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Trustworthy ML

Motivation
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AI Tools are Everywhere

AI/ML Methods/Predictions

Suggested Moves

Suggested Strategies

AI Assistants
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Review

First Part of This Course:

• Ensemble

• Learning Theory

• GNN

• Generative Models

Focus more on a single merit: accuracy
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AI Tools Are NOT Always Trustworthy

Blackbox AI Tools/Imperfect Predictions

Defeated by players using adversarial strategies0.6 %

Suggested Moves

Suggested Strategies

AI Assistants

Image sources: New Bing5
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A Toy Example
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A Toy Example
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A Toy Example

Mobile User



A Toy Example
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Trustworthy Methods Connect AI to Physical Worlds
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Outlook

Second Part of This Course:

• Causal Learning 

• Differential Privacy and Federated Learning

• Fairness in ML

• Explainable AI (XAI)

Focus on more attributes: causality, privacy, fairness, and interpretability

(This lecture)
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Introduction to Causal Learning

This Lecture:
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Outline
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• Examples

• Causal inference

• Causal discovery

• Disentanglement

Simpson’s Paradox

Nonlinear ICA

Identifiable VAE

Backdoor Adjustment

The PC Algorithm

Formal Definitions
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Outline
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• Causal inference

• Causal discovery

• Disentanglement

Causal learning is a full course in many schools 

We will only cover selective topics

Many online resources and talks
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Causal Inference

Part I 
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Simpson’s paradox and Examples

Part I.1 
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Motivating example: Simpson’s paradox 

Simpson’s paradox: COVID-29 

New Virus

Treatment :  A (0) or B (1)

Condition : Mild (0) or Severe (1)

Outcome : Happy (0) or Unhappy (1)

T
C
Y
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Motivating example: Simpson’s paradox 

New Virus

Treatment :  A (0) or B (1)

Condition : Mild (0) or Severe (1)

Outcome : Survive (0) or Not (1)

T
C
Y

Mortality Rate Table

Simpson’s paradox: COVID-29 
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Simpson’s paradox: Mortality Rate Table

Mortality Rate Table
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Mortality Rate Table

Simpson’s paradox: Mortality Rate Table
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Which treatment should you choose?

Statistics/Data

Simpson’s paradox: Mortality Rate Table

Mortality Rate Table
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Simpson’s paradox: scenario 1

Which treatment is better?
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Simpson’s paradox: scenario 1 (treatment B) 
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Simpson’s paradox: scenario II

Which treatment is better?
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Simpson’s paradox: scenario II (treatment A) 

Which treatment is better?
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What do we learn from the simpson’s paradox?
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What do we learn from the simpson’s paradox?

胆固醇

More examples
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What do we learn from the simpson’s paradox?

More examples
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What do we learn from the simpson’s paradox?

More examples

Source: https://www.tylervigen.com/spurious-correlations
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What do we learn from the simpson’s paradox?

Correlation does not imply causation 

Correlation is not enough 

Statistical learning vs Causal learning
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Why causality matters in machine learning?
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Why causality matters in machine learning?
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Why causality matters in machine learning?
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Why causality matters in machine learning?

Mobile User



Why causality matters in machine learning?

Relying solely on correlation can cause problems
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Simpson’s paradox and Examples

Part I.2 

36
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What is causal inference?

Inferring the effects of any treatment/policy/intervention/etc.

• Effect of treatment on a disease

• Effect of climate change policy on emissions

• Effect of social media on mental health

• Many more (effect of X on Y)

Examples:
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What is causal inference?

Inferring the effects of any treatment/policy/intervention/etc.

• Effect of treatment on a disease

• Effect of climate change policy on emissions

• Effect of social media on mental health

• Many more (effect of X on Y)

How do we measure causal effects in observational studies?

Examples:

How do we measure causal effects with interventions?
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Potential outcomes

Inferring the effect of treatment/policy on some outcome

Case I

Case II
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Do Operator

Inferring the effect of treatment/policy on some outcome
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Do Operator

Inferring the effect of treatment/policy on some outcome
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A Fundamental Problem of Causal Inference
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A Fundamental Problem of Causal Inference
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Causal inference with observations

Inferring the effects of any treatment/policy/intervention/etc.

• Effect of treatment on a disease

• Effect of climate change policy on emissions

• Effect of social media on mental health

• Many more (effect of X on Y)

How do we measure causal effects in observational studies?

Examples:

How do we measure causal effects with interventions?
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How do we measure causal effects in observational studies?

Causal inference with observations
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Solution: backdoor adjustment

Causal inference with observations

Formal assumptions are needed (omitted)
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Solution: backdoor adjustment

Causal inference with observations

Formal assumptions are needed (omitted)
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Application to the COVID-29 example

Assume this causal graph:
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Causal Discovery

Part II 

49

Mobile User



Causal Discovery

Part II 
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1. Linear Case
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What is causal discovery?

How do we know this relation for the COVID-29 example?

