UNIVERSITÄT PADERBORN
Die Universität der Informationsgesellschaft
Faculty of Computer Science, Electrical Engineering and Mathematics
Algorithms and Complexity research group
Jun.-Prof. Dr. Alexander Skopalik

Online Algorithms

Notes of the lecture SS13
by Vanessa Petrausch (vape@mail.upb.de)

Contents

1 Introduction 1
2 Paging 3
2.1 Deterministic Algorithms 3
2.1.1 Marking Algorithms 3
2.1.2 Lower Bounds 5
2.1.3 Optimal Offline Algorithm 5
2.2 Randomised Algorithms 7
2.2.1 Worst-Case Analysis as a Game 8
2.2.2 Potential Function 9
2.2.3 Analysis of RANDOM 9
2.2.4 Analysis of MARK 12
2.2.5 Lower Bounds for Randomized Online Algorithms 13
3 The k-Server-Problem 15
3.1 Introduction 15
3.1.1 Greedy Algorithm 15
3.1.2 The k-Server Conjecture 15
3.1.3 Optimal Offline Algorithm 16
3.2 Lower Bound for Deterministic Online Algorithm 18
3.3 k-Server Problem on a Line 19
3.4 The DC-Algorithm on Trees 22
3.5 Applying DC-Algorithm 23
3.6 The 2-Server-Problem in Euclidean Spaces 24
4 Approximation of Metric Spaces 27
4.1 Approximations with Tree Metrics 27
5 Scheduling 35
5.1 Identical Machines 35
5.2 Machines with Speed 36
6 Summary 40

1 Introduction

Definition 1.1. "classical" optimization problem
given input instance \rightarrow compute solution that max-/minimizes object function, e.g. shortest path

Definition 1.2. Online problem

- instance is not shown in advance
- revealed step by step
- decision (part of solution) have to be made each step, e.g. paging/caching

Definition 1.3. Optimisation problem II

- I_{π} set of instances
- For each $\sigma \in I_{\pi}$ there is
- set of solutions S_{σ}
- objective functions $f_{\sigma}: S_{\sigma} \rightarrow \mathbb{R}_{\geq 0}$
- min/max
- OPT(a) value of optimal solution
- $A(\sigma)$ solution computed by algorithm A
- $w_{A}(\sigma)=f_{\sigma}(A(\sigma))$ value of $A^{\prime} s$ solution

Online Optimization Problem

- Input is of the form $\sigma=\left(\sigma_{1}, \cdots, \sigma_{p}\right), p$ is not fixed
- Online algorithm reacts on every σ_{i}
- does not know $\sigma_{i+1}, \sigma_{i+2}, \cdots$
- does not know their number (p)
- These decisions form the solution $\mathrm{A}(\sigma) \leftarrow S_{\sigma}$
- Offline algorithms: know the future

Definition 1.4. Competitive ratio

- An online algorithm A for minimization problem π has a competitive ratio $r>1$ if there is some constant $\tau \in \mathbb{R}$ s.t.

$$
w_{A}(\sigma) \leq r \cdot O P T(\sigma)+\tau \quad \forall \sigma \in I_{\pi}
$$

- A is strict r-competitive

$$
w_{A}(\sigma) \leq r \cdot O P T(\sigma) \quad \forall \sigma \in I_{\pi}
$$

2 Paging

2.1 Deterministic Algorithms

here: only two levels

input: $\sigma=\left(\sigma_{1}, \cdots \sigma_{n}\right)$ sequence of page requests $\sigma_{i} \in \mathbb{N}$ denotes the number of requested page

- if σ_{i} is in the cache, no additional cost
- if σ_{i} is not in the cache, cost of 1 (the algorithm has to load the page into the cache: page fault)
- if cache is full, the algorithm has to choose a page in the cache that has to be removed

Deterministic Algorithms

- LRU (least-recently used) removes the page requested least recently
- LFU (last-frequently used) removes the page that was requested least of them
- FIFO (first-in-first-out) removes the oldest page in cache
- LIFO (last-in-first-out) removes newest page in cache
- FWF (flush-when-full) completely empties the cache when the cache is full and there is a page fault
- LFD (longest-forwarded-distance) remove the page that will be requested the latest

2.1.1 Marking Algorithms

Decompose input $\sigma=\left(\sigma_{1} \cdots \sigma_{n}\right)$ into phases as follows

- Phase 1: maximal prefix with k different pages
- Phase $i \geq 2$: maximal sequence following phase $\mathrm{i}-1$ with at most k different pages
- Example: $k=3: \sigma=\underbrace{1,2,4,2,1}_{\text {Phase } 1} \underbrace{3,5,2,3,5}_{\text {Phase } 2} \underbrace{1,2,3,4}_{\text {Phase } 3}$

A marking algorithm is an algorithm that never removes a marked page from the cache. At the beginning of a phase no page is marked. A page that is accessed during a phase becomes marked.

Theorem 2.1. LRU is a marking algorithm
Proof. Assume LRU is not a marking algorithm.
\Rightarrow There is an input sequence σ on which LRU removes a marked page x in phase
i. Let σ_{t} be the corresponding event

- since x is marked, it was used in phase i before, let $\sigma_{t^{\prime}}$ with $t^{\prime}<t$ the first access of page x in phase i.
- of all pages requested after $\sigma_{t^{\prime}}, x$ is the most least recently used
- since x is removed at time σ_{t} there must be k different pages different from x accessed between $\sigma_{t^{\prime}}$ and σ_{t}
\Rightarrow together with the requests of x this would be $k+1$ different pages requested in one phase. (contradiction definition phase)

Theorem 2.2. Every marking algorithm is strict k-competitive (at most k time worse than optimal offline algorithm)

Proof. Let σ be an arbitrary input instance and l is the number of phases of this input instance. w.l.o.g (without loss of generality) $l \geq 2$

1. Cost of marking algorithm is at most $l \cdot k$

- l phases, each phase at most k different request
- every page is marked at the first request and never removed. At most one page fault per page.

2. Cost of an optimal offline algorithm is at least $k+l-2$

- k page faults in the first phase
- one page fault in each of the following phases, except the last one ($l-2$ phases).
- Define subsequence i as follows:
- starts with the second request of phase $i+1$
- ends with first request of phase $i+2$
- Example:

$$
\sigma=1,2,4,2,1, \underbrace{3,5,2,3,5,1,2,3,4}_{\text {subsequence }}
$$

- Beginning of phase $i+1$, there is some request x
- Beginning of subsequence i, x and $k+1$ pages different from x in the cache
- in subsequence i there are k different (different from x) requests \Rightarrow at least one page fault

$$
\begin{aligned}
O P T(\sigma) & \geq k+l-2 \\
w_{A}(\sigma) & \leq l \cdot k \leq(k+l-2) \cdot k \leq k \cdot O P T
\end{aligned}
$$

Corollary 2.1. $L R U$ is k-competitive

2.1.2 Lower Bounds

Theorem 2.3. LFU \mathcal{B} LIFO are not competitive
Proof.

- Given any τ, r construct sequence σ s.t. (such that)

$$
w_{L F U}(\sigma)>r \cdot O P T(\sigma)+\tau
$$

- Consider for any constant $l \geq 2: \sigma(\underbrace{1^{l}}_{1, \cdots, 1}, 2^{l}, \cdots,(k-1)^{l},(k, k+1)^{l-1})$
- optimal solution, only $k+1$ page faults
- LFU/LIFO:
- until first request of $k+1: k$ page faults and $\{1 \cdots k\}$ in cache
- Both remove k (last-in/least frequently)
- following request of k : Both remove page $k+1$
- this repeats \Rightarrow at least $2 \cdot(l-1)$ page faults
- Choice of $l: 2(l-1)>r \cdot(k+1)+\tau=r \cdot O P T(\sigma)+\tau$

2.1.3 Optimal Offline Algorithm

Lemma 2.1. Let A be an optimal offline algorithm different from LFD and σ an arbitrary input sequence where LFD and A behave differently. Let σ_{t} be the first request where they differ. Then there is an algorithm B that

- behaves like A on $\sigma_{1}, \cdots \sigma_{t-1}$
- at σ_{t} it removes the page from the cache that will be requested the latest
- incurs no higher cost than A

Proof. We construct algorithm B as follows:

- on $\sigma_{1}, \cdots \sigma_{t-1}$ behaves like A
- at $\sigma_{t} B$ removes the LFD-page
- (Idea: from now on, A and B have at least one page different in the cache)
- Let b be the LFD-page and a be the page that A chooses.
- Cache content of A after $\sigma_{t}: X \cup\{b\}$; of B is $X \cup\{a\}$ with $|X|=k-1$
- Denote content of A (or B) cache before σ_{s} with A_{s} (or B_{s}, respectively)
- Divide $\sigma_{t+1}, \sigma_{t+2}, \cdots$ into two phases
- Phase 1 includes all $s \geq t+1$ with $B_{s}=\left(A_{s} \backslash\{b\}\right) \cup\left\{u_{s}\right\}$
- Phase 2 includes all $s \geq t+1$ with $B_{s}=A_{s}$

Construct algorithm B such that there is an event t^{\prime} and all events between $\sigma_{t+1} \cdots \sigma_{t^{\prime}}$ are in phase 1 and all events between $\sigma_{t^{\prime}+1}, \sigma_{t^{\prime}+2} \cdots$ are in phase 2 .

- Phase 1: At request σ_{s} algorithm B works as follows
(reminder: $B_{s}=\left(A_{s} \backslash\{b\}\right) \cup\left\{u_{s}\right\}$)

1. request $\sigma_{s} \in A_{S} \cap B_{s}$: no page faults
2. request $\sigma_{s} \notin A_{S} \cup B_{s}: A$ and B cause page faults
(a) A replaces $b: B$ replaces $u_{s} \Rightarrow A_{s+1}=B_{s+1}$ (in phase 2)
(b) A replaces $v \neq b: B$ replaces $v \Rightarrow B_{s+1}=\left(A_{s+1} \backslash\{b\}\right) \cup\left\{u_{s}\right\}$ (still in phase 1)
3. request u_{s} : Only A causes page fault
(a) A replaces $b \Rightarrow A_{s+1}=B_{s+1}$ (phase 2)
(b) A replaces $v \neq b \Rightarrow B_{s+1}=A_{s+1} \backslash\{b\} \cup\{v\}$ (phase 1)
4. request of b : Only B causes page faults and B removes page u_{s} from cache. Then $A_{s+1}=B_{s+1}$ (phase 2)

- Phase 2: B behaves like A and never leaves phase 2 .

