

Faculty of Computer Science, Electrical Engineering and Mathematics Algorithms and Complexity research group Jun.-Prof. Dr. Alexander Skopalik

Online Algorithms

Notes of the lecture SS13 by Vanessa Petrausch (vape@mail.upb.de)

Contents

1 Introduction			1		
2	Paging				
	2.1	Deterministic Algorithms	3		
		2.1.1 Marking Algorithms	3		
		2.1.2 Lower Bounds	5		
		2.1.3 Optimal Offline Algorithm	5		
	2.2	Randomised Algorithms	7		
		2.2.1 Worst-Case Analysis as a Game	8		
		2.2.2 Potential Function	9		
		2.2.3 Analysis of RANDOM	9		
		2.2.4 Analysis of MARK	12		
		2.2.5 Lower Bounds for Randomized Online Algorithms	13		
3	The k-Server-Problem 1				
	3.1	Introduction	15		
		3.1.1 Greedy Algorithm	15		
		3.1.2 The k-Server Conjecture	15		
		3.1.3 Optimal Offline Algorithm	16		
	3.2	Lower Bound for Deterministic Online Algorithm	18		
	3.3	k-Server Problem on a Line	19		
	3.4	The DC-Algorithm on Trees	22		
	3.5	Applying DC-Algorithm	23		
	3.6	The 2-Server-Problem in Euclidean Spaces	24		
4	Approximation of Metric Spaces 27				
	4.1	Approximations with Tree Metrics	27		
5	Scheduling 3				
	5.1	Identical Machines	35		
	5.2	Machines with Speed	36		
6	Sun	amary 4	10		

1 Introduction

Definition 1.1. "classical" optimization problem

given input instance \rightarrow compute solution that max-/minimizes object function, e.g. shortest path

Definition 1.2. Online problem

- instance is not shown in advance
- revealed step by step
- decision (part of solution) have to be made each step, e.g. paging/caching

Definition 1.3. Optimisation problem II

- I_{π} set of instances
- For each $\sigma \in I_{\pi}$ there is
 - set of solutions S_{σ}
 - objective functions $f_{\sigma}: S_{\sigma} \to \mathbb{R}_{\geq 0}$
 - \min/\max
- OPT(a) value of optimal solution
- $A(\sigma)$ solution computed by algorithm A
- $w_A(\sigma) = f_{\sigma}(A(\sigma))$ value of A's solution

Online Optimization Problem

- Input is of the form $\sigma = (\sigma_1, \cdots, \sigma_p), p$ is not fixed
- Online algorithm reacts on every σ_i
 - does not know $\sigma_{i+1}, \sigma_{i+2}, \cdots$
 - does not know their number (p)
- These decisions form the solution $A(\sigma) \leftarrow S_{\sigma}$
- Offline algorithms: know the future

Definition 1.4. Competitive ratio

• An online algorithm A for minimization problem π has a competitive ratio r > 1 if there is some constant $\tau \in \mathbb{R}$ s.t.

$$w_A(\sigma) \leq r \cdot OPT(\sigma) + \tau \quad \forall \sigma \in I_{\pi}$$

• A is <u>strict</u> r-competitive

$$w_A(\sigma) \le r \cdot OPT(\sigma) \quad \forall \sigma \in I_{\pi}$$

2 Paging

2.1 Deterministic Algorithms

here: only two levels

input: $\sigma = (\sigma_1, \dots, \sigma_n)$ sequence of page requests $\sigma_i \in \mathbb{N}$ denotes the number of requested page

- if σ_i is in the cache, no additional cost
- if σ_i is not in the cache, cost of 1 (the algorithm has to load the page into the cache: page fault)
- if cache is full, the algorithm has to choose a page in the cache that has to be removed

Deterministic Algorithms

- LRU (least-recently used) removes the page requested least recently
- LFU (last-frequently used) removes the page that was requested least of them
- FIFO (first-in-first-out) removes the oldest page in cache
- LIFO (last-in-first-out) removes newest page in cache
- FWF (flush-when-full) completely empties the cache when the cache is full and there is a page fault
- LFD (longest-forwarded-distance) remove the page that will be requested the latest

2.1.1 Marking Algorithms

Decompose input $\sigma = (\sigma_1 \cdots \sigma_n)$ into phases as follows

- Phase 1: maximal prefix with k different pages
- Phase $i \ge 2$: maximal sequence following phase i-1 with at most k different pages
- Example: k = 3: $\sigma = \underbrace{1, 2, 4, 2, 1}_{Phase1}, \underbrace{3, 5, 2, 3, 5}_{Phase2}, \underbrace{1, 2, 3, 4}_{Phase3}$

A marking algorithm is an algorithm that never removes a marked page from the cache. At the beginning of a phase no page is marked. A page that is accessed during a phase becomes marked.

Theorem 2.1. LRU is a marking algorithm

Proof. Assume LRU is not a marking algorithm.

 \Rightarrow There is an input sequence σ on which LRU removes a marked page x in phase i. Let σ_t be the corresponding event

- since x is marked, it was used in phase i before, let $\sigma_{t'}$ with t' < t the first access of page x in phase i.
- of all pages requested after $\sigma_{t'}$, x is the most least recently used
- since x is removed at time σ_t there must be k different pages different from x accessed between $\sigma_{t'}$ and σ_t \Rightarrow together with the requests of x this would be k+1 different pages requested

in one phase. (contradiction definition phase)

Theorem 2.2. Every marking algorithm is strict k-competitive (at most k time worse than optimal offline algorithm)

Proof. Let σ be an arbitrary input instance and l is the number of phases of this input instance. w.l.o.g (without loss of generality) $l \geq 2$

- 1. Cost of marking algorithm is at most $l \cdot k$
 - l phases, each phase at most k different request
 - every page is marked at the first request and never removed. At most one page fault per page.
- 2. Cost of an optimal offline algorithm is at least k + l 2
 - k page faults in the first phase
 - one page fault in each of the following phases, except the last one (l-2 phases).
 - Define subsequence i as follows:
 - starts with the second request of phase i + 1
 - ends with first request of phase i + 2
 - Example:

- Beginning of phase i + 1, there is some request x
- Beginning of subsequence i, x and k + 1 pages different from x in the cache

• in subsequence *i* there are *k* different (different from *x*) requests \Rightarrow at least one page fault

$$OPT(\sigma) \ge k + l - 2$$

$$w_A(\sigma) \le l \cdot k \le (k + l - 2) \cdot k \le k \cdot OPT$$

Corollary 2.1. LRU is k-competitive

2.1.2 Lower Bounds

Theorem 2.3. LFU & LIFO are not competitive

Proof.

• Given any τ, r construct sequence σ s.t. (such that)

$$w_{LFU}(\sigma) > r \cdot OPT(\sigma) + \tau$$

- Consider for any constant $l \ge 2 : \sigma(\underbrace{1^l}_{1,\dots,1}, 2^l, \dots, (k-1)^l, (k, k+1)^{l-1})$
- optimal solution, only k + 1 page faults
- LFU/LIFO:
 - until first request of k + 1: k page faults and $\{1 \cdots k\}$ in cache
 - Both remove k (last-in/least frequently)
 - following request of k: Both remove page k + 1
 - this repeats \Rightarrow at least $2 \cdot (l-1)$ page faults
- Choice of $l: 2(l-1) > r \cdot (k+1) + \tau = r \cdot OPT(\sigma) + \tau$

2.1.3 Optimal Offline Algorithm

Lemma 2.1. Let A be an optimal offline algorithm different from LFD and σ an arbitrary input sequence where LFD and A behave differently. Let σ_t be the first request where they differ. Then there is an algorithm B that

- behaves like A on $\sigma_1, \cdots \sigma_{t-1}$
- at σ_t it removes the page from the cache that will be requested the latest
- incurs no higher cost than A

Proof. We construct algorithm B as follows:

- on $\sigma_1, \cdots \sigma_{t-1}$ behaves like A
- at $\sigma_t B$ removes the LFD-page
- (Idea: from now on, A and B have at least one page different in the cache)

- Let b be the LFD-page and a be the page that A chooses.
- Cache content of A after $\sigma_t : X \cup \{b\}$; of B is $X \cup \{a\}$ with |X| = k 1
- Denote content of A (or B) cache before σ_s with A_s (or B_s , respectively)
- Divide $\sigma_{t+1}, \sigma_{t+2}, \cdots$ into two phases
 - Phase 1 includes all $s \ge t+1$ with $B_s = (A_s \setminus \{b\}) \cup \{u_s\}$
 - Phase 2 includes all $s \ge t+1$ with $B_s = A_s$

Construct algorithm B such that there is an event t' and all events between $\sigma_{t+1} \cdots \sigma_{t'}$ are in phase 1 and all events between $\sigma_{t'+1}, \sigma_{t'+2} \cdots$ are in phase 2.

$$\begin{array}{c|c|c|c|c|c|c|} \hline Phase 1 & Phase 2 \\ \hline Phase 1 & Phase 2 \\ \hline Phase 1 & Phase 2 \\ \hline Phase 2 & B_s = A_s \\ \hline \sigma_1 & \sigma_t & \sigma_{t'} & B_s = A_s \\ \hline \end{array}$$

