{\theta}\left(\mathbf{x}_{0}|\mathbf{x}_{1}\right)\right] \\ L_{t-1} = & \mathbb{E}_{q}\left[\frac{1}{2\sigma_{s}^{2}}\left\|\tilde{\mu}_{t}\left(\mathbf{x}_{t},\mathbf{x}_{0}\right) - \mu_{\theta}\left(\mathbf{x}_{t},t\right)\right\|^{2}\right] + C \end{split}$$

$$= \mathbb{E}_{\mathbf{x}_{0}, \boldsymbol{\epsilon}} \left[\frac{1}{2\sigma_{t}^{2}} \left\| \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} \left(\mathbf{x}_{0}, \boldsymbol{\epsilon} \right) - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon} \right) - \mu_{\theta} \left(\mathbf{x}_{t} \left(\mathbf{x}_{0}, \boldsymbol{\epsilon} \right), t \right) \right\|^{2} \right] + C$$

For derivations, refer to [Sohl-Dickstein et al. 2015] and [Ho et al. 2020].

Reparameterization

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{1}{2\sigma_{t}^{2}} \left\| \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} \left(\mathbf{x}_{0}, \epsilon \right) - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \epsilon \right) - \mu_{\theta} \left(\mathbf{x}_{t} \left(\mathbf{x}_{0}, \epsilon \right), t \right) \right\|^{2} \right] + C$$

$$= \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t} \left(1 - \bar{\alpha}_{t} \right)} \left\| \epsilon - \epsilon_{\theta} \left(\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon, t \right) \right\|^{2} \right] + C$$

Reparameterization

$$\begin{split} L_{t-1} = & \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{1}{2\sigma_{t}^{2}} \left\| \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} \left(\mathbf{x}_{0}, \epsilon \right) - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \epsilon \right) - \mu_{\theta} \left(\mathbf{x}_{t} \left(\mathbf{x}_{0}, \epsilon \right), t \right) \right\|^{2} \right] + C \\ = & \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2} \alpha_{t} \left(1 - \bar{\alpha}_{t} \right)} \left\| \epsilon - \epsilon_{\theta} \left(\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon, t \right) \right\|^{2} \right] + C \end{split}$$

A simplified objective [Ho et al. 2020] that ignores the weighting term and the final optimization objective is:

$$L_{\text{simple}}\left(\theta\right) := \mathbb{E}_{t,\mathbf{x}_{0},\epsilon}\left[\left\|\epsilon - \epsilon_{\theta}\left(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\epsilon, t\right)\right\|^{2}\right] \tag{1}$$

Optimization: SGD

Diffusion Models: Training and Sampling

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return** \mathbf{x}_0

Diffusion Models: Examples

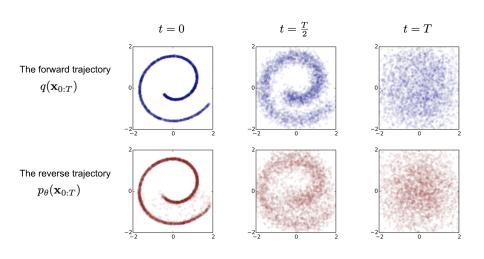


Image from Sohl-Dickstein et al. 2015.

Diffusion Models: Examples

CIFAR10 progressive generation [Ho et al. 2020]

Diffusion Models: Examples

CelebA-HQ 256 \times 256 generated samples [Ho et al. 2020]

Diffusion Models: Advantages and Disadvantages

- Advantages
 - The quality of generated samples are often higher than VAE and GAN.
 - Probability distribution is explicit.

Diffusion Models: Advantages and Disadvantages

- Advantages
 - The quality of generated samples are often higher than VAE and GAN.
 - Probability distribution is explicit.
- Disadvantages
 - The training process is time-consuming.
 - It is very slow to generate a sample from DDPM since T is often very large, i.e. 1000.

Diffusion Models

References

- [Sohi-Dickstein et al. 2015] Deep Unsupervised Learning using Nonequilibrium Thermodynamics
- [Ho et al. 2020] Denoising Diffusion Probabilistic Nodels
- [Nichol et al. 2021] Improved Denoising Diffusion Probabilistic Models
- [Song et al. 2020] Denoising Diffusion Implicit Models
- https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Learning Outcomes

- Understand the main ideas of VAE, GAN, and diffusion model
- Understand the derivation of the objective function of VAE
- Know the advantages and disadvantages of VAE, GAN, and diffusion model
- Be able to use at least one of VAE, GAN, and diffusion model to generate realistic data samples.