Observe that 1) - 4) ensure that we only reach configurations in phase 1 and 2. It remains to show that B causes not more page faults than A :

- Obvious in case 1, 2 and 3
- case 4:
* can only happen once
* b was the latest requested page at time t \Rightarrow there must have been a request of page a
* until first request of $a: u_{s}=a$
\Rightarrow first request of a : case 3
\Rightarrow also one page fault of A

Theorem 2.4. LFD (longest-forwarded-distance) is an optimal offline algorithm for paging

Proof. Let $A_{O P T}$ be an optimal offline algorithm different from LFD. We modify $A_{O P T}$ without increasing its cost, s.t. the resulting algorithm is LFD. Repeatedly apply Lemma 1.1.: For any sequence σ, let $A_{0}=A_{O P T}$

1. Let σ_{t} be the first request where A_{0} and LFD differ.
2. Apply Lemma 1.1. and let A_{1} be algorithm B from Lemma 1.1.
3. repeat step 1 and 2 to obtain algorithm A_{i} until A_{i} behaves like LFD (\Rightarrow same costs of A and LFD)

Theorem 2.5. There is no deterministic r-competitive online algorithm for paging with $r<k$.

Proof. Let A be an arbitrary deterministic online algorithm for paging. We show that for any $\tau \in \mathbb{R}$ and every $r<k$ there exists a sequence σ with

$$
w_{A}(\sigma)>r \cdot O P T(\sigma)+\tau
$$

- We construct sequence σ with $k+l$ different page request
- $k+1$ different pages
- $\sigma_{1}, \cdots \sigma_{k}: k$ different pages, i.e. $1,2, \cdots, k$
$\sigma_{k+1}, \cdots \sigma_{k+l}$: request the page that is not in the cache of A
$\Rightarrow A$ causes $k+l$ page faults.
- Show that LFD will have first k and then at most $k+\frac{\lceil l\rceil}{k} \leq k+1+\frac{l}{k}$ page faults.
- For every choice of k, τ and $r<k$ we can choose a l, such that

$$
\begin{aligned}
w_{A}(\sigma) & =k+l>r\left(k+1+\frac{l}{k}\right)+\tau \text { by } \\
l & >\frac{k}{k-r} \cdot(r(k+1)-k+\tau)
\end{aligned}
$$

2.2 Randomised Algorithms

Idea: algorithms use randomness for some of their decisions. Hope, that by using these algorithms, at the end you have better competitive factor than k.
Two simple algorithms:

1. RANDOM: Upon a page fault, select a page from the cache uniformly at random and replace it.
2. MARK: If we have a page request, we mark the requested page. If we have a page fault, we choose unmarked page uniformly at random. If all pages are marked, remove all markings and choose the page to remove uniformly at random.

Redefined Measures:

- Costs are random variables that depend on the random decisions of the algorithm.
- We study expected cost:

$$
E\left(w_{A}(\sigma)\right)=\sum_{i=-\infty}^{\infty} i \cdot \operatorname{Pr}\left(w_{A}(\sigma)=i\right)
$$

where $\operatorname{Pr}\left(w_{A}(\sigma)=i\right)$ is the probability that cost of A on input σ is exactly i.

2.2.1 Worst-Case Analysis as a Game

1. algorithm A tries to achieve a certain competitive ratio
2. adversary ($A d v$) chooses an input sequence such that algorithm A violates that competitive ratio. $A d v$ knows A including the probability distribution of $A^{\prime} s$ random bits.

When does the adversary chooses σ and what does he know?

1. Oblivious (Obl): adversary choose σ at the beginning (no knowledge about realization of random experiments)
Comparison: $O P T(\sigma)$
2. adaptive adversary: creates σ online after observing the realization of $A^{\prime} s$ random experiments.
σ is now a random variable
(a) adaptive online: constructs a solution for comparison online.
(b) adaptive offline: takes the expected value of the optimal solution of σ : $E(O P T(\sigma))$

Notation:

Online Algorithm A, adversary $A d v$. Input created by $A d v: \sigma_{A d v}$, cost of $A d v$ on $\sigma_{A d v}: w_{A d v}$

Definition 2.1. Let A be a randomized online Algorithm. A has a competitive factor of $r \geq 1$ against a class $C \in\{O b l, A d O n, A d O f\}$ of adversaries if there is a constant $\tau \in \mathbb{R}$ s.t. for every $A d v \in C$:

$$
E\left(w_{A}\left(\sigma_{A d v}\right) \leq r \cdot E\left(w_{A d v}\right)+\tau\right.
$$

holds. If $\tau=0$ then A is strict r -competitive.

2.2.2 Potential Function

- For online algorithms let S_{A} be the set of configurations of A and $S_{\text {Adv }}$ the set of configurations of $A d v$.
- Paging: $S_{A}=S_{A d v}=$ set of possible contents of the cache.
- A potential function $\Phi: S_{A} \times S_{A d v} \rightarrow \mathbb{R}$ creates for a sequence $\sigma_{1} \cdots \sigma_{n}$ a sequence of potential $\Phi_{0}, \Phi_{1}, \cdots, \Phi_{n}$ where Φ_{0} is the potential value before σ_{1} and $\Phi_{i}(i \geq 1)$ the value of the event σ_{i}.
- Cost of algorithm A at event $\sigma_{i}: A_{i}$
- amortised cost of A at event $\sigma_{i}=A_{i}+\Phi_{i}-\Phi_{i-1}$
- Cost of adversary: $A d v_{i}$

Theorem 2.6. Let A be an online algorithm and $C \in\{O b l, A d O n, A d O f\}$. If there is a constant $b \geq 0$ s.t. for every $A d v \in C$ there is a potential function Φ which satisfies following two conditions then A is r-competitive against C.

1. $\forall i \geq 1: E\left(a_{i}\right) \leq r \cdot E\left(A d v_{i}\right)$
2. $\forall i \geq 1: E\left(\Phi_{i}\right) \in[-b, b]$

Proof. Let $A d v \in C$ and $\sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ input created by $A d v$.
(Note: $E(X+Y)=E(X)+E(Y)$ holds, even if X, Y are correlated.)

$$
\begin{aligned}
E\left(w_{A}(\sigma)\right) & =\sum_{i=1}^{n} E\left(A_{i}\right) \\
& =\sum_{i=1}^{n} E\left(a_{i}-\Phi_{i}+\Phi_{i-1}\right) \\
& =\sum_{i=1}^{n}\left(E\left(a_{i}\right)-E\left(\Phi_{i}\right)+E\left(\Phi_{i-1}\right)\right) \\
& =\sum_{i=1}^{n} E\left(a_{i}\right)+E\left(\Phi_{o}\right)-E\left(\Phi_{n}\right) \\
& \leq r \cdot \sum_{i=1}^{n} E\left(A d v_{i}\right)+2 b \\
& =r \cdot w_{A d v}+2 b
\end{aligned}
$$

2.2.3 Analysis of RANDOM

Theorem 2.7. RANDOM is k-competitive against an adaptive online adversary.
Proof. Let $A d v \in A d O n$

- Denote by z_{i} the number of pages in the caches of RANDOM and $A d v$ that both have in common after σ_{i}.
- Let $\Phi_{i}=k\left(k-z_{i}\right)$ for $i \geq 1$ and $\Phi_{0}=k^{2}$. Observe $\Phi_{i} \in\left[0, k^{2}\right]$
- Let Rand_{i} and $A d v_{i}$ be the cost of RANDOM and $A d v$ respectively after σ_{i}. To use Theorem 2.6. we need to show:

$$
\begin{array}{r}
E\left(a_{i}\right) \leq k \cdot E\left(A d v_{i}\right) \text { which is equivalent to } \\
E\left(\Phi_{i}-\Phi_{i-1}\right) \leq k \cdot E\left(A d v_{i}\right)-E\left(\text { Rand }_{i}\right) \tag{1}
\end{array}
$$

- Case distinction: (cache is already filled with k pages)

Let P with $|P|=z_{i-1}$ pages in common before σ_{i}. Let $p=\sigma_{i}$ be the next page. Note: P and p are random variables.

- We show that equation 1 holds for every choice of P and p.

1. p is in cache of RANDOM $\Rightarrow \operatorname{Rand}_{i}=0$

- If p is in the cache of $A d v$ then number of pages in common stays the same: $\Phi_{i}-\Phi_{i-1}=0 \sqrt{ }$
- If p is not in the cache of $A d v$ then $\Phi_{i}-\Phi_{i-1} \in\{0, k\}$ and $A d v_{i}=1$ $\sqrt{ }$

2. p is not in cache of RANDOM, but in the cache of $A d v_{i} \Rightarrow \operatorname{Rand}_{i}=1$ and $A d v_{i}=0$
(a) RANDOM removes a page $\in P: \Phi_{i}-\Phi_{i-1}=0$
(b) RANDOM removes a page $\notin P: \Phi_{i}-\Phi_{i-1}=-k$ Probability for choosing a page $\notin P: \frac{k-z_{i-1}}{k}$ (a) $+(\mathrm{b}) \Rightarrow$

$$
E\left(\Phi_{i}-\Phi_{i-1}\right)=\frac{k-z_{i-1}}{k} \cdot(-k)=z_{i-1}-k \leq-1 \quad \sqrt{ }
$$

3. p is not in cache of RANDOM and not in the cache of $A d v$ $k \cdot E\left(A d v_{i}\right)-E\left(\right.$ Rand $\left._{i}\right)=k-1$
(a) Adv removes page $\notin P$ then $\Phi_{i}-\Phi_{i-1} \in\{0, \cdots, k\} \sqrt{ }$
(b) $A d v$ removes page $\in P$ then

Potential only changes if RANDOM removes a different page $\in P$ Probability for this is: $\frac{z_{i-1}-1}{k}$ which gives

$$
E\left(\Phi_{i}-\Phi_{i-1}\right)=\left(\frac{z_{i-1}-1}{k}\right) \cdot k \leq k-1
$$

\Rightarrow This shows Equation 1 for all choices of P and p.

Lower Bound for RANDOM

geometric random variables:

- X : number of repetitions of experiments with probability p until first success.

$$
\operatorname{Pr}(X=i)=(1-p)^{i-1} \cdot p ; E(X)=\frac{1}{p}
$$

- Cut-off: $Y=\min \{X, n\}$

Lemma 2.2. Let X be a geometric random variable with parameter p and $n \in \mathbb{N}$. For $Y=\min \{X, n\} E(Y)=\frac{1-(1-p)^{n}}{p}$

Proof. Let $q=1-p$

$$
\begin{aligned}
E(Y) & =\sum_{i=1}^{n} i \cdot \operatorname{Pr}(\min \{X, n\}=i) \\
& =\sum_{i=1}^{n-1} i \cdot \operatorname{Pr}(X=i)+\sum_{i=n}^{\infty} n \cdot \operatorname{Pr}(X=i) \\
& =\sum_{i=1}^{\infty} \min \{i, n\} \cdot p \cdot q^{i-1} \\
& =\sum_{i=1}^{\infty} i \cdot p \cdot q^{i-1}-\sum_{i=n+1}^{\infty}(i-n) \cdot p \cdot q^{i-1} \\
& =E(X)-q^{n} \cdot \sum_{i=1}^{\infty} i \cdot p \cdot q^{i-1} \\
& =\left(1-q^{n}\right) \cdot E(X) \\
& =\frac{1-q^{n}}{p}
\end{aligned}
$$

Theorem 2.8. The competitive factor of RANDOM against an oblivious adversary is at least k.