- Phase 1: At request σ_s algorithm B works as follows (reminder: B_s = (A_s \ {b}) ∪ {u_s})
 - 1. request $\sigma_s \in A_S \cap B_s$: no page faults
 - 2. request $\sigma_s \notin A_S \cup B_s : A$ and B cause page faults
 - (a) A replaces b: B replaces $u_s \Rightarrow A_{s+1} = B_{s+1}$ (in phase 2)
 - (b) A replaces $v \neq b : B$ replaces $v \Rightarrow B_{s+1} = (A_{s+1} \setminus \{b\}) \cup \{u_s\}$ (still in phase 1)
 - 3. request u_s : Only A causes page fault
 - (a) A replaces $b \Rightarrow A_{s+1} = B_{s+1}$ (phase 2)
 - (b) A replaces $v \neq b \Rightarrow B_{s+1} = A_{s+1} \setminus \{b\} \cup \{v\}$ (phase 1)
 - 4. request of b: Only B causes page faults and B removes page u_s from cache. Then $A_{s+1} = B_{s+1}$ (phase 2)
- Phase 2: *B* behaves like *A* and never leaves phase 2. Observe that 1) - 4) ensure that we only reach configurations in phase 1 and
 - 2. It remains to show that B causes not more page faults than A:
 - Obvious in case 1, 2 and 3
 - case 4:
 - * can only happen <u>once</u>
 - * b was the latest requested page at time t \Rightarrow there must have been a request of page a
 - * until first request of $a: u_s = a$
 - \Rightarrow first request of a : case 3
 - \Rightarrow also one page fault of A

Theorem 2.4. *LFD* (longest-forwarded-distance) is an optimal offline algorithm for paging

Proof. Let A_{OPT} be an optimal offline algorithm different from LFD. We modify A_{OPT} without increasing its cost, s.t. the resulting algorithm is LFD. Repeatedly apply Lemma 1.1.: For any sequence σ , let $A_0 = A_{OPT}$

- 1. Let σ_t be the first request where A_0 and LFD differ.
- 2. Apply Lemma 1.1. and let A_1 be algorithm B from Lemma 1.1.
- 3. repeat step 1 and 2 to obtain algorithm A_i until A_i behaves like LFD (\Rightarrow same costs of A and LFD)

Theorem 2.5. There is no deterministic r-competitive online algorithm for paging with r < k.

Proof. Let A be an arbitrary deterministic online algorithm for paging. We show that for any $\tau \in \mathbb{R}$ and every r < k there exists a sequence σ with

$$w_A(\sigma) > r \cdot OPT(\sigma) + \tau$$

- We construct sequence σ with k + l different page request
- k+1 different pages
- $\sigma_1, \dots \sigma_k$: k different pages, i.e. $1, 2, \dots, k$ $\sigma_{k+1}, \dots \sigma_{k+l}$: request the page that is not in the cache of $A \Rightarrow A$ causes k + l page faults.
- Show that LFD will have first k and then at most $k + \frac{[l]}{k} \le k + 1 + \frac{l}{k}$ page faults.
- For every choice of k, τ and r < k we can choose a l, such that

$$w_A(\sigma) = k + l > r(k + 1 + \frac{l}{k}) + \tau \text{ by}$$
$$l > \frac{k}{k - r} \cdot (r(k + 1) - k + \tau)$$

2.2 Randomised Algorithms

Idea: algorithms use randomness for some of their decisions. Hope, that by using these algorithms, at the end you have better competitive factor than k. Two simple algorithms:

- 1. RANDOM: Upon a page fault, select a page from the cache uniformly at random and replace it.
- 2. MARK: If we have a page request, we mark the requested page. If we have a page fault, we choose unmarked page uniformly at random. If all pages are marked, remove all markings and choose the page to remove uniformly at random.

Redefined Measures:

- Costs are random variables that depend on the random decisions of the algorithm.
- We study expected cost:

$$E(w_A(\sigma)) = \sum_{i=-\infty}^{\infty} i \cdot Pr(w_A(\sigma) = i)$$

where $Pr(w_A(\sigma) = i)$ is the probability that cost of A on input σ is exactly i.

2.2.1 Worst-Case Analysis as a Game

- 1. algorithm A tries to achieve a certain competitive ratio
- 2. adversary (Adv) chooses an input sequence such that algorithm A violates that competitive ratio. Adv knows A including the probability distribution of A's random bits.

When does the adversary chooses σ and what does he know?

- 1. Oblivious (*Obl*): adversary choose σ at the beginning (no knowledge about realization of random experiments) Comparison: $OPT(\sigma)$
- 2. adaptive adversary: creates σ online after observing the realization of A's random experiments.

 σ is now a random variable

- (a) adaptive online: constructs a solution for comparison online.
- (b) adaptive offline: takes the expected value of the optimal solution of σ : $E(OPT(\sigma))$

Notation:

Online Algorithm A, adversary Adv. Input created by $Adv : \sigma_{Adv}$, cost of Adv on $\sigma_{Adv} : w_{Adv}$

Definition 2.1. Let A be a <u>randomized</u> online Algorithm. A has a competitive factor of $r \ge 1$ against a class $C \in \{Obl, AdOn, AdOf\}$ of adversaries if there is a constant $\tau \in \mathbb{R}$ s.t. for every $Adv \in C$:

$$E(w_A(\sigma_{Adv}) \le r \cdot E(w_{Adv}) + \tau$$

holds. If $\tau = 0$ then A is strict r-competitive.

2.2.2 Potential Function

- For online algorithms let S_A be the set of configurations of A and S_{Adv} the set of configurations of Adv.
- Paging: $S_A = S_{Adv}$ = set of possible contents of the cache.
- A potential function Φ : $S_A \times S_{Adv} \to \mathbb{R}$ creates for a sequence $\sigma_1 \cdots \sigma_n$ a sequence of potential $\Phi_0, \Phi_1, \cdots, \Phi_n$ where Φ_0 is the potential value before σ_1 and $\Phi_i (i \ge 1)$ the value of the event σ_i .
- Cost of algorithm A at event $\sigma_i : A_i$
- amortised cost of A at event $\sigma_i = A_i + \Phi_i \Phi_{i-1}$
- Cost of adversary: Adv_i

Theorem 2.6. Let A be an online algorithm and $C \in \{Obl, AdOn, AdOf\}$. If there is a constant $b \ge 0$ s.t. for every $Adv \in C$ there is a potential function Φ which satisfies following two conditions then A is r-competitive against C.

- 1. $\forall i \geq 1 : E(a_i) \leq r \cdot E(Adv_i)$
- 2. $\forall i \geq 1 : E(\Phi_i) \in [-b, b]$

Proof. Let $Adv \in C$ and $\sigma = (\sigma_1, \dots, \sigma_n)$ input created by Adv. (Note: E(X + Y) = E(X) + E(Y) holds, even if X, Y are correlated.)

$$E(w_A(\sigma)) = \sum_{i=1}^n E(A_i)$$

=
$$\sum_{i=1}^n E(a_i - \Phi_i + \Phi_{i-1})$$

=
$$\sum_{i=1}^n (E(a_i) - E(\Phi_i) + E(\Phi_{i-1}))$$

=
$$\sum_{i=1}^n E(a_i) + E(\Phi_o) - E(\Phi_n)$$

$$\leq r \cdot \sum_{i=1}^n E(Adv_i) + 2b$$

=
$$r \cdot w_{Adv} + 2b$$

2.2.3 Analysis of RANDOM

Theorem 2.7. *RANDOM is k-competitive against an adaptive online adversary.*

Proof. Let $Adv \in AdOn$

• Denote by z_i the number of pages in the caches of RANDOM and Adv that both have in common after σ_i .

- Let $\Phi_i = k(k z_i)$ for $i \ge 1$ and $\Phi_0 = k^2$. Observe $\Phi_i \in [0, k^2]$
- Let $Rand_i$ and Adv_i be the cost of RANDOM and Adv respectively after σ_i . To use Theorem 2.6. we need to show:

$$E(a_i) \le k \cdot E(Adv_i) \text{ which is equivalent to}$$

$$E(\Phi_i - \Phi_{i-1}) \le k \cdot E(Adv_i) - E(Rand_i)$$
(1)

- Case distinction: (cache is already filled with k pages) Let P with $|P| = z_{i-1}$ pages in common before σ_i . Let $p = \sigma_i$ be the next page. Note: P and p are random variables.
- We show that equation 1 holds for every choice of P and p.
 - 1. p is in cache of RANDOM \Rightarrow $Rand_i = 0$
 - If p is in the cache of Adv then number of pages in common stays the same: $\Phi_i - \Phi_{i-1} = 0 \checkmark$
 - If p is not in the cache of Adv then $\Phi_i \Phi_{i-1} \in \{0, k\}$ and $Adv_i = 1$ \checkmark
 - 2. p is not in cache of RANDOM, but in the cache of $Adv_i \Rightarrow Rand_i = 1$ and $Adv_i = 0$
 - (a) RANDOM removes a page $\in P : \Phi_i \Phi_{i-1} = 0$
 - (b) RANDOM removes a page $\notin P : \Phi_i \Phi_{i-1} = -k$ Probability for choosing a page $\notin P : \frac{k-z_{i-1}}{k}$ (a)+(b) \Rightarrow

$$E(\Phi_i - \Phi_{i-1}) = \frac{k - z_{i-1}}{k} \cdot (-k) = z_{i-1} - k \le -1 \quad \checkmark$$

- 3. *p* is not in cache of RANDOM and not in the cache of Adv $k \cdot E(Adv_i) - E(Rand_i) = k - 1$
 - (a) Adv removes page $\notin P$ then $\Phi_i - \Phi_{i-1} \in \{0, \cdots, k\} \checkmark$
 - (b) Adv removes page $\in P$ then Potential only changes if RANDOM removes a different page $\in P$ Probability for this is: $\frac{z_{i-1}-1}{k}$ which gives

$$E(\Phi_i - \Phi_{i-1}) = (\frac{z_{i-1} - 1}{k}) \cdot k \le k - 1$$

 \Rightarrow This shows Equation 1 for all choices of P and p.