A key problem: identifiability
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What is causal discovery?

How do we know this relation for the COVID-29 example?

A key problem: identifiability

Many methods …

We focus on ICA in this lecture

s = (s1, …, sn) x = (x1, …, xm)

Adjacency matrixA :=
xi =

n

∑
j=1

aijsj, , i = 1,…, m

Suppose the underlying mechanism is linear
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What is causal discovery?

How do we know this relation for the COVID-29 example?

Identifiability: Observe , want  and  x A s

Many methods …

We focus on ICA in this lecture

s = (s1, …, sn) x = (x1, …, xm)

Adjacency matrixA :=
xi =

n

∑
j=1

aijsj, , i = 1,…, m

Suppose the underlying mechanism is linear

structural equation model (SEM)
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Why causality matters in machine learning?

Three sources of correlation:

How do identify them, as a graph?
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Independent Component Analysis

ICA as principled unsupervised learning
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Independent Component Analysis

ICA as principled unsupervised learning

Unsupervised learning can have different goals
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Independent Component Analysis

ICA as principled unsupervised learning

Identifiability: Find Independent Components (Sources)
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Independent Component Analysis

ICA as principled unsupervised learning

The independent components are identifiable (up to permutation and scaling of the sources)

Assumptions: At most one of the sources  is Gaussiansj

 is full-rankA = (aij)
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Independent Component Analysis

ICA as principled unsupervised learning

Mobile User



Independent Component Analysis

Identifiability means ICA does blind source separation

credits: Aapo Hyvarinen
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Independent Component Analysis

credits: Aapo Hyvarinen
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Causal Discovery and Disentanglement

Part II 

62

2. General Case
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Nonlinear Independent Component Analysis

What if we consider the nonlinear setting?

Deep generative models: x = f(s)

Linear ICA: x = As
What is ?f −1

⟹ pθ*(z) = pθ(z)

pθ*(x |z) = pθ(x |z)
Disentanglement
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Nonlinear Independent Component Analysis

Disentanglement

Find disentangled representations in unsupervised data.  

An important topic in causal learning

A problem in deep generative models
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Deep generative models are are not identifiable in general

(Hyvärinen and Pajunen, 1999; Khemakhem et al., 2020; Locatello et al., 2019)

 basic VAEs, GANs, Nonlinear ICA etc. are unidentifiable:⟹

Identifiability of Nonlinear Independent Component Analysis

Deep generative models: x = f(s) What is ?f −1
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Deep generative models: x = f(s)

Deep generative models are are not identifiable in general

(Hyvärinen and Pajunen, 1999; Khemakhem et al., 2020; Locatello et al., 2019)

 basic VAEs, GANs, Nonlinear ICA etc. are unidentifiable:⟹

We can add structures/assumptions on the distribution of  to ensure identifiabilitys

Identifiability of Nonlinear Independent Component Analysis

What is ?f −1
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Deep generative models: x = f(s)

(Hyvärinen and Pajunen, 1999; Khemakhem et al., 2020; Locatello et al., 2019)

 basic VAEs, GANs, Nonlinear ICA etc. are unidentifiable:⟹

Identifiability of Nonlinear Independent Component Analysis

Deep generative models are are not identifiable in general
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Identifiability of Nonlinear Independent Component Analysis
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-VAEβ

Higgins, Irina, et al. "beta-vae: Learning basic visual concepts with a constrained variational framework." International conference on learning representations. 2017.

Increase  can encourage disentanglementβ
Why?
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-VAEβ

Higgins, Irina, et al. "beta-vae: Learning basic visual concepts with a constrained variational framework." International conference on learning representations. 2017.

Increase  can encourage disentanglementβ

From the last lecture:
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FactorVAE

Kim, H. and Mnih, A., 2018, July. Disentangling by factorising. In International Conference on Machine Learning (pp. 2649-2658). PMLR.

Idea: -VAE optimizes the two terms together, FactorVAE separates themβ
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FactorVAE

Idea: -VAE optimizes the two terms together, FactorVAE separates themβ
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Identifiable VAE (i-VAE)

p(z) ⟶ p(z |u) i-VAEVAE

Maximize

Khemakhem, Ilyes, et al. "Variational autoencoders and nonlinear ica: A unifying framework." International Conference on Artificial Intelligence and Statistics. PMLR, 2020.
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Identifiable VAE (i-VAE)
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i-VAE for Causal Discovery

hippocampal fMRI data Blue: Correct

Red:  Incorrect

(feasible given anatomical connectivity)

(incompatible with anatomical structure)

Q: Which method is better?
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Summary

Part III 

76
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• Understand the tasks of causal inference and causal discovery

Learning Outcomes

• Be able to describe ICA and its identifiability

• Be able to connect nonlinear ICA and the disentanglement problem in generative models

• Know what -VAE, FactorVAE, I-VAE areβ

• Appreciate how causal learning differs from statistical learning 
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Trustworthy ML

Motivation

2
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