Proof. Consider an oblivious adversary that chooses
$\sigma=\left(\left(a_{1}, \cdots, a_{k}\right),\left(b_{1}, a_{2}, \cdots a_{k}\right)^{l},\left(b_{2}, a_{2}, \cdots a_{k}\right)^{l}, \cdots,\left(b_{m}, a_{2}, \cdots a_{k}\right)^{l}\right)$ $O P T(\sigma)=k+m$ page faults.

RANDOM:

- consider a block $\left(b_{i}, a_{2}, \cdots a_{k}\right)^{l}$
- At beginning at most $k-1$ of these pages are in the cache
- page fault is successful if cache content is $\left\{b_{i}, a_{2}, \cdots a_{k}\right\}$ afterwards
- otherwise removed a page $\in\left\{b_{i}, a_{2}, \cdots a_{k}\right\}$ from the cache
- Probability of successful page fault is at most $\frac{1}{k}$
- Using Lemma 2.2. the expected number of page faults per block is $k \cdot\left(1-\left(1-\frac{1}{k}\right)^{l}\right)$
- $E\left(w_{R A N D O M}(\sigma)\right) \geq k+m \cdot k \cdot\left(1-\left(1-\frac{1}{k}\right)^{l}\right) \geq m \cdot k \cdot\left(1-\left(1-\frac{1}{k}\right)^{l}\right)$
- For any $r<k$ and $\tau \in \mathbb{R}$ choose m and l such that
$-E\left(w_{R A N D O M}(\sigma)\right)>r \cdot O P T(\sigma)+\tau$
$-m \cdot k \cdot\left(1-\left(1-\frac{1}{k}\right)^{l}\right)>r \cdot(k+m)+\tau$
- since $\lim _{l \rightarrow \infty}\left(1-\left(1-\frac{1}{k}\right)^{l}\right)=0$ and $r<k$, there is a l such that $r^{\prime}=k\left(\left(1-\left(1-\frac{1}{k}\right)^{l}\right)>r\right.$
- For this $l: m \cdot r^{\prime}>r(k+m)+\tau$ holds with $m=1+\frac{r \cdot k+\tau}{r^{\prime}-r}$

2.2.4 Analysis of MARK

Theorem 2.9. MARK is $2 \cdot H_{k}$-competitive against oblivious adversary. $\left(H_{k}=\sum_{i=1}^{k} \frac{1}{i}=\Theta(\log k)\right)$

Proof. Let σ be input chosen by adversary. Consider phases as in the proof of the deterministic case.

- phase 1: MARK and adversary each have k page faults
- phase $i \geq 2$:
- old page: page accessed in phase $i-1$
- new page: no access in phase $i-1$
- Let m_{i} be the number of these new pages in phase i
- new pages cause exactly one page fault
- old pages: probability that page is still in cache when first accessed decreases with the number of new pages accessed before
- worst case: each of the m_{i} new pages is accessed (at least once) before the $k-m_{i}$ old pages are accessed
- sort old pages $j \in\left\{1, \cdots, k-m_{i}\right\}$ by their first access in phase i
- P_{j} probability of j still in cache at first access
$-P_{1}=\frac{k-m_{i}}{k}, P_{j}=\frac{k-m_{i}-(j-1)}{k-(j-1)}$ $k-m_{i}-(j-1) \leftarrow$ number of marked old pages in the cache $k-(j-1) \leftarrow$ total number of unmarked old pages (including) those not in cache.
- Expected number of page faults caused by page j : $P_{j} \cdot 0+\left(1-P_{j}\right) \cdot 1=1-P_{j}$
- Total number of page faults in phase i :

$$
\begin{aligned}
m_{i}+\sum_{j=1}^{k-m_{i}}\left(1-P_{j}\right) & =\sum_{j=1}^{k-m_{i}} \frac{m_{i}}{k-(j-1)}+m_{i} \\
& \leq m_{i} \cdot \sum_{j=1}^{k} \frac{1}{k-(j-1)} \\
& =m_{i} \cdot H_{k}
\end{aligned}
$$

- Let n be the number of phases and $m_{1}=k$ then

$$
E\left(w_{M A R K}(\sigma)\right) \leq H_{k} \cdot \sum_{i=1}^{n} m_{i}
$$

optimal offline solution

- Consider 2 phases $i-1$ and i. There are $k-m_{i}$ different pages accessed in the sequence consisting of both phases.
- at most k of these pages in the cache at beginning \Rightarrow at least m_{i} page faults
- Consider 1st phase and every sequence of two consecutive phases and add page faults: $\sum_{i=1}^{n} m_{i}$
- $\operatorname{OPT}(\sigma) \geq \frac{1}{2} \sum_{i=1}^{n} m_{i}$ thus $E\left(w_{M A R K}(\sigma)\right) \leq 2 \cdot H_{k} \cdot O P T(\sigma)$

2.2.5 Lower Bounds for Randomized Online Algorithms

Theorem 2.10. There is no randomized online algorithm against oblivious adversaries with competitive factor smaller than H_{k}.

Proof. Let A be an arbitrary randomized online algorithm for paging.

- The oblivious adversary constructs an input sequence σ consisting of $k+1$ different pages.
- The adversary can compute for a given sequence $\left(\sigma_{1}, \cdots, \sigma_{q}\right)$ a probability distribution $\left(p_{1}, \cdots, p_{k+1}\right)$ with $p_{i} \in[0,1]$ and $\sum_{i=1}^{k+1} p_{i}=1$.
- p_{i} : probability that page i is not in the cache after step σ_{q}
- The adversary constructs σ in phases (like marking algorithm)
- m phases and each phase consists of k different pages. Pages are marked after first access + last page of previous phase
- each phase σ^{\prime} is divided into k subphases $\sigma_{1}^{\prime}, \cdots, \sigma_{k}^{\prime}$

Each subphase
- exactly one page becomes marked
\rightarrow after σ_{j}^{\prime} exactly $j+1$ marked pages
- consists of first zero or more requests of already marked pages, followed by exactly one request of an unmarked page
- Aim: Expected costs for A for $\sigma_{j}^{\prime}: \frac{1}{k-j+1}$
- construct σ_{j}^{\prime} :
- Let M set of marked pages at start σ_{j}^{\prime}
$-|M|=j$ and number of unmarked pages $U=k+1-j$
- Let $\gamma=\sum_{i \in M} p_{i}$
- If $\gamma=0$ then there is an unmarked page a with $p_{a} \geq \frac{1}{U}$, request a and subphase ends
- otherwise $\gamma>0$ then there is a marked page m with $p_{m}>0$
- Let $\epsilon=p_{m}$ and request m. Request more marked pages as follows:
* while the total expected cost of A for this subphase is less than $\frac{1}{U}$ and while $\gamma>\epsilon$ request page $l \in M$ with $l=\underset{i \in M}{\operatorname{argmax}} p_{i}$
* Finally pick unmarked page b with $b=\underset{i \notin M}{\operatorname{argmax}} p_{i}$
- Remarks:
- Expected cost of $A=$ sum of p_{i} of requested pages.
- $p_{1}, \cdots, p_{k}+1$ and γ have to be recomputed each iteration
- while loop terminates if $\gamma>\epsilon$ then $p_{l} \geq \frac{\gamma}{|M|} \geq \frac{\epsilon}{|M|}$
- Expected cost of A in σ_{j}^{\prime}
- case $\gamma=0: p_{a} \geq \frac{1}{U}$. Expected cost $\geq \frac{1}{U} \sqrt{ }$
- while loop terminates with expected cost $\geq \frac{1}{U} \sqrt{ }$
- while loop terminates with $\gamma \leq \epsilon$:

$$
b=\underset{i \notin M}{\operatorname{argmax}} p_{i} ; p_{b} \geq \frac{1-\gamma}{U}
$$

- Cost of A in $\sigma_{j}^{\prime}: \epsilon+p_{b} \geq \epsilon+\frac{1-\gamma}{U} \geq \epsilon+\frac{1-\epsilon}{U} \geq \frac{1}{U} \sqrt{ }$
- Expected cost of A in phase σ^{\prime} is

$$
\sum_{j=1}^{k} \frac{1}{k+1-j}=H_{k} . \text { Thus }
$$

$$
\begin{gathered}
E\left(w_{A}(\sigma)\right) \geq k+(m-1) \cdot H_{k} \\
\text { and } \\
O P T=k+m-1
\end{gathered}
$$

- By choosing m large enough the Theorem follows

3 The k-Server-Problem

3.1 Introduction

Let $k \geq 2$ and $\mathcal{M}=(M, d)$ a metric space where $|M|>k$ and M is a set of points (arbitrary set) and $d: M \times M \rightarrow \mathbb{R}_{\geq 0}$ is a metric distance function with

1. $d(x, y)=0 \Leftrightarrow x=y$
2. $d(x, y)=d(y, x)$ Symmetry
3. $d(x, z) \leq d(x, y)+d(y, z)$ triangle inequality

Example (\mathbb{R}^{2}, d) with d euclidean distance function.
If M is finite, representation by complete weighted graph.

k-Server-Problem

- Algorithm controls k mobile servers which are located on points of M.
- Input $\sigma=\left(\sigma_{1}, \cdots \sigma_{n}\right)$ is a sequence of points $\sigma_{i} \in M$ (request).
- A request σ_{i} is served if a server is on position σ_{i}.
- Algorithm may move servers at cost of distance.