Lower Bound for RANDOM

geometric random variables:

- X : number of repetitions of experiments with probability p until first success. $Pr(X = i) = (1 - p)^{i-1} \cdot p; E(X) = \frac{1}{p}$
- Cut-off: $Y = min\{X, n\}$

Lemma 2.2. Let X be a geometric random variable with parameter p and $n \in \mathbb{N}$. For $Y = min\{X, n\} E(Y) = \frac{1-(1-p)^n}{p}$

Proof. Let q = 1 - p

$$E(Y) = \sum_{i=1}^{n} i \cdot Pr(\min\{X, n\} = i)$$

$$= \sum_{i=1}^{n-1} i \cdot Pr(X = i) + \sum_{i=n}^{\infty} n \cdot Pr(X = i)$$

$$= \sum_{i=1}^{\infty} \min\{i, n\} \cdot p \cdot q^{i-1}$$

$$= \sum_{i=1}^{\infty} i \cdot p \cdot q^{i-1} - \sum_{i=n+1}^{\infty} (i - n) \cdot p \cdot q^{i-1}$$

$$= E(X) - q^n \cdot \sum_{i=1}^{\infty} i \cdot p \cdot q^{i-1}$$

$$= (1 - q^n) \cdot E(X)$$

$$= \frac{1 - q^n}{p}$$

Theorem 2.8. The competitive factor of RANDOM against an oblivious adversary is at least k.

Proof. Consider an oblivious adversary that chooses $\sigma = ((a_1, \dots, a_k), (b_1, a_2, \dots a_k)^l, (b_2, a_2, \dots a_k)^l, \dots, (b_m, a_2, \dots a_k)^l)$ $OPT(\sigma) = k + m$ page faults. RANDOM:

- consider a block $(b_i, a_2, \cdots a_k)^l$
- At beginning at most k 1 of these pages are in the cache
- page fault is successful if cache content is $\{b_i, a_2, \cdots, a_k\}$ afterwards
- otherwise removed a page $\in \{b_i, a_2, \cdots a_k\}$ from the cache
- Probability of successful page fault is at most $\frac{1}{k}$
- Using Lemma 2.2. the expected number of page faults per block is $k \cdot (1 (1 \frac{1}{k})^l)$
- $E(w_{RANDOM}(\sigma)) \ge k + m \cdot k \cdot (1 (1 \frac{1}{k})^l) \ge m \cdot k \cdot (1 (1 \frac{1}{k})^l)$
- For any r < k and $\tau \in \mathbb{R}$ choose m and l such that

$$- E(w_{RANDOM}(\sigma)) > r \cdot OPT(\sigma) + \tau$$
$$- m \cdot k \cdot (1 - (1 - \frac{1}{k})^l) > r \cdot (k + m) + \tau$$

- since
$$\lim_{l \to \infty} (1 - (1 - \frac{1}{k})^l) = 0$$
 and $r < k$, there is a l such that
 $r' = k((1 - (1 - \frac{1}{k})^l) > r$
- For this $l: m \cdot r' > r(k + m) + \tau$ holds with $m = 1 + \frac{r \cdot k + \tau}{r' - r}$

2.2.4 Analysis of MARK

Theorem 2.9. MARK is $2 \cdot H_k$ -competitive against <u>oblivious</u> adversary. $(H_k = \sum_{i=1}^k \frac{1}{i} = \Theta(\log k))$

Proof. Let σ be input chosen by adversary. Consider phases as in the proof of the deterministic case.

- phase 1: MARK and adversary each have k page faults
- phase $i \geq 2$:
 - old page: page accessed in phase i 1
 - new page: no access in phase i 1
 - Let m_i be the number of these new pages in phase i
 - new pages cause exactly one page fault
 - old pages: probability that page is still in cache when first accessed decreases with the number of new pages accessed before
 - worst case: each of the m_i new pages is accessed (at least once) before the $k - m_i$ old pages are accessed
 - sort old pages $j \in \{1, \dots, k m_i\}$ by their first access in phase i
 - $-P_i$ probability of j still in cache at first access
 - $\begin{array}{l} \ P_1 = \frac{k m_i}{k}, \ P_j = \frac{k m_i (j 1)}{k (j 1)} \\ k m_i (j 1) \leftarrow \text{number of marked old pages in the cache} \\ k (j 1) \leftarrow \text{total number of unmarked old pages (including) those not in cache.} \end{array}$
 - Expected number of page faults caused by page j: $P_j \cdot 0 + (1 - P_j) \cdot 1 = 1 - P_j$
 - Total number of page faults in phase *i*:

$$m_{i} + \sum_{j=1}^{k-m_{i}} (1 - P_{j}) = \sum_{j=1}^{k-m_{i}} \frac{m_{i}}{k - (j - 1)} + m_{i}$$
$$\leq m_{i} \cdot \sum_{j=1}^{k} \frac{1}{k - (j - 1)}$$
$$= m_{i} \cdot H_{k}$$

• Let n be the number of phases and $m_1 = k$ then

$$E(w_{MARK}(\sigma)) \le H_k \cdot \sum_{i=1}^n m_i$$

optimal offline solution

- Consider 2 phases i 1 and i. There are $k m_i$ different pages accessed in the sequence consisting of both phases.
- at most k of these pages in the cache at beginning \Rightarrow at least m_i page faults
- Consider 1st phase and every sequence of two consecutive phases and add page faults: $\sum_{i=1}^{n} m_i$

•
$$OPT(\sigma) \ge \frac{1}{2} \sum_{i=1}^{n} m_i$$
 thus $E(w_{MARK}(\sigma)) \le 2 \cdot H_k \cdot OPT(\sigma)$

2.2.5 Lower Bounds for Randomized Online Algorithms

Theorem 2.10. There is no randomized online algorithm against oblivious adversaries with competitive factor smaller than H_k .

Proof. Let A be an arbitrary randomized online algorithm for paging.

- The oblivious adversary constructs an input sequence σ consisting of k + 1 different pages.
- The adversary can compute for a given sequence $(\sigma_1, \dots, \sigma_q)$ a probability distribution (p_1, \dots, p_{k+1}) with $p_i \in [0, 1]$ and $\sum_{i=1}^{k+1} p_i = 1$.
- p_i : probability that page i is <u>not</u> in the cache after step σ_q
- The adversary constructs σ in phases (like marking algorithm)
- m phases and each phase consists of k different pages. Pages are marked after first access + last page of previous phase
- each phase σ' is divided into k subphases $\sigma'_1, \cdots, \sigma'_k$

$$\sigma = (\overbrace{\sigma_1 \cdots \overbrace{\sigma'_1 \quad \sigma'_2 \quad \sigma'_2}}^{\circ} \cdots \underbrace{\cdots \atop{\sigma'_4}}^{\circ} \cdots \cdots)$$

Each subphase

- exactly one page becomes marked \rightarrow after σ'_{j} exactly j + 1 marked pages
- consists of first zero or more requests of already marked pages, followed by exactly one request of an unmarked page
- Aim: Expected costs for A for $\sigma'_j : \frac{1}{k-j+1}$

- construct σ'_j :
 - Let M set of marked pages at start σ'_i
 - -|M| = j and number of unmarked pages U = k + 1 j

- Let
$$\gamma = \sum_{i \in M} p_i$$

- If $\gamma = 0$ then there is an unmarked page a with $p_a \geq \frac{1}{U}$, request a and subphase ends
- otherwise $\gamma > 0$ then there is a marked page m with $p_m > 0$
- Let $\epsilon = p_m$ and request m. Request more marked pages as follows:
 - * while the total expected cost of A for this subphase is less than $\frac{1}{U}$ and while $\gamma > \epsilon$ request page $l \in M$ with $l = argmax p_i$
 - * Finally pick unmarked page b with $b = argmax p_i$ $i \notin M$
- Remarks:
 - Expected cost of $A = \text{sum of } p_i$ of requested pages.
 - $-p_1, \cdots, p_k + 1$ and γ have to be recomputed each iteration
 - while loop terminates if $\gamma > \epsilon$ then $p_l \geq \frac{\gamma}{|M|} \geq \frac{\epsilon}{|M|}$
- Expected cost of A in σ'_i
 - case $\gamma = 0 : p_a \geq \frac{1}{U}$. Expected cost $\geq \frac{1}{U} \checkmark$
 - while loop terminates with expected cost $\geq \frac{1}{U} \sqrt{1}$
 - while loop terminates with $\gamma \leq \epsilon$: $b = \underset{i \notin M}{argmax} p_i; p_b \ge \frac{1-\gamma}{U}$
 - Cost of A in $\sigma'_j : \epsilon + p_b \ge \epsilon + \frac{1-\gamma}{U} \ge \epsilon + \frac{1-\epsilon}{U} \ge \frac{1}{U} \checkmark$
 - Expected cost of A in phase σ' is $\sum_{j=1}^{k}$ 1 $= H_L$ Thus

$$\sum_{j=1}^{k} \frac{1}{k+1-j} = H_k$$
. Thus

$$E(w_A(\sigma)) \ge k + (m-1) \cdot H_k$$

and
$$OPT = k + m - 1$$

• By choosing *m* large enough the Theorem follows

3 The k-Server-Problem

3.1 Introduction

Let $k \geq 2$ and $\mathcal{M} = (M, d)$ a metric space where |M| > k and M is a set of points (arbitrary set) and $d: M \times M \to \mathbb{R}_{\geq 0}$ is a metric distance function with

- 1. $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x,y) = d(y,x) Symmetry
- 3. $d(x, z) \leq d(x, y) + d(y, z)$ triangle inequality

Example (\mathbb{R}^2, d) with d euclidean distance function. If M is finite, representation by complete weighted graph.

k-Server-Problem

- Algorithm controls k mobile servers which are located on points of M.
- Input $\sigma = (\sigma_1, \cdots , \sigma_n)$ is a sequence of points $\sigma_i \in M$ (request).
- A request σ_i is served if a server is on position σ_i .
- Algorithm may move servers at cost of distance.