3.1.1 Greedy Algorithm

on request σ_{i} move the server that is closest to σ_{i}.
Example: $k=2,|M|=3$., $\sigma=\left(c,(a, b)^{l}\right)$
(a)

c)

$$
d(a, b)<d(b, c)
$$

- after request c : one server at c
- after request a : one server at c and a each
- following request: greedy moves server between a and b
- OPT: one server at a and b each

3.1.2 The k-Server Conjecture

Any metric space allows for a deterministic k-competitive k-server algorithm

- lower bound of k (later in lecture)
- upper bound: $(2 k-1)$-competitive algorithm (Koutsoupias and Papadimitriou)

Lazy algorithms

- Only moves servers if no server on requested point
- Only moves one server and only to requested point
- Paging as k-server problem
$-M=$ set of pages, distance $=1$
- position of k - servers $\approx k$ pages in cache
- k-headed disk-problem
- $M=[0,1]$
$-d(x, y)=|x-y|$ line metric

3.1.3 Optimal Offline Algorithm

- Dynamic programming: $\mathcal{O}\left(|\sigma||M|^{k}\right)$
- Reduction to Min-Cost-Flow-Problem
- input: directed graph $G=(V, E)$ with
* source $s \in V$
* target $t \in V$
* capacity function $u: E \rightarrow \mathbb{R}_{\geq 0}$
* cost function $c: E \rightarrow \mathbb{R}$
* no negative cycles
- output: maximal flow $f: E \rightarrow \mathbb{R}_{\geq 0}$ with minimal costs $c(f)=\sum_{l \in E} f(l) \cdot c(l)$
- flow conservation $\sum_{l=(u, v) \in E} f(l)=\sum_{l=(v, u) \in E} f(l) \forall v \in V \backslash\{s, t\}$
- capacities:
$-\forall e \in E: 0 \leq f(e) \leq u(e)$
- value of flow: $|f|=\sum_{l=(s, v)} f(l)=\sum_{l=(v, t)} f(l)$

Successive-Shortest-Path-Algorithm

- integer capacities $u: E \rightarrow \mathbb{N}$
$\Rightarrow \exists$ min-cost-flow with integers that is computed by this algorithm
- $\mathcal{O}\left(n^{3} F\right)$ running time, (only pseudo polynomial, F is value of maximal flow)

Given a k-server problem by a metric $\mathcal{M}=(M, d)$ and input sequence $\sigma=$ $\left(\sigma_{1} \cdots \sigma_{n}\right)$. w.l.o.g (without loss of generality)are all servers at the same point $\sigma \in M$ at beginning and $n \geq k$.

Construct instance of min-cost-flow as follows:

- $G=(V, E)$ with
$-V=\{s, t\} \cup\left\{s_{1}, \cdots s_{k}\right\} \cup\left\{\sigma_{1}, \cdots, \sigma_{n}\right\} \cup\left\{\sigma_{1}^{\prime}, \cdots, \sigma_{n}^{\prime}\right\}$
$-E=\left\{\left(s, s_{i}\right) \mid i \in\{1 \cdots k\}\right\} \cup$ $\left\{\left(s_{i}, t\right) \mid i \in\{1 \cdots k\}\right\} \cup$ $\left\{\left(s_{i}, \sigma_{j}\right) \mid i \in\{1 \cdots k\}, j \in\{1 \cdots n\}\right\} \cup$ $\left\{\left(\sigma_{j}, \sigma_{j}^{\prime}\right) \mid j \in\{1 \cdots n\}\right\} \cup$ $\left\{\left(\sigma_{j}^{\prime}, \sigma_{l}\right) \mid j \in\{1 \cdots n\}, l \in\{1 \cdots n\}, l>k\right\} \cup$ $\left\{\left(\sigma_{j}^{\prime}, t\right) \mid j \in\{1 \cdots n\}\right\}$
$-u(l)=1 \forall l \in E$
- Cost function:

$$
\begin{aligned}
& * c\left(s, s_{i}\right)=0 \\
& * c\left(s_{i}, \sigma_{j}\right)=d\left(o, \sigma_{j}\right) \\
& * c\left(s_{i}, t\right)=0 \\
& * c\left(\sigma_{j}, \sigma_{j}^{\prime}\right)=-z \text { with } z>2 \cdot \max _{x, y \in M, x \neq y}(d(x, y)) \\
& * c\left(\sigma_{j}^{\prime}, \sigma_{l}\right)=d\left(\sigma_{j}, \sigma_{l}\right) \\
& * c\left(\sigma_{j}^{\prime}, t\right)=0
\end{aligned}
$$

- Observe: no negative cycles
- capacities of 1 , integer flow $\Rightarrow f(l)=0$ or $f(l)=1 \quad \forall l \in E$
- max flow has value k
- flow corresponds to edge disjoint paths
- let p_{i} be the path that contains s_{i}, then there is $l \geq 0$ and $j_{1} \cdots j_{l}$ such that $p_{i}=\left(s, s_{i}, \sigma_{j_{1}}, \sigma_{j_{1}}^{\prime}, \cdots, \sigma_{j_{l}}, \sigma_{j_{l}}^{\prime}, t\right)$ with cost: $d\left(\sigma, \sigma_{j_{1}}\right)+d\left(\sigma_{j_{1}}, \sigma_{j_{2}}\right)+\cdots+d\left(\sigma_{j_{l-1}}, \sigma_{j_{l}}\right)-l z$ which corresponds to cost of a server answering this sequence plus additional $l z$ term
- Every edge $e=\left(r_{j}, \sigma_{j}^{\prime}\right)$ is contained in exactly one path p_{i}
- obtain a solution L for k-server: Let server i answer requests σ_{j} if $e=\left(\sigma_{j}, \sigma_{j}^{\prime}\right)$ is contained in p_{i}
- cost of $L=$ cost of flow $f+n z$

Correctness: If there was a solution L^{\prime} with cost less than $L(L$ is obtained form f) we could construct a flow with less cost than f. \&
Running time: $\mathcal{O}\left(n^{3} k\right)$

3.2 Lower Bound for Deterministic Online Algorithm

Theorem 3.1. Let $\mathcal{M}=(M, d)$ be an arbitrary metric space with $|M| \geq k+1$. There is no r-competitive online algorithm for the k-server-problem on \mathcal{M} for average $r<k$.

Proof. Let A be an arbitrary lazy online algorithm for k-server-problem. Let $B=$ $\left\{b_{1}, \cdots, b_{k+1}\right\} \subseteq M$ an arbitrary subset of M with $k+1$ elements. We assume that A starts with k different points of B.
$\Rightarrow A$ always has at most one server on each point. Input $\sigma:$ always request the point in B on which A has no server.
Lemma 3.1. $w_{A}(\sigma) \geq \sum_{i=1}^{n-1} d\left(\sigma_{i}, \sigma_{i+1}\right)$
Proof. (Lemma 3.1.)

- After request σ_{i} we request σ_{i+1} the point that was covered by the server that answered request σ_{i}
- cost for answering $\sigma_{i} \geq d\left(\sigma_{i}, \sigma_{i+1}\right)$ for all $i \leq n-1$

Lemma 3.2. $O P T(\sigma) \leq \frac{1}{k} \sum_{i=1}^{n-1} d\left(\sigma_{i}, \sigma_{i+1}\right)$
Proof. (Lemma 3.2.) Indirect proof: Define a class C of algorithms.

- For each $S \subseteq B$ with $\sigma_{1} \in S$ and $|S|=k$ there is an algorithm C_{S}. C_{S} works as follows:
- Initially C_{S} places servers on S
- for request σ_{1} : nothing to do
- for $\sigma_{i}(i \geq 2)$ and no server on σ_{i} it moves server on σ_{i-1} to σ_{i}
- There are k different sets S. Thus $|C|=k$.
- Let S^{i} be the set of points on which servers of C_{S} are located after σ_{i}
- We show that for all different sets $S_{1} \neq S_{2}$ and all $i \geq 0: S_{1}^{i} \neq S_{2}^{i}$ holds:
$i=0$: obvious
I.S.: Case distinction by σ_{i+1}
- $\sigma_{i+1} \in S_{1}^{i}$ and $\sigma_{i+1} \in S_{2}^{i}$: no movement of either algorithm $S_{1}^{i+1}=S_{1}^{i} \neq S_{2}^{i}=S_{2}^{i+1}$
- $\sigma_{i+1} \in S_{1}^{i}$ and $\sigma_{i+1} \notin S_{2}^{i}$: observe $\sigma_{i} \in S_{1}^{i}$ and $\sigma_{i} \in S_{2}^{i}$ After $\sigma_{i+1}: \sigma_{i} \in S_{1}^{i+1}$ but $C_{S_{2}}$ moves server from σ_{i} to σ_{i+1} Thus: $\sigma_{i} \notin S_{2}^{i+1}$
- $\sigma_{i+1} \notin S_{1}^{i}$ and $\sigma_{n+1} \in S_{2}^{i}$: symmetric to case above
$-\sigma_{i+1} \notin S_{1}^{i}$ and $\sigma_{i+1} \notin s_{2}^{i}$: Cannot happen, would imply $S_{1}^{i}=S_{2}^{i}$. Thus two algorithms never have their servers on exactly the same positions.
- there are k algorithms C_{S}
- Each has a server on σ_{i} after request σ_{i}
\Rightarrow for every $b \in B \backslash\left\{\sigma_{i}\right\}$ there is exactly one algorithm C_{S} with $b \notin S^{i}$
- For $b=\sigma_{i+1}$ only one algorithm has cost of $d\left(\sigma_{i}, \sigma_{i+1}\right)$
- sum of costs of all algorithms:
$\sum_{S} w_{C_{S}}(\sigma)=\sum_{i=1}^{n-1} d\left(\sigma_{i}, \sigma_{i+1}\right)$ Average cost: $\frac{1}{k} \sum_{i=1}^{n-1} d\left(\sigma_{i}, \sigma_{i+1}\right)$
There has to be an algorithm with cost no higher than average cost
Combination of Lemma 3.1. and Lemma 3.2. proofs the Theorem.

3.3 k-Server Problem on a Line

Is motivated by k-headed disk problem. $\mathcal{M}=([0,1], d)$ with $d(x, y)=|x-y|$ Algorithm is called Double Coverage (DC)

- If request σ_{i} is left (or right) of all servers DC-algorithm move leftmost (rightmost) server to σ_{i}
- otherwise the DC -algorithm moves the two servers left and right of σ_{i} with the same velocity towards σ_{i}. It stops both servers as one arrives at σ_{i}

Theorem 3.2. The $D C$-algorithm is k-competitive for the k-server-problem on the line

Proof. Potential function Φ

- configuration of DC: $s_{1}, \cdots, s_{k} \in[0,1]$
- configuration of OPT: $o_{1}, \cdots, o_{k} \in[0,1]$
- $\Phi=k \cdot M_{\min }+\Sigma_{D C}$ with $M_{\min }=\min _{\pi \in \mathcal{S}_{k}}\left\{\sum_{i=1}^{k} d\left(s_{i}, o_{\pi(i)}\right)\right\}$
- minimum cost matching between OPT's and DC's servers.
- \mathcal{S}_{k} : Set of permutations of $\{1 \cdots k\}$ and
$-\Sigma_{D C}=\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} d\left(s_{i}, s_{j}\right)$ sum of pairwise distances of DC's servers
- $D C_{i}$ and $O P T_{i}$ the cost of DC and OPT serving request σ_{i}
- Φ_{0} potential before σ_{1} and Φ_{i} potential after step $\sigma_{i}(i \geq 1)$
- amortized cost after step $i: a_{i}=D C_{i}+\Phi_{i}-\Phi_{i-1}$ need to show (see lecture 3)

1. For every $i \geq 1: a_{i} \leq k \cdot O P T_{i}(\sigma)$ and
2. for every $i \geq 1: \Phi_{i} \in[-b, b]$

- Note that (2) holds for $b=2 k^{2}$ since $d()$ is bounded by 1 .

$$
0 \leq \Phi_{i} \leq k^{2}+\binom{k}{2} \leq 2 k^{2}
$$

- for property (1) we show that $\Phi_{i}-\Phi_{i-1} \leq k \cdot O P T_{i}(\sigma)-D C_{i}(\sigma)$
- Note: In step i DC and OPT may move and change the potential. Therefore let Φ_{i-1}^{\prime} be the potential after OPT answered request σ_{i} but before DC's movement.