3.1.1 Greedy Algorithm

on request σ_i move the server that is closest to σ_i . Example: $k = 2, |M| = 3., \sigma = (c, (a, b)^l)$

abc
$$d(a,b) < d(b,c)$$

- after request c: one server at c
- after request a: one server at c and a each
- following request: greedy moves server between a and b
- OPT: one server at a and b each

3.1.2 The k-Server Conjecture

Any metric space allows for a deterministic k-competitive k-server algorithm

- lower bound of k (later in lecture)
- upper bound: (2k 1)-competitive algorithm (Koutsoupias and Papadimitriou)

Lazy algorithms

- Only moves servers if no server on requested point
- Only moves one server and only to requested point
- Paging as k-server problem
 - -M = set of pages, distance = 1
 - position of k- servers $\approx k$ pages in cache
- k-headed disk-problem
 - -M = [0, 1]
 - d(x,y) = |x-y| line metric

3.1.3 Optimal Offline Algorithm

- Dynamic programming: $\mathcal{O}(|\sigma| |M|^k)$
- Reduction to Min-Cost-Flow-Problem
 - input: directed graph G = (V, E) with
 - * source $s \in V$
 - * target $t \in V$
 - * capacity function $u: E \to \mathbb{R}_{>0}$
 - * cost function $c: E \to \mathbb{R}$
 - * no negative cycles
 - output: maximal flow $f: E \to \mathbb{R}_{\geq 0}$ with minimal costs $c(f) = \sum_{l \in E} f(l) \cdot c(l)$

• flow conservation $\sum_{l=(u,v)\in E} f(l) = \sum_{l=(v,u)\in E} f(l) \ \forall v \in V \setminus \{s,t\}$

• capacities:

$$- \forall e \in E : 0 \le f(e) \le u(e)$$

- value of flow: $|f| = \sum_{l=(s,v)} f(l) = \sum_{l=(v,t)} f(l)$

Successive-Shortest-Path-Algorithm

- integer capacities $u: E \to \mathbb{N}$ $\Rightarrow \exists$ min-cost-flow with integers that is computed by this algorithm
- $\mathcal{O}(n^3 F)$ running time, (only pseudo polynomial, F is value of maximal flow)

Given a k-server problem by a metric $\mathcal{M} = (M, d)$ and input sequence $\sigma = (\sigma_1 \cdots \sigma_n)$. w.l.o.g (without loss of generality) are all servers at the same point $\sigma \in M$ at beginning and $n \geq k$.

Construct instance of min-cost-flow as follows:

• G = (V, E) with

$$\begin{split} &-V = \{s,t\} \cup \{s_1, \cdots s_k\} \cup \{\sigma_1, \cdots, \sigma_n\} \cup \{\sigma'_1, \cdots, \sigma'_n\} \\ &- E = \{(s,s_i) \mid i \in \{1 \cdots k\}\} \cup \\ \{(s_i,t) \mid i \in \{1 \cdots k\}\} \cup \\ \{(s_i,\sigma_j) \mid i \in \{1 \cdots k\}, j \in \{1 \cdots n\}\} \cup \\ \{(\sigma_j,\sigma_j) \mid j \in \{1 \cdots n\}, l \in \{1 \cdots n\}, l > k\} \cup \\ \{(\sigma'_j,t) \mid j \in \{1 \cdots n\}\} \\ &- u(l) = 1 \ \forall l \in E \\ &- \text{Cost function:} \\ &* c(s,s_i) = 0 \\ &* c(s_i,\sigma_j) = d(o,\sigma_j) \\ &* c(s_i,t) = 0 \\ &* c(\sigma_j,\sigma'_j) = -z \text{ with } z > 2 \cdot \max_{x,y \in M, x \neq y} (d(x,y)) \\ &* c(\sigma'_j,\sigma_l) = d(\sigma_j,\sigma_l) \\ &* c(\sigma'_j,t) = 0 \end{split}$$

– Observe: no negative cycles

- capacities of 1, integer flow $\Rightarrow f(l) = 0$ or $f(l) = 1 \quad \forall l \in E$
- max flow has value k
- flow corresponds to edge disjoint paths
- let p_i be the path that contains s_i , then there is $l \ge 0$ and $j_1 \cdots j_l$ such that $p_i = (s, s_i, \sigma_{j_1}, \sigma'_{j_1}, \cdots, \sigma_{j_l}, \sigma'_{j_l}, t)$ with cost: $d(\sigma, \sigma_{j_1}) + d(\sigma_{j_1}, \sigma_{j_2}) + \cdots + d(\sigma_{j_{l-1}}, \sigma_{j_l}) - lz$ which corresponds to cost of a server answering this sequence plus additional lz term
- Every edge $e = (r_j, \sigma'_i)$ is contained in exactly one path p_i
- obtain a solution L for k-server: Let server i answer requests σ_j if $e = (\sigma_j, \sigma'_j)$ is contained in p_i
- cost of L = cost of flow f + nz

Correctness: If there was a solution L' with cost less than L (L is obtained form f) we could construct a flow with less cost than f. \notin Running time: $\mathcal{O}(n^3k)$

3.2 Lower Bound for Deterministic Online Algorithm

Theorem 3.1. Let $\mathcal{M} = (M, d)$ be an arbitrary metric space with $|M| \ge k+1$. There is no r-competitive online algorithm for the k-server-problem on \mathcal{M} for average r < k.

Proof. Let A be an arbitrary lazy online algorithm for k-server-problem. Let $B = \{b_1, \dots, b_{k+1}\} \subseteq M$ an arbitrary subset of M with k + 1 elements. We assume that A starts with k different points of B.

 \Rightarrow A always has at most one server on each point. Input σ : always request the point in B on which A has no server.

Lemma 3.1.
$$w_A(\sigma) \ge \sum_{i=1}^{n-1} d(\sigma_i, \sigma_{i+1})$$

Proof. (Lemma 3.1.)

- After request σ_i we request σ_{i+1} the point that was covered by the server that answered request σ_i
- cost for answering $\sigma_i \ge d(\sigma_i, \sigma_{i+1})$ for all $i \le n-1$

Lemma 3.2. $OPT(\sigma) \le \frac{1}{k} \sum_{i=1}^{n-1} d(\sigma_i, \sigma_{i+1})$

Proof. (Lemma 3.2.) Indirect proof: Define a class C of algorithms.

• For each $S \subseteq B$ with $\sigma_1 \in S$ and |S| = k there is an algorithm C_S . C_S works as follows:

- Initially C_S places servers on S
- for request σ_1 : nothing to do
- for σ_i $(i \ge 2)$ and no server on σ_i it moves server on σ_{i-1} to σ_i
- There are k different sets S. Thus |C| = k.
- Let S^i be the set of points on which servers of C_S are located after σ_i
- We show that for all different sets $S_1 \neq S_2$ and all $i \ge 0$: $S_1^i \neq S_2^i$ holds: i = 0: obvious

I.S.: Case distinction by σ_{i+1}

- $\sigma_{i+1} \in S_1^i$ and $\sigma_{i+1} \in S_2^i$: no movement of either algorithm $S_1^{i+1} = S_1^i \neq S_2^i = S_2^{i+1}$
- $-\sigma_{i+1} \in S_1^i \text{ and } \sigma_{i+1} \notin S_2^i$: observe $\sigma_i \in S_1^i \text{ and } \sigma_i \in S_2^i$ After $\sigma_{i+1} : \sigma_i \in S_1^{i+1}$ but C_{S_2} moves server from σ_i to σ_{i+1} Thus: $\sigma_i \notin S_2^{i+1}$
- $-\sigma_{i+1} \notin S_1^i$ and $\sigma_{n+1} \in S_2^i$: symmetric to case above
- $-\sigma_{i+1} \notin S_1^i$ and $\sigma_{i+1} \notin s_2^i$: Cannot happen, would imply $S_1^i = S_2^i$. Thus two algorithms never have their servers on exactly the same positions.
- there are k algorithms C_S
- Each has a server on σ_i after request σ_i

 \Rightarrow for every $b \in B \setminus \{\sigma_i\}$ there is exactly one algorithm C_S with $b \notin S^i$

- For $b = \sigma_{i+1}$ only one algorithm has cost of $d(\sigma_i, \sigma_{i+1})$
- sum of costs of all algorithms:

$$\sum_{S} w_{C_S}(\sigma) = \sum_{i=1}^{n-1} d(\sigma_i, \sigma_{i+1}) \text{ Average cost: } \frac{1}{k} \sum_{i=1}^{n-1} d(\sigma_i, \sigma_{i+1})$$

There has to be an algorithm with cost no higher than average cost

Combination of Lemma 3.1. and Lemma 3.2. proofs the Theorem.