Lemma 3.3. $\Phi_{i-1}^{\prime} \leq \Phi_{i-1}+k \cdot O P T_{i}(\sigma)$

Proof. (Lemma 3.3)

- OPT moves one server and the distance is $O P T_{i}(\sigma)$
- $k \cdot M_{\text {min }}$ changes by at most $k \cdot O P T(\sigma)$
(Consider the same assignment or permutation, distance of one pair increases by at most $\left.O P T_{i}(\sigma)\right)$
- $\Sigma_{D C}$ does not chance

Lemma 3.4. $\Phi_{i} \leq \Phi_{i-1}^{\prime}-D C_{i}(\sigma)$
Proof. (Lemma 3.4.)
Two cases: DC moves one or two servers

1. one server

- σ_{i} is left of all servers (right case is analogue). Let $S_{\text {left }}$ be the leftmost server of DC
- Let $o_{1}^{\prime}, \cdots, o_{k}^{\prime} \in[0,1]$ be the positions of the servers of OPT after request σ_{i}
- $M_{\text {min }}^{\prime}=\min _{\pi \in S_{k}} \sum_{i=1}^{k} d\left(s_{i}, o_{\pi(i)}\right)$
- there is a server $o_{j}^{\prime}=\sigma_{i}\left(j\right.$ answered the request $\left.\sigma_{i}\right)$ and o_{j}^{\prime} is left of $S_{\text {left }}$
(a) There is an optimal assignment π which assigns $S_{\text {left }}$ to o_{j}^{\prime}

DC moves $S_{\text {left }}$ by distance $D C_{i}$ towards o_{j}^{\prime}
First term of potential decreases by $k \cdot D C_{i}(\sigma)$
(b) Pairwise distance between DC's server change:
$S_{\text {left }}$ moves away from all $k-1$ remaining servers by distance $D C_{i}(\sigma)$ second term increases by $(k-1) D C_{i}(\sigma)$

- combining (a) and (b) we get the new potential

$$
\begin{aligned}
\Phi_{i} & \leq \Phi_{i-1}^{\prime}-k \cdot D C_{i}(\sigma)+(k-1) D C_{i} \\
& =\Phi_{i-1}^{\prime}-D C_{i}(\sigma)
\end{aligned}
$$

2. two servers

- Let s_{1}, s_{2} be two servers
- each moves by distance $\frac{D C_{i}(\sigma)}{2}$
(a) OPT has a server j on σ_{i} and there is an optimal assignment π which assigns s_{1} or s_{2} to j. That server moves by distance $\frac{D C_{i}(\sigma)}{2}$ towards j. The other server moves at most $\frac{D C_{i}(\sigma)}{2}$ away from its assigned server. $\rightarrow M_{\text {min }}$-term of Φ does not increase
(b) Second term $\sum_{D C} i$

For every server $s^{\prime} \neq s_{1}, s_{2}$: exactly one of s_{1}, s_{2} moves towards S^{\prime}, the other moves away by the dame distance
The distance between s_{1} and s_{2} decreases by $D C_{i}(\sigma)$

- combining (a) and (b) we get

$$
\Phi_{i} \leq \Phi_{i-1}^{\prime}-D C_{i}(\sigma)
$$

Combining both lemmas we get

$$
\Phi_{i} \leq \Phi_{i-1}^{\prime} \leq \Phi_{i-1}+k \cdot O P T-D C_{i}(\sigma)
$$

which proofs that the DC -algorithm is k -competitive on the line

3.4 The DC-Algorithm on Trees

$\mathcal{M}=(M, d)$ is a tree-metric if there exists a tree $G=(V, E)$ with $V=M$ and edge weights $w: E \rightarrow \mathbb{R}_{\geq 0}$ s.t. that distance $d(x, y)$ is exactly the weight of the path between x and y in G. (Because of the tree-structure, paths are always unique)

- same algorithm. We redefine "neighbour" and movement
- neighbour:
- Consider any configuration of k servers and a request r
- We say a server s is neighbour of r if there is no other server on the path from s to r

- neighbouring servers
- if two servers are on the same point, only one of them is a neighbour
- movement
- edge weight are distances
- all neighbouring servers move with the same speed towards the request

- servers might stop being neighbours, stop movement
- servers that stop on edges between two points: Simulate DC by a lazy algorithm. Then servers always on points of the metric

Theorem 3.3. $D C$-algorithm is k-competitive on arbitrary tree-metrics
Proof. Same potential function as for the line.

$$
\Phi=k \cdot \min _{\pi \in \mathcal{S}_{k}}\left\{\sum_{i=1}^{k} d\left(s_{i}, o_{\pi(i)}\right)\right\}+\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} d\left(s_{i}, s_{j}\right)
$$

Lemma 3.5. $\Phi_{i+1}^{\prime} \leq \Phi_{i}+k \cdot O P T_{i}(\sigma)$
Lemma 3.6. $\Phi_{i} \leq \Phi_{i-1}^{\prime}-D C_{i}(\sigma)$
Proof. (Lemma 3.6)
We divide the movement of servers into phases. A phase ends when a server reaches request σ_{i} or when the number of moving servers decreases. Consider a phase in which m servers move, each by distance d.

1. Term $M_{\text {min }}$: There is an optimal assignment π which assigns a neighbouring server of DC to the server of OPT that moved to σ_{i}. That server moves by distance d towards the assigned server. The remaining $m-1$ active servers increase their distance by at most d $k \cdot M_{\text {min }}$ increases by at most $k(m-2) d$
2. Term $\Sigma_{D C}$:

- Consider the $(k-m)$ servers that are not neighbours of σ_{i}. For each there is exactly one server moving away from it and $m-1$ active servers are moving towards it. For these pairs $\Sigma_{D C}$ decreases in total by $(k-m)(m-2) d$
- Every pair of active servers move towards each other and reduces the distance by $2 d . \Sigma_{D C}$ decreases by $\binom{m}{2} 2 d=d m(m-1)$.

Combining all three values shows that the potential decreases by at least $m d$. This corresponds to the cost of moving servers, summing over all phases implies the lemma.

3.5 Applying DC-Algorithm

- For a general finite metric $\mathcal{M}=(M, d)$ with $|M|=N$, let $G=(V, E)$ be a weighted graph representing \mathcal{M}.
- Compute a MST (Minimal Spanning Tree) $T=\left(V, E_{T}\right)$ and solve the k-serverproblem on the tree-metric given by T.
- Note: Distance might increase in $\mathcal{M}_{\mathcal{T}}$ compared to \mathcal{M}.
- Using DC-algorithm we get $w_{D C}(\sigma)=k \cdot O P T_{T}(\sigma)+\tau$ where $O P T_{T}$ is optimal offline solution for $\mathcal{M}_{\mathcal{T}}$
- For MST we know, that for each edge $e=\{x, y\} \in E$ the cost of the path from x to y in T is at $\operatorname{most}(N-1) w_{e}$.
\Rightarrow Thus $O P T_{T}(\sigma) \leq(N-1) O P T(\sigma)$
Corollary 3.1. The $D C$-algorithm is $(N-1) k$-competitive for arbitrary metrics with N points.

3.6 The 2-Server-Problem in Euclidean Spaces

Here only consider unit square $M=[0,1]^{2}$ in two dimension.

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
$$

Definition 3.1. (Slack)

For three points $x, y, r \in M$ we define

$$
\operatorname{slack}(x, y, r)=d(x, y)+d(x, r)-d(y, r)
$$

Note: Slack is non-negative due to the triangle inequality.

For each $\gamma \in[0,1]$ we consider the following algorithm: SlackCover $\gamma^{\left(S C_{\gamma}\right) \text { : }}$

- Let x, y be the current positions of servers of $S C_{\gamma}$
- Let r be the position of the current request
- w.l.o.g. assume $d(x, r) \leq d(y, r)$
- $S C_{\gamma}$ moves y by $y \cdot \operatorname{slack}(x, y, r)$ towards x
- $S C_{\gamma}$ moves x to r

Note:

- $S C_{\frac{1}{2}}$ on the line corresponds to the DC-algorithm
- Since $d(x, y) \leq d(y, r)$ we do not move y beyond x
- After movement of y, the server y is not further away from r than before

Theorem 3.4. The algorithm $S C_{\frac{1}{2}}$ is 3-competitive for the 2-server-problem on the euclidean unit square.

Proof.
Notes:

- x, y positions of $S C_{\gamma}$'s servers
- o_{1}, o_{2} positions of OPT's servers

Potential function

$$
\Phi=a M_{\min }+b \cdot d(x, y)
$$

where $M_{\min }$ is defined as in the proof for DC and $a, b \in \mathbb{R}$ are parameters to be chosen later. As usual:

- input sequence $\sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right)$
- potential values $\Phi_{0}, \Phi_{1}, \cdots, \Phi_{n}$
- Φ is bounded by 0 and $\sqrt{2}(2 a+b)$.