3.3 k-Server Problem on a Line

Is motivated by k-headed disk problem. $\mathcal{M} = ([0, 1], d)$ with d(x, y) = |x - y|Algorithm is called Double Coverage (DC)

• If request σ_i is left (or right) of all servers DC-algorithm move leftmost (rightmost) server to σ_i

• otherwise the DC-algorithm moves the two servers left and right of σ_i with the same velocity towards σ_i . It stops both servers as one arrives at σ_i

Theorem 3.2. The DC-algorithm is k-competitive for the k-server-problem on the line

Proof. Potential function Φ

- configuration of DC: $s_1, \dots, s_k \in [0, 1]$
- configuration of OPT: $o_1, \cdots, o_k \in [0, 1]$

•
$$\Phi = k \cdot M_{min} + \Sigma_{DC}$$
 with $M_{min} = \min_{\pi \in \mathcal{S}_k} \{\sum_{i=1}^k d(s_i, o_{\pi(i)})\}$

- minimum cost matching between OPT's and DC's servers.
 - S_k : Set of permutations of $\{1 \cdots k\}$ and

$$-\Sigma_{DC} = \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} d(s_i, s_j)$$
 sum of pairwise distances of DC's servers

- DC_i and OPT_i the cost of DC and OPT serving request σ_i
- Φ_0 potential before σ_1 and Φ_i potential after step σ_i $(i \ge 1)$
- amortized cost after step i: $a_i = DC_i + \Phi_i \Phi_{i-1}$ need to show (see lecture 3)
 - 1. For every $i \geq 1 : a_i \leq k \cdot OPT_i(\sigma)$ and
 - 2. for every $i \ge 1 : \Phi_i \in [-b, b]$
- Note that (2) holds for $b = 2k^2$ since d() is bounded by 1.

 $0 \le \Phi_i \le k^2 + \binom{k}{2} \le 2k^2$

- for property (1) we show that $\Phi_i \Phi_{i-1} \leq k \cdot OPT_i(\sigma) DC_i(\sigma)$
- Note: In step *i* DC and OPT may move and change the potential. Therefore let Φ'_{i-1} be the potential after OPT answered request σ_i but before DC's movement.

Lemma 3.3. $\Phi'_{i-1} \leq \Phi_{i-1} + k \cdot OPT_i(\sigma)$

Proof. (Lemma 3.3)

- OPT moves one server and the distance is $OPT_i(\sigma)$
- k · M_{min} changes by at most k · OPT(σ) (Consider the same assignment or permutation, distance of one pair increases by at most OPT_i(σ))
- Σ_{DC} does not chance

Lemma 3.4. $\Phi_i \leq \Phi'_{i-1} - DC_i(\sigma)$

Proof. (Lemma 3.4.)

Two cases: DC moves one or two servers

- 1. one server
 - σ_i is left of all servers (right case is analogue). Let S_{left} be the leftmost server of DC
 - Let $o'_1, \dots, o'_k \in [0, 1]$ be the positions of the servers of OPT after request σ_i

•
$$M'_{min} = \min_{\pi \in S_k} \sum_{i=1}^k d(s_i, o_{\pi(i)})$$

- there is a server $o'_i = \sigma_i$ (j answered the request σ_i) and o'_i is left of S_{left}
 - (a) There is an optimal assignment π which assigns S_{left} to o'_j DC moves S_{left} by distance DC_i towards o'_j First term of potential decreases by $k \cdot DC_i(\sigma)$
 - (b) Pairwise distance between DC's server change: S_{left} moves away from all k-1 remaining servers by distance DC_i(σ) second term increases by (k - 1)DC_i(σ)
- combining (a) and (b) we get the new potential

$$\Phi_i \le \Phi'_{i-1} - k \cdot DC_i(\sigma) + (k-1)DC_i$$
$$= \Phi'_{i-1} - DC_i(\sigma)$$

- 2. two servers
 - Let s_1, s_2 be two servers
 - each moves by distance $\frac{DC_i(\sigma)}{2}$
 - (a) OPT has a server j on σ_i and there is an optimal assignment π which assigns s_1 or s_2 to j. That server moves by distance $\frac{DC_i(\sigma)}{2}$ towards j. The other server moves at most $\frac{DC_i(\sigma)}{2}$ away from its assigned server. $\rightarrow M_{min}$ -term of Φ does not increase
 - (b) Second term∑_{DC} i
 For every server s' ≠ s₁, s₂: exactly one of s₁, s₂ moves towards S', the other moves away by the dame distance
 The distance between s₁ and s₂ decreases by DC_i(σ)

• combining (a) and (b) we get

$$\Phi_i \le \Phi_{i-1}' - DC_i(\sigma)$$

Combining both lemmas we get

$$\Phi_i \le \Phi'_{i-1} \le \Phi_{i-1} + k \cdot OPT - DC_i(\sigma)$$

which proofs that the DC-algorithm is k-competitive on the line

3.4 The DC-Algorithm on Trees

 $\mathcal{M} = (M, d)$ is a tree-metric if there exists a tree G = (V, E) with V = M and edge weights $w : E \to \mathbb{R}_{\geq 0}$ s.t. that distance d(x, y) is exactly the weight of the path between x and y in G. (Because of the tree-structure, paths are always unique)

- same algorithm. We redefine "neighbour" and movement
- neighbour:
 - Consider any configuration of k servers and a request r
 - We say a server s is neighbour of r if there is no other server on the path from s to r

- if two servers are on the same point, only one of them is a neighbour
- movement
 - edge weight are distances
 - all neighbouring servers move with the same speed towards the request

- servers might stop being neighbours, stop movement
- servers that stop on edges between two points: Simulate DC by a lazy algorithm. Then servers always on points of the metric

Theorem 3.3. DC-algorithm is k-competitive on arbitrary tree-metrics

Proof. Same potential function as for the line.

$$\Phi = k \cdot \min_{\pi \in S_k} \{ \sum_{i=1}^k d(s_i, o_{\pi(i)}) \} + \sum_{i=1}^{k-1} \sum_{j=i+1}^k d(s_i, s_j) \}$$

Lemma 3.5. $\Phi'_{i+1} \leq \Phi_i + k \cdot OPT_i(\sigma)$

Lemma 3.6. $\Phi_i \leq \Phi'_{i-1} - DC_i(\sigma)$

Proof. (Lemma 3.6)

We divide the movement of servers into phases. A phase ends when a server reaches request σ_i or when the number of moving servers decreases. Consider a phase in which *m* servers move, each by distance *d*.

1. <u>Term M_{min} </u>: There is an optimal assignment π which assigns a neighbouring server of DC to the server of OPT that moved to σ_i . That server moves by distance d towards the assigned server. The remaining m-1 active servers increase their distance by at most d

 $k \cdot M_{min}$ increases by at most k(m-2)d

- 2. Term Σ_{DC} :
 - Consider the (k-m) servers that are not neighbours of σ_i . For each there is exactly one server moving away from it and m-1 active servers are moving towards it. For these pairs Σ_{DC} decreases in total by (k-m)(m-2)d
 - Every pair of active servers move towards each other and reduces the distance by 2d. Σ_{DC} decreases by $\binom{m}{2}2d = dm(m-1)$.

Combining all three values shows that the potential decreases by at least md. This corresponds to the cost of moving servers, summing over all phases implies the lemma.

3.5 Applying DC-Algorithm

- For a general finite metric $\mathcal{M} = (M, d)$ with |M| = N, let G = (V, E) be a weighted graph representing \mathcal{M} .
- Compute a MST (Minimal Spanning Tree) $T = (V, E_T)$ and solve the k-serverproblem on the tree-metric given by T.
- Note: Distance might increase in $\mathcal{M}_{\mathcal{T}}$ compared to \mathcal{M} .

- Using DC-algorithm we get $w_{DC}(\sigma) = k \cdot OPT_T(\sigma) + \tau$ where OPT_T is optimal offline solution for $\mathcal{M}_{\mathcal{T}}$
- For MST we know, that for each edge $e = \{x, y\} \in E$ the cost of the path from x to y in T is at most $(N-1)w_e$. \Rightarrow Thus $OPT_T(\sigma) \leq (N-1)OPT(\sigma)$

Corollary 3.1. The DC-algorithm is (N-1)k-competitive for arbitrary metrics with N points.

3.6 The 2-Server-Problem in Euclidean Spaces

Here only consider unit square $M = [0, 1]^2$ in two dimension.

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Definition 3.1. (Slack)

For three points $x, y, r \in M$ we define

$$slack(x, y, r) = d(x, y) + d(x, r) - d(y, r)$$

Note: Slack is non-negative due to the triangle inequality.

For each $\gamma \in [0, 1]$ we consider the following algorithm: SlackCover_{γ}(SC_{γ}):

- Let x, y be the current positions of servers of SC_{γ}
- Let r be the position of the current request
- w.l.o.g. assume $d(x, r) \leq d(y, r)$
- SC_{γ} moves y by $y \cdot slack(x, y, r)$ towards x
- SC_{γ} moves x to r

Note:

- $SC_{\frac{1}{2}}$ on the line corresponds to the DC-algorithm
- Since $d(x, y) \leq d(y, r)$ we do not move y beyond x
- After movement of y, the server y is not further away from r than before

Theorem 3.4. The algorithm $SC_{\frac{1}{2}}$ is 3-competitive for the 2-server-problem on the euclidean unit square.

Proof. Notes:

- x, y positions of SC_{γ} 's servers
- o_1, o_2 positions of OPT's servers

Potential function

$$\Phi = aM_{min} + b \cdot d(x, y)$$

where M_{min} is defined as in the proof for DC and $a, b \in \mathbb{R}$ are parameters to be chosen later. As usual:

- input sequence $\sigma = (\sigma_1, \cdots, \sigma_n)$
- potential values $\Phi_0, \Phi_1, \cdots, \Phi_n$
- Φ is bounded by 0 and $\sqrt{2}(2a+b)$.

It remains to show that

$$\Phi_i - \Phi_{i-1} \le \underbrace{a \cdot OPT_i(\sigma)}_1 - \underbrace{SC_i(\sigma)}_2$$

Let o'_1, o'_2 be OPT's server positions after request $r := \sigma_i$ and Φ'_{i-1} the potential value before the step of SC_{γ}

1. $a \cdot OPT_i(\sigma)$

- w.l.o.g. OPT is lazy, thus it moves one server by distance $OPT_i(\sigma)$
- d(x, y) does not change
- $\Phi'_{i-1} \Phi_{i-1} \le a \cdot OPT_i(\sigma)$
- 2. $SC_i(\sigma)$

Influence of SC_{γ} 's movement: cost of $SC_i(\sigma) = d(x, r) + \gamma \cdot slack(x, y, r)$. We have to show that potential decreases by at least this amount. Let x', y' be the positions after serving $r := \sigma_i$

We first consider the change of the second term of Φ

$$\Delta d(x,y) := d(x',y') - d(x,y) = d(r,y') - d(x,y) \le d(r,y) - d(x,y)$$

Change of first term:

- depends on optimal assignment π before movement
- w.l.o.g. o'_1 is on request r
- Case 1:
 - -x is assigned to o'_1 . M_{min} decreases due to movement of the server on x towards r by d(x, r) and increases by movement of server on y is at most $\gamma \cdot slack(x, y, r)$. Thus in total

$$\Phi_i - \Phi_{i-1} \le a \cdot [\gamma \cdot slack(x, y, r) - d(x, r)] + b \cdot [d(r, y) - d(x, y)]$$

- Case 2:
 - -y is assigned to o'_1
 - After moving x to r there is an optimal matching which assigns x' to o'_1 (on r) and y' to o'_2

$$\Delta M_{min} = [\underbrace{d(x', o_1')}_{=0} + d(y', o_2')] - [d(x, o_2') + d(y, o_1')]$$

=
$$\underbrace{d(y', o_2')] - d(x, o_2')}_{triangle \ inequality} - d(y, r)$$

$$\leq d(y', x) - d(y, r)$$

=
$$d(y, x) - \gamma \cdot slack(x, y, r)$$

- Thus using first term we get:

$$\Phi_i - \Phi'_{i-1} \le a \cdot [d(y, x) - \gamma \cdot slack(x, y, r) + b \cdot [d(r, y) - d(x, y)]$$

• For both cases we have to show that

$$\Phi_i - \Phi'_{i-1} \le -SC_i(\sigma) = -[d(x, r) + \gamma \cdot slack(x, y, r)]$$

• for case 1 we get:

 $a \cdot [\gamma \cdot slack(x,y,r) - d(x,r)] + b \cdot [d(r,y) - d(x,y)] \le -[d(x,r) + \gamma \cdot slack(x,y,r)]$ equivalent to:

$$d(x,y)[\gamma(a+1)-b)] + d(x,r)[\gamma(a+1)+1-a] + d(y,r)[b-\gamma(a+1)] \le 0$$

• for case 2:

$$d(x,y)[\gamma(1-a) + a - b] + d(x,r)[\gamma(1-a) + 1] + d(y,r)[ba\gamma(1-a)] \le 0$$

If we find parameters a, b, γ that satisfy both inequalities, we have shown that SC_{γ} is a-competitive. For $a = 3, b = 2, \gamma = \frac{1}{2}$ this is the case.

For an arbitrary metric space with N points, we can find N corresponding points in a high dimensional euclidean space. The distance between two points in the euclidean space is not smaller and at most $\mathcal{O}(log(n))$ larger than the distance in \mathcal{M} .

Corollary 3.2. We can solve the 2-server problem in arbitrary metrics with N points with a competitive factor of $\mathcal{O}(\log(N))$

4 Approximation of Metric Spaces

Example: arbitrary metric by tree metric, distances stretched by almost (N-1). With DC-algorithm k(N-1) comp. algorithm.

Definition 4.1. Let $\mathcal{M} = (M, d)$ be an arbitrary metric. We say a metric $\mathcal{M}' = (M', d')$ with $M \leq M'$ dominates M if $d(x, y) \leq d'(x, y) \ \forall x, y \in M$. Let S be a set of metrics, that dominate M and D a probability distribution over S. We say that (S, D) is an α -approximation of M if $\forall x, y \in M$

$$\mathop{E}_{(M',d')\sim D}[d'(x,y)] \le \alpha \cdot d(x,y)$$

We also say that M is **embedded** in S and call α the stretch.

4.1 Approximations with Tree Metrics

In the deterministic way there can not be an embedding better than $\Omega(N)$. An embedding with the MST is asymptotically optimal. An example, where no asymptotic embedding is possible is a circle with edge-costs of 1.

Removing one edge gives a stretch of N - 1. However in general one may add additional point.

Theorem 4.1. For a metric \mathcal{M} with N points, there is a set S of tree metrics that dominate \mathcal{M} and probability distribution D over S, s.t. (S, D) is a $\mathcal{O}(log(N))$ approximation of \mathcal{M} . (S, D) can be computed efficiently.

Proof. Let $\mathcal{M} = (V, d)$ an arbitrary metric with N = |V| points. We assume that the minimal distance between two different points is greater than 1. Furthermore with Δ we denote the maximal distance between two points of V. Let δ such that $2^{\delta-1} < \Delta \leq 2^{\delta}$

Proof in two parts:

- 1. Recursive partitioning of V to generate tree metric
- 2. How to do it randomized to achieve stretch of $\mathcal{O}(log(N))$

1. Recursive Partitioning

Definition 4.2. A partition of a metric $\mathcal{M} = (M, d)$ with radius $r \geq 1$ is a partition of V in classes V_1, \dots, V_l such that for all sets V_i there exists a center $c_i \in V$ with $d(c_i, v) \leq r$, $\forall v \in V_i$. Note:

- 1. c_i does not need to be in V_i
- 2. diameter $\max_{x,y\in V_i} d(x,y) \le 2r$

Definition 4.3. A hierarchical partitioning of $\mathcal{M} = (V, d)$ is a sequence $D_0, D_1, \cdots D_{\delta}$ of $\delta + 1$ partitions of V with the following properties:

- 1. $D_{\delta} = \{V\}$: trivial partition with radius of 2^{δ}
- 2. for all $i < \delta$, D_i is a partition of V with radius 2^i that refines D_{i+1} . That is, each class of D_i is a subset of a class of D_{i+1}

For such a partitioning $D_0, \dots D_\delta$ we construct a tree metric:

- tree T, set of nodes are the classes of the partitions D_i
- root of T is class V (class of D_{δ})
- nodes of level 1 are partitions of $D_{\delta-1}$
- nodes of level 2 are partitions of $D_{\delta-2}$...
- leaves of T are partitions of D_0 which consists of N classes (Note: minimal distance > 1)
- edges of T: for every $i < \delta$ and every class X of D_i there is a class Y of D_{i+1} with $X \leq Y$. There is an edge between the two nodes representing X and Y with weight 2^{i+1}

Example: $\Delta = 16, \, \delta = 4$ $D_4 = \{V\} = \{V_0, V_1, \cdots, V_9\}$

Level 1 of Partition $D_3 = \{\{V_1^1\}, \{V_2^1\}, \{V_3^1\}, \{V_4^1\}\}$

Level 3 of Partition $D_1 = \{\{V_1^3\}, \{V_2^3\}, \{V_3^3\}, \{V_4^3\}, \{V_5^3\}, \{V_6^3\}\}$

Level 2 of Partition $D_2 = \{\{V_1^2\}, \{V_2^2\}, \{V_3^2\}, \{V_4^2\}, \{V_5^2\}\}$

Level 4 of Partition $D_0 = \{\{V_0\}, \{V_1\}, \cdots, \{V_9\}\}$

There is a bisection between the leaves of T and V. We use T for a tree metric (V_T, d_T) over the set $V_T \ge V$ where $d_T(x, y)$ is defined as the path length in the tree T.

Lemma 4.1. For every hierarchical partitioning of a metric \mathcal{M} the resulting tree metric dominates \mathcal{M} .

Proof. Let $x, y \in V$ be arbitrary points. The diameter of the classes of a partition D_i is at most 2^{i+1} . In all partitions D_i with $2^{i+1} < d(x, y)$ the points x, y are in different classes. In particular in partition D_j with

$$j = \lceil \log_2 d(x,y) \rceil - 2$$
 since $2^{j+1} = 2^{\lceil \log_2 d(x,y) \rceil - 1} < 2^{\log_2 d(x,y)} = d(x,y)$

On the path from the two leaves of T there must be two edges between classes of partitions D_j and D_{j+1} . Thus

$$d_T(x,y) \ge 2 \cdot 2^{j+1} = 2^{j+2} = 2^{\lceil \log_2 d(x,y) \rceil} \ge d(x,y)$$

2. Randomised Partitioning

A randomized algorithm to compute a hierarchical partitioning. For a set $X \leq V$ and a point $v \in V$ and a radius $r \geq 1$, we denote by B = (X, v, r) the **sphere** in X with radius r and center v. That is $B(X, v, r) = \{x \in X \mid d(x, v) \leq r\}$ Algorithm 1 HierPart $(\mathcal{M} = (V, d))$

1: choose β uniformly at random from [1, 2] 2: choose a permutation π of the set $\{1, \dots, N\}$ uniformly at random 3: $D_{\delta} = \{V\}$ 4: for $i = \delta - 1, i \ge 0, i - -$ do if D_{i+1} has a class with more than one element then 5: $\beta_i = 2^{i-1} \cdot \beta$ 6: 7: $D_i = \text{PARTITION}(\mathcal{M}, D_{i+1}, \beta_i, \pi)$ 8: else $D_i = D_{i+1}$ 9: 10: 11: **end for** 12: return $(D_0, D_1, \cdots, d_{\delta})$

Algorithm 2 PARTITION $(\mathcal{M}, D, \alpha, \pi)$

1: $D' = \{\}$ 2: for each class X in partition D do for $i = 1, 1 \le N, i + i$ do 3: $B_{\pi(i)} := B(X, V_{\pi(i)}, \alpha)$ 4: $X := x \setminus B_{\pi(i)}$ 5: if $B_{\pi(i)} \neq \emptyset$ then 6: add $B_{\pi(i)}$ to D'7: 8: 9: end for 10: end for 11: return D'

- PARTITION considers class one after the other and partitions each class further
- For this it considers spheres with radius α around points of V chosen by the random ordery π
- Points of current class within such a sphere are new classes

Lemma 4.2. Let d_T be the tree metric constructed by algorithm $HierPart(\mathcal{M} = (V, d))$. For every $x, y \in V$ it holds that

$$E[d_T(x,y)] \le 64 \cdot H_N \cdot d(x,y)$$

Proof. Let $x, y \in V$ be arbitrary points. Consider the tree T generated by hier. part., $D_0, D_1, \ldots, D_{\delta}$ of the algorithm HierPart.