It remains to show that

$$
\Phi_{i}-\Phi_{i-1} \leq \underbrace{a \cdot O P T_{i}(\sigma)}_{1}-\underbrace{S C_{i}(\sigma)}_{2}
$$

Let $o_{1}^{\prime}, o_{2}^{\prime}$ be OPT's server positions after request $r:=\sigma_{i}$ and Φ_{i-1}^{\prime} the potential value before the step of $S C_{\gamma}$

1. $a \cdot O P T_{i}(\sigma)$

- w.l.o.g. OPT is lazy, thus it moves one server by distance $O P T_{i}(\sigma)$
- $d(x, y)$ does not change
- $\Phi_{i-1}^{\prime}-\Phi_{i-1} \leq a \cdot O P T_{i}(\sigma)$

2. $S C_{i}(\sigma)$

Influence of $S C_{\gamma}$'s movement: cost of $S C_{i}(\sigma)=d(x, r)+\gamma \cdot \operatorname{slack}(x, y, r)$. We have to show that potential decreases by at least this amount. Let x^{\prime}, y^{\prime} be the positions after serving $r:=\sigma_{i}$

We first consider the change of the second term of Φ

$$
\Delta d(x, y):=d\left(x^{\prime}, y^{\prime}\right)-d(x, y)=d\left(r, y^{\prime}\right)-d(x, y) \leq d(r, y)-d(x, y)
$$

Change of first term:

- depends on optimal assignment π before movement
- w.l.o.g. o_{1}^{\prime} is on request r
- Case 1:
$-x$ is assigned to o_{1}^{\prime}. $M_{\text {min }}$ decreases due to movement of the server on x towards r by $d(x, r)$ and increases by movement of server on y is at most $\gamma \cdot \operatorname{slack}(x, y, r)$. Thus in total

$$
\Phi_{i}-\Phi_{i-1} \leq a \cdot[\gamma \cdot \operatorname{slack}(x, y, r)-d(x, r)]+b \cdot[d(r, y)-d(x, y)]
$$

- Case 2:
- y is assigned to o_{1}^{\prime}
- After moving x to r there is an optimal matching which assigns x^{\prime} to o_{1}^{\prime} (on r) and y^{\prime} to o_{2}^{\prime}

$$
\begin{aligned}
\Delta M_{\text {min }} & =[\underbrace{d\left(x^{\prime}, o_{1}^{\prime}\right)}_{=0}+d\left(y^{\prime}, o_{2}^{\prime}\right)]-\left[d\left(x, o_{2}^{\prime}\right)+d\left(y, o_{1}^{\prime}\right)\right] \\
& =\underbrace{\left.d\left(y^{\prime}, o_{2}^{\prime}\right)\right]-d\left(x, o_{2}^{\prime}\right)}_{\text {triangle inequality }}-d(y, r) \\
& \leq d\left(y^{\prime}, x\right)-d(y, r) \\
& =d(y, x)-\gamma \cdot \operatorname{slack}(x, y, r)
\end{aligned}
$$

- Thus using first term we get:

$$
\Phi_{i}-\Phi_{i-1}^{\prime} \leq a \cdot[d(y, x)-\gamma \cdot \operatorname{slack}(x, y, r)+b \cdot[d(r, y)-d(x, y)]
$$

- For both cases we have to show that

$$
\Phi_{i}-\Phi_{i-1}^{\prime} \leq-S C_{i}(\sigma)=-[d(x, r)+\gamma \cdot \operatorname{slack}(x, y, r)]
$$

- for case 1 we get:
$a \cdot[\gamma \cdot \operatorname{slack}(x, y, r)-d(x, r)]+b \cdot[d(r, y)-d(x, y)] \leq-[d(x, r)+\gamma \cdot \operatorname{slack}(x, y, r)]$
equivalent to:

$$
d(x, y)[\gamma(a+1)-b)]+d(x, r)[\gamma(a+1)+1-a]+d(y, r)[b-\gamma(a+1)] \leq 0
$$

- for case 2 :

$$
d(x, y)[\gamma(1-a)+a-b]+d(x, r)[\gamma(1-a)+1]+d(y, r)[b a \gamma(1-a)] \leq 0
$$

If we find parameters a, b, γ that satisfy both inequalities, we have shown that $S C_{\gamma}$ is a-competitive. For $a=3, b=2, \gamma=\frac{1}{2}$ this is the case.

For an arbitrary metric space with N points, we can find N corresponding points in a high dimensional euclidean space. The distance between two points in the euclidean space is not smaller and at most $\mathcal{O}(\log (n))$ larger than the distance in \mathcal{M}.

Corollary 3.2. We can solve the 2-server problem in arbitrary metrics with N points with a competitive factor of $\mathcal{O}(\log (N))$

4 Approximation of Metric Spaces

Example: arbitrary metric by tree metric, distances stretched by almost $(N-1)$. With DC-algorithm $k(N-1)$ comp. algorithm.

Definition 4.1. Let $\mathcal{M}=(M, d)$ be an arbitrary metric. We say a metric $\mathcal{M}^{\prime}=$ (M^{\prime}, d^{\prime}) with $M \leq M^{\prime}$ dominates M if $d(x, y) \leq d^{\prime}(x, y) \forall x, y \in M$. Let S be a set of metrics, that dominate M and D a probability distribution over S. We say that (S, D) is an α-approximation of M if $\forall x, y \in M$

$$
\underset{\left(M^{\prime}, d^{\prime}\right) \sim D}{E}\left[d^{\prime}(x, y)\right] \leq \alpha \cdot d(x, y)
$$

We also say that M is embedded in S and call α the stretch.

4.1 Approximations with Tree Metrics

In the deterministic way there can not be an embedding better than $\Omega(N)$. An embedding with the MST is asymptotically optimal. An example, where no asymptotic embedding is possible is a circle with edge-costs of 1 .

Removing one edge gives a stretch of $N-1$. However in general one may add additional point.

Theorem 4.1. For a metric \mathcal{M} with N points, there is a set S of tree metrics that dominate \mathcal{M} and probability distribution D over S, s.t. (S, D) is a $\mathcal{O}(\log (N))$ approximation of $\mathcal{M} .(S, D)$ can be computed efficiently.

Proof. Let $\mathcal{M}=(V, d)$ an arbitrary metric with $N=|V|$ points. We assume that the minimal distance between two different points is greater than 1. Furthermore with Δ we denote the maximal distance between two points of V. Let δ such that $2^{\delta-1}<\Delta \leq 2^{\delta}$

Proof in two parts:

1. Recursive partitioning of V to generate tree metric
2. How to do it randomized to achieve stretch of $\mathcal{O}(\log (N))$

1. Recursive Partitioning

Definition 4.2. A partition of a metric $\mathcal{M}=(M, d)$ with radius $r \geq 1$ is a partition of V in classes V_{1}, \cdots, V_{l} such that for all sets V_{i} there exists a center $c_{i} \in V$ with $d\left(c_{i}, v\right) \leq r, \forall v \in V_{i}$. Note:

1. c_{i} does not need to be in V_{i}
2. diameter $\max _{x, y \in V_{i}} d(x, y) \leq 2 r$

Definition 4.3. A hierarchical partitioning of $\mathcal{M}=(V, d)$ is a sequence $D_{0}, D_{1}, \cdots D_{\delta}$ of $\delta+1$ partitions of V with the following properties:

1. $D_{\delta}=\{V\}$: trivial partition with radius of 2^{δ}
2. for all $i<\delta, D_{i}$ is a partition of V with radius 2^{i} that refines D_{i+1}. That is, each class of D_{i} is a subset of a class of D_{i+1}
For such a partitioning $D_{0}, \cdots D_{\delta}$ we construct a tree metric:

- tree T, set of nodes are the classes of the partitions D_{i}
- root of T is class V (class of D_{δ})
- nodes of level 1 are partitions of $D_{\delta-1}$
- nodes of level 2 are partitions of $D_{\delta-2}$
- leaves of T are partitions of D_{0} which consists of N classes (Note: minimal distance >1)
- edges of T : for every $i<\delta$ and every class X of D_{i} there is a class Y of D_{i+1} with $X \leq Y$. There is an edge between the two nodes representing X and Y with weight 2^{i+1}
Example: $\Delta=16, \delta=4$
$D_{4}=\{V\}=\left\{V_{0}, V_{1}, \cdots, V_{9}\right\}$

Level 1 of Partition
$D_{3}=\left\{\left\{V_{1}^{1}\right\},\left\{V_{2}^{1}\right\},\left\{V_{3}^{1}\right\},\left\{V_{4}^{1}\right\}\right\}$

Level 3 of Partition

$$
D_{1}=\left\{\left\{V_{1}^{3}\right\},\left\{V_{2}^{3}\right\},\left\{V_{3}^{3}\right\},\left\{V_{4}^{3}\right\},\left\{V_{5}^{3}\right\},\left\{V_{6}^{3}\right\}\right\}
$$

Level 2 of Partition $D_{2}=\left\{\left\{V_{1}^{2}\right\},\left\{V_{2}^{2}\right\},\left\{V_{3}^{2}\right\},\left\{V_{4}^{2}\right\},\left\{V_{5}^{2}\right\}\right\}$

Level 4 of Partition $D_{0}=\left\{\left\{V_{0}\right\},\left\{V_{1}\right\}, \cdots,\left\{V_{9}\right\}\right\}$

There is a bisection between the leaves of T and V. We use T for a tree metric $\left(V_{T}, d_{T}\right)$ over the set $V_{T} \geq V$ where $d_{T}(x, y)$ is defined as the path length in the tree T.

Lemma 4.1. For every hierarchical partitioning of a metric \mathcal{M} the resulting tree metric dominates \mathcal{M}.

Proof. Let $x, y \in V$ be arbitrary points. The diameter of the classes of a partition D_{i} is at most 2^{i+1}. In all partitions D_{i} with $2^{i+1}<d(x, y)$ the points x, y are in different classes. In particular in partition D_{j} with

$$
j=\left\lceil\log _{2} d(x, y)\right\rceil-2 \text { since } 2^{j+1}=2^{\left\lceil\log _{2} d(x, y)\right\rceil-1}<2^{\log _{2} d(x, y)}=d(x, y)
$$

On the path from the two leaves of T there must be two edges between classes of partitions D_{j} and D_{j+1}. Thus

$$
d_{T}(x, y) \geq 2 \cdot 2^{j+1}=2^{j+2}=2^{\left\lceil\log _{2} d(x, y)\right\rceil} \geq d(x, y)
$$

2. Randomised Partitioning

A randomized algorithm to compute a hierarchical partitioning. For a set $X \leq V$ and a point $v \in V$ and a radius $r \geq 1$, we denote by $B=(X, v, r)$ the sphere in X with radius r and center v. That is $B(X, v, r)=\{x \in X \mid d(x, v) \leq r\}$

```
Algorithm 1 HierPart ( \(\mathcal{M}=(V, d)\) )
    choose \(\beta\) uniformly at random from \([1,2]\)
    choose a permutation \(\pi\) of the set \(\{1, \cdots N\}\) uniformly at random
    \(D_{\delta}=\{V\}\)
    for \(i=\delta-1, i \geq 0, i--\) do
        if \(D_{i+1}\) has a class with more than one element then
            \(\beta_{i}=2^{i-1} \cdot \beta\)
            \(D_{i}=\operatorname{PARTITION}\left(\mathcal{M}, D_{i+1}, \beta_{i}, \pi\right)\)
        else
            \(D_{i}=D_{i+1}\)
    end for
    return \(\left(D_{0}, D_{1}, \cdots, d_{\delta}\right)\)
```

```
Algorithm 2 PARTITION \((\mathcal{M}, D, \alpha, \pi)\)
    \(D^{\prime}=\{ \}\)
    for each class X in partition D do
        for \(i=1,1 \leq N, i++\) do
            \(B_{\pi(i)}:=B\left(X, V_{\pi(i)}, \alpha\right)\)
            \(X:=x \backslash B_{\pi(i)}\)
            if \(B_{\pi(i)} \neq \emptyset\) then
                add \(B_{\pi(i)}\) to \(D^{\prime}\)
        end for
    end for
    return \(D^{\prime}\)
```

- PARTITION considers class one after the other and partitions each class further
- For this it considers spheres with radius α around points of V chosen by the random ordery π
- Points of current class within such a sphere are new classes