Consider the path from x to y in T up to which level? If this level corresponds to D_i

- x and y are in different classes in D_0, \ldots, D_{i-1}
- x and y are in the same class in D_i, \ldots, D_{δ}

• Let z_x and z_y be the centres around which PARTITION constructed the classes of D_{i-1} which contain x and y respectively

If z_x is before z_y in permutation π , we say that that point z_x separates $\{x, y\}$ on level i-1, otherwise we say that that point z_y separates $\{x, y\}$. For point $z \in V$ and every $j \in \{0, 1, \ldots, \delta - 1\}$ we denote by A(z, j) the event that point z separates the pair $\{x, y\}$ on level j. There is exactly one point $z \in V$ and one level $j \in \{0, 1, \ldots, \delta - 1\}$ for which event A(z, j) occurs. If event A(z, j) occurs than

$$d_T(x,y) = 2 \cdot \sum_{i=1}^{j+1} 2^i \le 2^{j+3}$$

Thus

$$E[d_T(x,y)] \le \sum_{z \in V} \sum_{j=0}^{\delta-1} 2^{j+3} \cdot Pr[A(z,j)]$$

- Sort the points of V.
- For any $z \in V$ define $d(z, \{x, y\}) := \min\{d(z, x), d(z, y)\}$
- Let $V = \{v_1, \ldots, v_N\}$ with $d(v_1, \{z, x\}) \le d(v_2, \{z, x\}) \le \cdots \le d(v_N, \{z, x\})$

Lemma 4.3. For every point $v_l \in V$ and every level $j \in \{0, 1, \dots, \delta - 1\}$ it holds

$$Pr[A(v_l, j)] \le \frac{d(x, y)}{l \cdot 2^{j-1}}$$

Proof. w.l.o.g. $d(v_l, x) \leq d(v_l, y)$. If v_l separates $\{x, y\}$ on level j, the following two conditions must be true:

- 1. when constructing partition D_j , the sphere around v_l (line 4, PARTITION) is the first sphere containing x or y
- 2. The radius $\beta_j = 2^{j-1}\beta$ is in the interval $[d(v_l, x), d(v_l, y)]$ otherwise the sphere would contain neither or both points

Probability for 2:

$$Pr[\beta_{j} \in [d(v_{l}, x), d(v_{l}, y)]]$$

$$= Pr[\beta_{j} \in \left[\frac{(v_{l}, x)}{2^{j-1}}, \frac{d(v_{l}, y)}{2^{j-1}}\right]]$$
Note:

$$\beta \in [1, 2] \text{ probability:}$$

$$\beta \in I \leq |I \cap [1, 2]| \leq |I|$$

$$\leq \frac{d(x, y)}{2^{j-1}}$$

If β_j is in the interval such that condition 2. is fulfilled, then 1. can only occur if v_l is before v_1, \dots, v_{l-1} in permutation π , otherwise a sphere around on of those points with radius β_j would contain at least one of $\{x, y\}$. Probability for v_l of being in front in π is $\frac{1}{l}$.

Combining both probabilities we can bound the probability for the event $A(v_l, j)$ by $\frac{1}{l} \cdot \frac{d(x,y)}{2j-1}$

Using Lemma 4.3. we can bound

$$E[d_T(x,y)] \le \sum_{l=1}^{N} \sum_{j=0}^{\delta-1} 2^{j+3} \cdot Pr[A(v_l,j)]$$

$$\le \sum_{l=1}^{N} \sum_{j=0}^{\delta-1} 2^{j+3} \cdot \frac{d(x,y)}{l \cdot 2^{j-1}}$$

$$\le 16 \cdot \delta \cdot H_N \cdot d(x,y)$$

(2)

Lemma 4.4. For every vertex v_l there are at most four levels $j \in \{0, 1, ..., \delta - 1\}$ for which event $A(v_l, j)$ can occur.

Proof. w.l.o.g. let $d(v_l, x) \leq d(v_l, y)$

- 1. Case: $d(x, y) \leq d(v_l, x)$
 - Then $d(v_l, x) \ge d(v_l, y) d(x, y) \ge d(v_l, y) d(v_l, x)$
 - Thus $d(v_l, x) \geq \frac{d(v_l, y)}{2}$
 - now let j be the largest value from $\{0, 1, \ldots \delta 1\}$ such that the interval $[2^{j-1}, 2^j]$ (from which β_j is chosen) has a non-empty intersection with the interval $[d(v_l, x), d(v_l, y)]$ (in which β_j has to lie if $A(v_l, j)$ occurs)
 - Therefore $d(v_l, y) > 2^{j-1}$ and $d(v_l, x) \ge \frac{d(v_l, y)}{2} > 2^{j-2}$
 - Thus in partition D_{j-2} vertex v_l cannot separate $\{x, y\}$ and since j was chosen to be the largest value, event $A(v_l, i)$ can only occur for $i \in \{j-1, j\}$
- 2. Case: $d(x, y) > d(v_l, x)$
 - Then $d(x, y) \ge d(v_l, y) d(v_l, x) > d(v_l, y) d(x, y)$
 - This implies $d(x, y) > \frac{d(v_l, y)}{2}$
 - Let j be chosen as in 1. Case.

- Then $d(v_l, y) > 2^{j-1}$ and thus $d(x, y) > \frac{d(v_l, y)}{2} > 2^{j-2}$ which means that in partition $D_{j-3} x$ and y have to belong to different classes, since each class has diameter at most 2^{j-2}
- Thus v_l cannot separate $\{x, y\}$ on a level $i \leq j 4$
- Since we chose j to be the largest value, event $A(v_l, i)$ can only occur for $i \in \{j 3, j 2, j 1, j\}$

Using Lemma 4.4. we can bound equation (2) since there are at most four values of j for which $Pr[A(v_l, j)] > 0$ for every l.

$$E[d_T(x,y)] \le \sum_{l=1}^N \sum_{j=0}^{\delta-1} 2^{j+3} \cdot Pr[A(v_l,j)]$$
$$\le \sum_{l=1}^N 4 \cdot \frac{16 \cdot d(x,y)}{l}$$
$$\le 64 \cdot H_N \cdot d(x,y)$$

We have shown: Every metric can be embedded into a tree metric with stretch of $\mathcal{O}(log(N))$

Observation: For every tree metric $\mathcal{M}_T = (V_T, d_T)$ generated by above algorithm the following hold

$$\max_{x,y\in V_T} d_T(x,y) \le 8 \cdot \max_{x,y\in V} d(x,y)$$

Proof. We define

$$\Delta = \max_{x,y \in V} d(x,y) \text{ and } \delta \in \mathbb{N}$$

 $2^{\delta-1} < \Delta \le 2^{\delta}$

such that

The longest path in T:

$$2 \cdot \sum_{j=1}^{\delta} 2^j \le 2^{\delta+2} < 8\Delta$$

Theorem 4.2. There is a randomised online algorithm for the k-server-problem which is $\mathcal{O}(k \cdot \log(N))$ -competitive for every metric with N points.

Proof. Input σ , Metric $\mathcal{M} = (M, d)$.

- Construct a $\mathcal{O}(log(N))$ -approximation (S, D) with the algorithm above and choose a tree metric \mathcal{M}_T from S according to D.
- Interpret σ as input for \mathcal{M}_T (Note: $\mathcal{M} \leq \mathcal{M}_T$) and use DC-algorithm.
- Let $OPT(\sigma)$ and $OPT_T(\sigma)$ be optimal offline solution for metric \mathcal{M} and \mathcal{M}_T respectively.
- $DC_T(\sigma)$ is the solution of the DC-algorithm

• d(L) and $d_T(L)$ cost of a solution using metric d and d_T respectively.

$$E[d(DC_T(\sigma))] \leq E[d_T(DC_T(\sigma))]$$

$$\leq E[k \cdot d_T(OPT_T(\sigma)) + \tau]$$

$$\leq k \cdot E[d_T(OPT_T(\sigma))] + \tau$$

$$\leq k \cdot E[d_T(OPT(\sigma))] + \tau$$

$$\leq k \cdot \mathcal{O}(log(N)) \cdot d(OPT(\sigma)) + \tau$$

5 Scheduling

- Set of jobs $J = \{1, \dots, n\}$
- Set of machines $M = \{1, \dots, m\}$
- Each job $j \in J$ has a size $p_j \in \mathbb{R}_{>0}$
- Each machine $i \in M$ has a speed $s_i \in \mathbb{R}_{>0}$
- if a job $j \in J$ is processed by machine $i \in M$ it takes time $\frac{p_j}{s_i}$
- A schedule $\pi: J \to M$ assigns each job to a machine
- $L_i(\pi)$ is the load of machine $i \in M$ in schedule π

$$L_i(\pi) = \frac{\sum_{j \in M, \pi(j)=i} p_j}{s_i}$$

• Makespan $C(\pi)$ is the maximal load i.e.

$$C(\pi) = \max_{i \in M} L_i(\pi)$$

• In the following we seek to minimize the makespan.

Online Scheduling

- Set of machines and speed are unknown
- jobs arrive one after another
- job have to be assigned immediately to a machine
- number and size of future jobs are unknown

5.1 Identical Machines

- All machines have speed 1
- Greedy-strategy aka Least-Loaded-algorithm
 → assigns each job to the machine that has currently the smallest load

Theorem 5.1. The Least-Loaded-algorithm is strict $2 - \frac{1}{m}$ -competitive

Proof. Lower bound for optimal schedule π^* :

$$C(\pi^*) \ge \frac{1}{m} \sum_{j \in J} p_j \text{ and } C(\pi^*) \ge \max_{j \in J} p_j$$

Schedule π of least-loaded: Let $i \in M$ be the machine with maximal load $C(\pi) = L_i(\pi)$. Let $j \in J$ be the last job that was added to i: At that time i was the least-loaded machine: The load is at most $\frac{1}{m} \sum_{k=1}^{j-1} p_k$

$$C(\pi) = L_i(\pi) \le \frac{1}{m} (\sum_{k=1}^{j-1} p_k) + p_j$$

$$\le \frac{1}{m} (\sum_{k \in J \setminus \{j\}} p_k) + p_i$$

$$= \frac{1}{m} \sum_{k \in J} p_k + (1 - \frac{1}{m}) p_j$$

$$\le C(\pi^*) + (1 - \frac{1}{m}) \cdot \max_{k \in J} p_k$$

$$\le (2 - \frac{1}{m}) \cdot C(\pi^*)$$

Lower bound for Least-Loaded

Let *m* be the number of machines and an input instance with n = m(m-1) + 1jobs. The first m(m-1) jobs have size 1 and the last job has size *m*. The Least-Loaded schedules the smallest jobs equally on all machines, i.e. (m-1) jobs on each machine and the last job on an arbitrary machine. The load on this machine is (m-1) + m = 2m - 1. OPT would schedule *m* jobs of size 1 on each of the machines $1 \dots m-1$ and then the job of size *m* on machine *m*. The makespan is *m*.

5.2 Machines with Speed

What about greedy? 2 variants

- 1. choose the machine that has smallest load before scheduling current job
- 2. choose machine that has smallest load after assigning the job

Example:	• current loads: $M_1 = 1, M_2 = 0$
p ₁ =3	• new job $p_2 = 3$
s ₁ =3 s ₂ =1	1. assigns job to $M_2 \Rightarrow$ Loads: $M_1 = 1, M_2 = 3 \succ 4$
	2 assigns job to $M_1 \Rightarrow$ Loads: $M_1 = 2$ $M_0 = 3 \succ 2$

If we make s_1 arbitrary large then variant (1) creates an arbitrary bad solution. For variant (2) it can be shown that the competitive factor is $\Theta(log(m))$

Slow Fit

Algorithm with constant competitive factor. Assume we know the makespan of the optimal solution. Let $\alpha = OPT(\sigma)$ SlowFit(α) computes a schedule π with $C(\pi) < 2\alpha$

- sort machines according to their speeds in increasing order, i.e. $s_1 \leq s_2 \leq \ldots \leq s_m$
- Let π_j be the partial schedule computed by SlowFit(α) for the jobs 1... j

Algorithm 3 SlowFit (α)

- 1: schedule a new job $j \in J$ with size p_j to the slowest machine $i \in M$ which has load of less than 2α after this assignment, i.e.

2: $min\{i \in M \mid L_i(\pi_{j-1} + \frac{p_j}{s_i} \le 2\alpha\}$ 3: if no such machine exists output an error-message

Lemma 5.1. Let $\alpha \in \mathbb{R}_{>0}$ be arbitrary and σ be an arbitrary input with $OPT(\sigma) \leq \alpha$ then SlowFit(α) produces no error and computes a schedule π with $C(\pi) \leq 2\alpha$

Proof. It suffices that $SlowFit(\alpha)$ does not output an error-message. Assume there is an input $\sigma = (p_1, \ldots, p_n)$ and SlowFit (α) outputs error at job p_n

First observe that not for all $i \in M$ $L_i(\pi_{n-1}) > OPT(\sigma)$ since otherwise

$$\sum_{j=1}^{n-1} p_j = \sum_{i \in M} s_i L_i(\pi_{n-1}) > \sum_{i \in M} s_i \cdot OPT(\sigma) \ge \sum_{i \in M} s_i \cdot L_i(\pi^*) = \sum_{j=1}^n p_j \notin D_i(\pi)$$

Consider the fastest machine $f \in M$ with $L_f(\pi_{n-1}) \leq OPT(\sigma)$. Observe that f < m

because otherwise the following would hold:

$$L_m(\pi_{n-1}) + \frac{p_m}{s_m} \le 2 \cdot OPT(\sigma) \le 2\alpha$$

and there would be no error. Let $\Gamma = \{i \in M \mid i > f\}$. All machines in Γ have load $\geq OPT$ and $\Gamma \neq \emptyset$. The total size of jobs on machines m in Γ

$$\sum_{i\in\Gamma} s_i \cdot L_i(\pi_{n-1}) > \sum_{i\in\Gamma} s_i \cdot OPT(\sigma)$$

There must exist a job $j \in J \setminus \{n\}$ with $\pi_{n-1}(j) \in \Gamma$ and $\pi^*(j) = i$ and $i \notin \Gamma$

$$\frac{p_j}{s_i} \le OPT(\sigma) \text{ and } i \le f$$

Due to sorting of speeds also

$$\frac{p_j}{s_f} \le OPT(\sigma)$$

Consider the event when j was scheduled by $\text{SlowFit}(\alpha)$. It could have been scheduled to machine f since:

$$L_f(\pi_{j-1}) + \frac{p_j}{s_f} \le L_f(\pi_{n-1}) + \frac{p_j}{s_f} \le OPT(\sigma) + OPT(\sigma) \le 2\alpha$$

But it was scheduled to a faster machine in Γ which is a contradiction to the definition of the algorithm.

But we do not know $OPT(\sigma)$:

Algorithm 4 SlowFit

1: Set $\alpha_0 = \frac{p_1}{s_m}$ 2: Start with phase k = 03: for job j do 4: Try to schedule j with SlowFit(α_k) while ignoring all jobs of previous phases 5: if SlowFit(α_k) produces an error then 6: increase k by 1 7: Set $\alpha_k = 2^k \cdot \alpha_0$ and go to step 4 8: 9: end for

Theorem 5.2. SlowFit is strict 8-competitive for online scheduling.

Proof. Let $0, 1, \ldots h$ be the phases of SlowFit for an arbitrary input σ . By σ_k we denote the subsequence of jobs of phase k. Using Lemma 5.1. we obtain a lower bound for OPT:

• if h = 0: $OPT \ge \alpha_0$ and SlowFit is 2-competitive

• if h > 0: consider the phase h - 1 and the first job j of phase h. Since we ignored all jobs of phases before h - 1 SlowFit (α_{h-1}) produces an error when processing job j only if for subsequence

$$\sigma_{h-1}: OPT(\sigma_{h-1}, j) > \alpha_{h-1} = 2^{h-1}\alpha_0$$

Upper bound of schedule π of SlowFit: Summing up over the makespan of the phases

$$C(\pi) \le \sum_{k=0}^{h} 2\alpha_k = 2 \cdot \sum_{k=0}^{h} 2^k \alpha_0 \le 2^{h+2} \alpha_0$$

Combining both equations:

$$C(\pi) \le 2^{h+2}\alpha_0 = 8 \cdot 2^{h-1}\alpha_0 \le 8 \cdot OPT(\sigma_{n-1}j) \le 8 \cdot OPT(\sigma)$$

Remarks:

- best known online algorithm is 5,828-competitive
- lower bound is 2,438

6 Summary

- 1. Introduction
 - competitive ratio; strict competitive ratio

2. Paging

- Deterministic
 - marking algorithms: LRU is one (Proof this)
 - marking algorithm is k-competitive
 - LFD is optimal
 - lower bound of k for deterministic algorithms
- Random
 - 3 types of adversaries
 - redefinition of competitive ratio
 - RANDOM k-competitive (Proof with potential function, amortized costs)
 - lower bound of k for RANDOM
 - MARK: randomised version of marking algorithm, $2H_k$ -competitive ratio (Proof)
 - lower bound of H_k for MARK

3. k-Server-Problem

- greedy-algorithm bad idea
- computing optimal offline solution with reduction to Min-Cost-Flow in polynomial time (be able to do this reduction in exam)
- lower bound for deterministic online algorithm, OPT via indirect proof, classes of algorithms
- DC on the line algorithm, k-competitive (know potential function and general steps of proof)
- DC on trees, same potential function f, proof only differs for movement of DC
- 2-servers in arbitrary spaces
 - Slack Cover
 - $\operatorname{SC}_{\frac{1}{2}}$
 - potential function method
 - case distinction (what do we have to show, which cases and outcome)
- 4. Approximation of Metric Spaces
 - dominate, embedding, deterministic is not a good idea
 - probabilistic embeddings
 - tree embedding
 - 1. hierarchical partitioning \rightarrow tree metric, dominates (be able to proof)

- 2. generating HierPart algorithm, subroutine PARTITION Proof: Exp. dist(x,y), probability that they get separated depends on level and permutation last step: $\delta \rightarrow 4$ levels
- 5. Scheduling
 - identical machines
 - $2 \frac{1}{2}$ -competitive Least-Loaded (be able to write down complete proof)
 - $\bullet\,$ lower bound
 - SlowFit
 - we assume OPT
 - "guess" OPT