Lemma 4.2. Let d_{T} be the tree metric constructed by algorithm HierPart $(\mathcal{M}=(V, d))$. For every $x, y \in V$ it holds that

$$
E\left[d_{T}(x, y)\right] \leq 64 \cdot H_{N} \cdot d(x, y)
$$

Proof. Let $x, y \in V$ be arbitrary points. Consider the tree T generated by hier. part., $D_{0}, D_{1}, \ldots, D_{\delta}$ of the algorithm HierPart.
Consider the path from x to y in T up to which level? If this level corresponds to D_{i}

- x and y are in different classes in D_{0}, \ldots, D_{i-1}
- x and y are in the same class in $D_{i}, \ldots, D_{\delta}$
- Let z_{x} and z_{y} be the centres around which PARTITION constructed the classes of D_{i-1} which contain x and y respectively

If z_{x} is before z_{y} in permutation π, we say that that point z_{x} separates $\{x, y\}$ on level $i-1$, otherwise we say that that point z_{y} separates $\{x, y\}$. For point $z \in V$ and every $j \in\{0,1, \ldots, \delta-1\}$ we denote by $A(z, j)$ the event that point z separates the pair $\{x, y\}$ on level j. There is exactly one point $z \in V$ and one level $j \in\{0,1, \ldots, \delta-1\}$ for which event $A(z, j)$ occurs. If event $A(z, j)$ occurs than

$$
d_{T}(x, y)=2 \cdot \sum_{i=1}^{j+1} 2^{i} \leq 2^{j+3}
$$

Thus

$$
E\left[d_{T}(x, y)\right] \leq \sum_{z \in V} \sum_{j=0}^{\delta-1} 2^{j+3} \cdot \operatorname{Pr}[A(z, j)]
$$

- Sort the points of V.
- For any $z \in V$ define $d(z,\{x, y\}):=\min \{d(z, x), d(z, y)\}$
- Let $V=\left\{v_{1}, \ldots, v_{N}\right\}$ with $d\left(v_{1},\{z, x\}\right) \leq d\left(v_{2},\{z, x\}\right) \leq \cdots \leq d\left(v_{N},\{z, x\}\right)$

Lemma 4.3. For every point $v_{l} \in V$ and every level $j \in\{0,1, \cdots, \delta-1\}$ it holds

$$
\operatorname{Pr}\left[A\left(v_{l}, j\right)\right] \leq \frac{d(x, y)}{l \cdot 2^{j-1}}
$$

Proof. w.l.o.g. $d\left(v_{l}, x\right) \leq d\left(v_{l}, y\right)$. If v_{l} separates $\{x, y\}$ on level j, the following two conditions must be true:

1. when constructing partition D_{j}, the sphere around v_{l} (line 4, PARTITION) is the first sphere containing x or y
2. The radius $\beta_{j}=2^{j-1} \beta$ is in the interval $\left[d\left(v_{l}, x\right), d\left(v_{l}, y\right)\right]$ otherwise the sphere would contain neither or both points

Probability for 2 :

$$
\begin{array}{ll}
\operatorname{Pr}\left[\beta_{j} \in\left[d\left(v_{l}, x\right), d\left(v_{l}, y\right)\right]\right] & \\
=\operatorname{Pr}\left[\beta_{j} \in\left[\frac{\left(v_{l}, x\right)}{2^{j-1}}, \frac{d\left(v_{l}, y\right)}{2^{j-1}}\right]\right] & \begin{array}{l}
\text { Note: } \\
\beta \in[1,2] \text { probability: } \\
\beta \in I \leq|I \cap[1,2]| \leq|I| \\
\leq \frac{d\left(v_{l}, y\right)}{2^{j-1}}-\frac{\left(v_{l}, x\right)}{2^{j-1}} \\
\leq \frac{d(x, y)}{2^{j-1}}
\end{array}
\end{array}
$$

If β_{j} is in the interval such that condition 2 . is fulfilled, then 1 . can only occur if v_{l} is before v_{1}, \cdots, v_{l-1} in permutation π, otherwise a sphere around on of those points with radius β_{j} would contain at least one of $\{x, y\}$. Probability for v_{l} of being in front in π is $\frac{1}{l}$.
Combining both probabilities we can bound the probability for the event $A\left(v_{l}, j\right)$ by $\frac{1}{l} \cdot \frac{d(x, y)}{2^{j-1}}$

Using Lemma 4.3. we can bound

$$
\begin{align*}
E\left[d_{T}(x, y)\right] & \leq \sum_{l=1}^{N} \sum_{j=0}^{\delta-1} 2^{j+3} \cdot \operatorname{Pr}\left[A\left(v_{l}, j\right)\right] \\
& \leq \sum_{l=1}^{N} \sum_{j=0}^{\delta-1} 2^{j+3} \cdot \frac{d(x, y)}{l \cdot 2^{j-1}} \tag{2}\\
& \leq 16 \cdot \delta \cdot H_{N} \cdot d(x, y)
\end{align*}
$$

Lemma 4.4. For every vertex v_{l} there are at most four levels $j \in\{0,1, \ldots \delta-1\}$ for which event $A\left(v_{l}, j\right)$ can occur.

Proof. w.l.o.g. let $d\left(v_{l}, x\right) \leq d\left(v_{l}, y\right)$

1. Case: $d(x, y) \leq d\left(v_{l}, x\right)$

- Then $d\left(v_{l}, x\right) \geq d\left(v_{l}, y\right)-d(x, y) \geq d\left(v_{l}, y\right)-d\left(v_{l}, x\right)$
- Thus $d\left(v_{l}, x\right) \geq \frac{d\left(v_{l}, y\right)}{2}$
- now let j be the largest value from $\{0,1, \ldots \delta-1\}$ such that the interval $\left[2^{j-1}, 2^{j}\right]$ (from which β_{j} is chosen) has a non-empty intersection with the interval $\left[d\left(v_{l}, x\right), d\left(v_{l}, y\right)\right]$ (in which β_{j} has to lie if $A\left(v_{l}, j\right)$ occurs)
- Therefore $d\left(v_{l}, y\right)>2^{j-1}$ and $d\left(v_{l}, x\right) \geq \frac{d\left(v_{l}, y\right)}{2}>2^{j-2}$
- Thus in partition D_{j-2} vertex v_{l} cannot separate $\{x, y\}$ and since j was chosen to be the largest value, event $A\left(v_{l}, i\right)$ can only occur for $i \in\{j-1, j\}$

2. Case: $d(x, y)>d\left(v_{l}, x\right)$

- Then $d(x, y) \geq d\left(v_{l}, y\right)-d\left(v_{l}, x\right)>d\left(v_{l}, y\right)-d(x, y)$
- This implies $d(x, y)>\frac{d\left(v_{l}, y\right)}{2}$
- Let j be chosen as in 1. Case.
- Then $d\left(v_{l}, y\right)>2^{j-1}$ and thus $d(x, y)>\frac{d\left(v_{l}, y\right)}{2}>2^{j-2}$ which means that in partition $D_{j-3} x$ and y have to belong to different classes, since each class has diameter at most 2^{j-2}
- Thus v_{l} cannot separate $\{x, y\}$ on a level $i \leq j-4$
- Since we chose j to be the largest value, event $A\left(v_{l}, i\right)$ can only occur for $i \in\{j-3, j-2, j-1, j\}$

Using Lemma 4.4. we can bound equation (2) since there are at most four values of j for which $\operatorname{Pr}\left[A\left(v_{l}, j\right)\right]>0$ for every l.

$$
\begin{aligned}
E\left[d_{T}(x, y)\right] & \leq \sum_{l=1}^{N} \sum_{j=0}^{\delta-1} 2^{j+3} \cdot \operatorname{Pr}\left[A\left(v_{l}, j\right)\right] \\
& \leq \sum_{l=1}^{N} 4 \cdot \frac{16 \cdot d(x, y)}{l} \\
& \leq 64 \cdot H_{N} \cdot d(x, y)
\end{aligned}
$$

We have shown: Every metric can be embedded into a tree metric with stretch of $\mathcal{O}(\log (N))$

Observation: For every tree metric $\mathcal{M}_{T}=\left(V_{T}, d_{T}\right)$ generated by above algorithm the following hold

$$
\max _{x, y \in V_{T}} d_{T}(x, y) \leq 8 \cdot \max _{x, y \in V} d(x, y)
$$

Proof. We define

$$
\Delta=\max _{x, y \in V} d(x, y) \text { and } \delta \in \mathbb{N}
$$

such that

$$
2^{\delta-1}<\Delta \leq 2^{\delta}
$$

The longest path in T :

$$
2 \cdot \sum_{j=1}^{\delta} 2^{j} \leq 2^{\delta+2}<8 \Delta
$$

Theorem 4.2. There is a randomised online algorithm for the k-server-problem which is $\mathcal{O}(k \cdot \log (N))$-competitive for every metric with N points.

Proof. Input σ, Metric $\mathcal{M}=(M, d)$.

- Construct a $\mathcal{O}(\log (N))$-approximation (S, D) with the algorithm above and choose a tree metric \mathcal{M}_{T} from S according to D.
- Interpret σ as input for \mathcal{M}_{T} (Note: $\mathcal{M} \leq \mathcal{M}_{T}$) and use DC-algorithm.
- Let $O P T(\sigma)$ and $O P T_{T}(\sigma)$ be optimal offline solution for metric \mathcal{M} and \mathcal{M}_{T} respectively.
- $D C_{T}(\sigma)$ is the solution of the DC-algorithm
- $d(L)$ and $d_{T}(L)$ cost of a solution using metric d and d_{T} respectively.

$$
\begin{aligned}
E\left[d\left(D C_{T}(\sigma)\right]\right. & \leq E\left[d_{T}\left(D C_{T}(\sigma)\right)\right] \\
& \leq E\left[k \cdot d_{T}\left(O P T_{T}(\sigma)\right)+\tau\right] \\
& \leq k \cdot E\left[d_{T}\left(O P T_{T}(\sigma)\right)\right]+\tau \\
& \leq k \cdot E\left[d_{T}(O P T(\sigma))\right]+\tau \\
& \leq k \cdot \mathcal{O}(\log (N)) \cdot d(O P T(\sigma))+\tau
\end{aligned}
$$

5 Scheduling

- Set of jobs $J=\{1, \ldots n\}$
- Set of machines $M=\{1, \ldots m\}$
- Each job $j \in J$ has a size $p_{j} \in \mathbb{R}_{>0}$
- Each machine $i \in M$ has a speed $s_{i} \in \mathbb{R}_{>0}$
- if a job $j \in J$ is processed by machine $i \in M$ it takes time $\frac{p_{j}}{s_{i}}$
- A schedule $\pi: J \rightarrow M$ assigns each job to a machine
- $L_{i}(\pi)$ is the load of machine $i \in M$ in schedule π

$$
L_{i}(\pi)=\frac{\sum_{j \in M, \pi(j)=i} p_{j}}{s_{i}}
$$

- Makespan $C(\pi)$ is the maximal load i.e.

$$
C(\pi)=\max _{i \in M} L_{i}(\pi)
$$

- In the following we seek to minimize the makespan.

Online Scheduling

- Set of machines and speed are unknown
- jobs arrive one after another
- job have to be assigned immediately to a machine
- number and size of future jobs are unknown

5.1 Identical Machines

- All machines have speed 1
- Greedy-strategy aka Least-Loaded-algorithm
\rightarrow assigns each job to the machine that has currently the smallest load
Theorem 5.1. The Least-Loaded-algorithm is strict $2-\frac{1}{m}$-competitive
Proof. Lower bound for optimal schedule π^{*} :

$$
C\left(\pi^{*}\right) \geq \frac{1}{m} \sum_{j \in J} p_{j} \text { and } C\left(\pi^{*}\right) \geq \max _{j \in J} p_{j}
$$

Schedule π of least-loaded: Let $i \in M$ be the machine with maximal load $C(\pi)=$ $L_{i}(\pi)$. Let $j \in J$ be the last job that was added to i : At that time i was the least-loaded machine: The load is at most $\frac{1}{m} \sum_{k=1}^{j-1} p_{k}$

$$
\begin{aligned}
C(\pi)=L_{i}(\pi) & \leq \frac{1}{m}\left(\sum_{k=1}^{j-1} p_{k}\right)+p_{j} \\
& \leq \frac{1}{m}\left(\sum_{k \in J \backslash\{j\}} p_{k}\right)+p_{i} \\
& =\frac{1}{m} \sum_{k \in J} p_{k}+\left(1-\frac{1}{m}\right) p_{j} \\
& \leq C\left(\pi^{*}\right)+\left(1-\frac{1}{m}\right) \cdot \max _{k \in J} p_{k} \\
& \leq\left(2-\frac{1}{m}\right) \cdot C\left(\pi^{*}\right)
\end{aligned}
$$

Lower bound for Least-Loaded

Let m be the number of machines and an input instance with $n=m(m-1)+1$ jobs. The first $m(m-1)$ jobs have size 1 and the last job has size m. The LeastLoaded schedules the smallest jobs equally on all machines, i.e. $(m-1)$ jobs on each machine and the last job on an arbitrary machine. The load on this machine is $(m-1)+m=2 m-1$. OPT would schedule m jobs of size 1 on each of the machines $1 \ldots m-1$ and then the job of size m on machine m. The makespan is m.

$$
\frac{\text { Least-Loaded }}{\text { OPT }}=\frac{2 m-1}{m}=2-\frac{1}{m}
$$

5.2 Machines with Speed

What about greedy? 2 variants

1. choose the machine that has smallest load before scheduling current job
2. choose machine that has smallest load after assigning the job

Example:

- current loads: $M_{1}=1, M_{2}=0$

$\mathrm{p}_{1}=3$
 $s_{1}=3 \quad s_{2}=1$

- new job $p_{2}=3$

1. assigns job to $M_{2} \Rightarrow$ Loads: $M_{1}=1, M_{2}=3 \succ 4$
2. assigns job to $M_{1} \Rightarrow$ Loads: $M_{1}=2, M_{0}=3 \succ 2$

If we make s_{1} arbitrary large then variant (1) creates an arbitrary bad solution. For variant (2) it can be shown that the competitive factor is $\Theta(\log (m))$

Slow Fit

Algorithm with constant competitive factor.
Assume we know the makespan of the optimal solution. Let $\alpha=O P T(\sigma)$
SlowFit (α) computes a schedule π with $C(\pi) \leq 2 \alpha$

- sort machines according to their speeds in increasing order, i.e. $s_{1} \leq s_{2} \leq \ldots \leq s_{m}$
- Let π_{j} be the partial schedule computed by $\operatorname{SlowFit}(\alpha)$ for the jobs $1 \ldots j$

```
Algorithm 3 SlowFit ( \(\alpha\) )
    : schedule a new job \(j \in J\) with size \(p_{j}\) to the slowest machine \(i \in M\) which has
    load of less than \(2 \alpha\) after this assignment, i.e.
    \(\min \left\{i \in M \left\lvert\, L_{i}\left(\pi_{j-1}+\frac{p_{j}}{s_{i}} \leq 2 \alpha\right\}\right.\right.\)
    3: if no such machine exists output an error-message
```

Lemma 5.1. Let $\alpha \in \mathbb{R}_{\geq 0}$ be arbitrary and σ be an arbitrary input with $O P T(\sigma) \leq \alpha$ then SlowFit (α) produces no error and computes a schedule π with $C(\pi) \leq 2 \alpha$
Proof. It suffices that $\operatorname{SlowFit}(\alpha)$ does not output an error-message. Assume there is an input $\sigma=\left(p_{1}, \ldots, p_{n}\right)$ and $\operatorname{SlowFit}(\alpha)$ outputs error at job p_{n} First observe that not for all $i \in M L_{i}\left(\pi_{n-1}\right)>O P T(\sigma)$ since otherwise

$$
\sum_{j=1}^{n-1} p_{j}=\sum_{i \in M} s_{i} L_{i}\left(\pi_{n-1}\right)>\sum_{i \in M} s_{i} \cdot O P T(\sigma) \geq \sum_{i \in M} s_{i} \cdot L_{i}\left(\pi^{*}\right)=\sum_{j=1}^{n} p_{j}
$$

Consider the fastest machine $f \in M$ with $L_{f}\left(\pi_{n-1}\right) \leq O P T(\sigma)$. Observe that $f<m$
because otherwise the following would hold:

$$
L_{m}\left(\pi_{n-1}\right)+\frac{p_{m}}{s_{m}} \leq 2 \cdot O P T(\sigma) \leq 2 \alpha
$$

and there would be no error. Let $\Gamma=\{i \in M \mid i>f\}$. All machines in Γ have load $\geq O P T$ and $\Gamma \neq \emptyset$. The total size of jobs on machines m in Γ

$$
\sum_{i \in \Gamma} s_{i} \cdot L_{i}\left(\pi_{n-1}\right)>\sum_{i \in \Gamma} s_{i} \cdot O P T(\sigma)
$$

There must exist a job $j \in J \backslash\{n\}$ with $\pi_{n-1}(j) \in \Gamma$ and $\pi^{*}(j)=i$ and $i \notin \Gamma$

$$
\frac{p_{j}}{s_{i}} \leq O P T(\sigma) \text { and } i \leq f
$$

Due to sorting of speeds also

$$
\frac{p_{j}}{s_{f}} \leq O P T(\sigma)
$$

Consider the event when j was scheduled by $\operatorname{SlowFit}(\alpha)$. It could have been scheduled to machine f since:

$$
L_{f}\left(\pi_{j-1}\right)+\frac{p_{j}}{s_{f}} \leq L_{f}\left(\pi_{n-1}\right)+\frac{p_{j}}{s_{f}} \leq O P T(\sigma)+O P T(\sigma) \leq 2 \alpha
$$

But it was scheduled to a faster machine in Γ which is a contradiction to the definition of the algorithm.

But we do not know $O P T(\sigma)$:

```
Algorithm 4 SlowFit
    Set \(\alpha_{0}=\frac{p_{1}}{s_{m}}\)
    Start with phase \(k=0\)
    for job j do
        Try to schedule j with \(\operatorname{SlowFit}\left(\alpha_{k}\right)\) while ignoring all jobs of previous phases
        if \(\operatorname{SlowFit}\left(\alpha_{k}\right)\) produces an error then
            increase k by 1
            Set \(\alpha_{k}=2^{k} \cdot \alpha_{0}\) and go to step 4
    end for
```

Theorem 5.2. SlowFit is strict 8-competitive for online scheduling.
Proof. Let $0,1, \ldots h$ be the phases of SlowFit for an arbitrary input σ. By σ_{k} we denote the subsequence of jobs of phase k. Using Lemma 5.1. we obtain a lower bound for OPT:

- if $h=0: O P T \geq \alpha_{0}$ and SlowFit is 2-competitive
- if $h>0$: consider the phase $h-1$ and the first job j of phase h. Since we ignored all jobs of phases before $h-1 \operatorname{SlowFit}\left(\alpha_{h-1}\right)$ produces an error when processing job j only if for subsequence

$$
\sigma_{h-1}: O P T\left(\sigma_{h-1}, j\right)>\alpha_{h-1}=2^{h-1} \alpha_{0}
$$

Upper bound of schedule π of SlowFit: Summing up over the makespan of the phases

$$
C(\pi) \leq \sum_{k=0}^{h} 2 \alpha_{k}=2 \cdot \sum_{k=0}^{h} 2^{k} \alpha_{0} \leq 2^{h+2} \alpha_{0}
$$

Combining both equations:

$$
C(\pi) \leq 2^{h+2} \alpha_{0}=8 \cdot 2^{h-1} \alpha_{0} \leq 8 \cdot O P T\left(\sigma_{n-1} j\right) \leq 8 \cdot O P T(\sigma)
$$

Remarks:

- best known online algorithm is 5,828-competitive
- lower bound is 2,438

6 Summary

1. Introduction

- competitive ratio; strict competitive ratio

2. Paging

- Deterministic
- marking algorithms: LRU is one (Proof this)
- marking algorithm is k-competitive
- LFD is optimal
- lower bound of k for deterministic algorithms
- Random
- 3 types of adversaries
- redefinition of competitive ratio
- RANDOM k-competitive (Proof with potential function, amortized costs)
- lower bound of k for RANDOM
- MARK: randomised version of marking algorithm, $2 H_{k}$-competitive ratio (Proof)
- lower bound of H_{k} for MARK

3. k-Server-Problem

- greedy-algorithm bad idea
- computing optimal offline solution with reduction to Min-Cost-Flow in polynomial time (be able to do this reduction in exam)
- lower bound for deterministic online algorithm, OPT via indirect proof, classes of algorithms
- DC on the line algorithm, k-competitive (know potential function and general steps of proof)
- DC on trees, same potential function f, proof only differs for movement of DC
- 2-servers in arbitrary spaces
- Slack Cover
$-\mathrm{SC}_{\frac{1}{2}}$
- potential function method
- case distinction (what do we have to show, which cases and outcome)

4. Approximation of Metric Spaces

- dominate, embedding, deterministic is not a good idea
- probabilistic embeddings
- tree embedding

1. hierarchical partitioning \rightarrow tree metric, dominates (be able to proof)
2. generating HierPart algorithm, subroutine PARTITION

Proof: Exp. dist(x, y), probability that they get separated depends on level and permutation last step: $\delta \rightarrow 4$ levels
5. Scheduling

- identical machines
- $2-\frac{1}{2}$-competitive Least-Loaded (be able to write down complete proof)
- lower bound
- SlowFit
- we assume OPT
- "guess" OPT

