
MDS 5111 Python Programming

Lecture 1 Course Introduction

Tongxin Li

School of Data Science

The Chinese University of Hong Kong, Shenzhen

1

2

3

4

5

Homepage:

https://tongxin.me/

MDS 5111:

https://tongxin.me/MDS5111-2026spring

Teaching Assistants:

6

Tinko Bartels Ruixiang Wu Yu Mao

https://tongxin.me/
https://tongxin.me/MDS5111-2026spring
https://tongxin.me/MDS5111-2026spring
https://tongxin.me/MDS5111-2026spring
https://tongxin.me/MDS5111-2026spring
https://tongxin.me/MDS5111-2026spring

7

Learning Objectives

• This course introduces data science using Python

• Students will learn data analysis and visualization using data
structures and libraries in Python

• Students will learn to apply tools to solve real data analysis
problems

8

Assessment

2 Mini-Projects 15%*2

Mid-term exam 30%

Final exam 40%

9

Course Materials

• All lecture notes and sample code used in classes will be provided
to students via Blackboard

• Readings

• Required

➢ Wes McKinney, “Python for data analysis”, 2012, download link：https://bedford-
computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf

• Recommended

➢ Wes McKinney, “Python for data analysis: Data Wrangling with Pandas, NumPy, and IPython,

2nd Edition”, 2019, download link：https://www.programmer-books.com/wp-

content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf

➢ David Amos, Dan Bader, Joanna Jablonski, Fletcher Heisler, “Python Basics: A Practical

Introduction to Python 3”, 2020, download link https://static.realpython.com/python-basics-

sample-chapters.pdf

https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://www.programmer-books.com/wp-content/uploads/2019/04/Python-for-Data-Analysis-2nd-Edition.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf
https://static.realpython.com/python-basics-sample-chapters.pdf

10

Course Components

Activity Hours/week

Lecture 3× 14

Tutorial No

11

Tentative Teaching Plans

Week Content/ topic/ activity

1 Course Introduction & Brief Introduction to Python

2 Object Oriented Programming

3 Numpy Basics

4 Pandas I

5 Pandas II

6 Data Loading and File System

7 Data Wrangling

8 Mid-term Exam

9 Matplotlib for Visualization

10 Data Aggregation

11 Machine Learning Basics

12 Linear Regression and Classification

13 Data Analysis with Pandas

14 Review for final exam

Programmer

• Professional programmer writes computer
programs and develops software

• A junior programmer gets high salary in an
INTERNET company like Tencent

• A programmer can earn up to 500k – 1m
USD in Google

• Software and INTERNET are huge industries

Programmer

• Professional programmer writes computer
programs and develops software

• A junior programmer gets high salary in an
INTERNET company like Tencent

• A programmer can earn up to 500k – 1m
USD in Google

• Software and INTERNET are huge industries

What
Should
We Do?

The AI Revolution: Our Generation's 'Dot-Com'
Moment

Just like the internet boom of the early 2000s, AI is creating a new frontier of
opportunity. The landscape is changing, but the core skills for success are more
important than ever.

Why Coding is Still Your Key in the Age of AI?

Aim Higher: AI develops code. You develop the AI.

Get Hired: Prove your problem-solving skills in technical

interviews.

Work Smarter: Need knowledge to prompt and debug for more

effective vibe coding.

18

Learning Outcome

➢ Be able to write, compile and execute Python programs, including making use of

Python’s object-oriented methodology

➢ Be able to make use of some basic data structures and libraries to do some basic data

analysis, as well as to conduct predictive model design

➢ Be able to use Matplotlib to achieve basic data visualizations

➢ Be able to comprehensively think and apply appropriate tools to solve some real data

analysis problems

In the age of AI …

19

Python Basics

20

Introduction to Python

• Developed by Guido van Rossum in 1989, and formally released in 1991

• An open source, object-oriented programming language

• Powerful libraries

• Powerful interfaces to integrate other programming languages (C/C++, Java, and
many other languages)

• Programming language of the year 2010

Python (1991)

• Python is evolving …

• The goal of this course:

• Keep track of recent updates

• Provide you a comprehensive

knowledge base

• Our students have very diverse

backgrounds …

Python release cycle

22

Interpreter v.s. compiler

23

Interpreter v.s. compiler

Development Compilation Platform

Source

Code

For A architecture

For B architecture

X system

For B architecture

Y system

A architecture

B architecture

X system

B architecture

Y system

Development

The Specific

Interpreter
A architecture

B architecture

X system

B architecture

Y system

The Specific

Interpreter

The Specific

Interpreter

Platform

Compiler Based Languages

C, C++

Interpreter Based Languages

Python

Source

Code

Integrated development environment

25

Elements of Python Language

• Vocabulary/words – Variables and Reserved words

• Sentence structure – valid syntax patterns

• Story structure – constructing a meaningful program for some purposes

26

Variables

27

Variables

• A variable is a named space in the memory where a programmer can
store data and later retrieve the data using the variable name

• The value of a variable can be changed later in a program

• Variables takes memory to store

• You cannot use the following words as variables

Constants

• Fixed values such as numbers and letters are called constants, since their
values won’t change

• String constants use single-quotes (‘) or double-quotes (“)

Sentences or lines

Each line in python is an individual statement

Like a recipe, a sequence of steps to be done in pre-determined order

Steps can be conditional, repeated or stored to be used over and over again

28

29

Assignment

• Assignment statement
Assigned values can be retrieved from located memory

• Cascaded assignment
Multiple variables can be set as the same value using single assignment

statement

• Simultaneous assignment
Values of two variables can be exchanged

Practice

• Write a program to exchange the values of two variables
without using simultaneous assignment

30

31

Numeric expression and operators

• Classic math operators

• Operator precedence rules
✓ Parenthesis are always with highest priority

✓ Power

✓ Multiplication, division and remainder

✓ Addition and subtraction

✓ Left to right

• More Operations
Floor division: 256 // 10 return 25

Divmod: divmod(143, 25) return 5, 18

Augmented Assignment: x <op>= 7 equals x = x <op> 7

Operator Operation Operator Operation

+ Addition - Subtraction

* Multiplication / Division

** Power % Remainder

Practice

• Describe the precedence of following statement

x = 1+2**3/4*5

32

33

Data Type

• Some operations are prohibited on certain types

• Check data type using function type()

• Type of a variable can be dynamically changed, and determined by last

assignment

 x = 5 # int

 x = x + 3.14 # float

• Common data types

• Integer: 1,2,100,11550

• Float: 2.5, 7.8, 79.99

• String: “cuhksz”, “python”

• Boolean: True False

• Data type conversions

• Integer will be converted into float implicitly when operating float and integer

• Use int() & float() to convert other data type to integer & float

• You’ll get an Error if source type is string and it contains character other than

numbers

34

Useful functions

• Input()
• Stop program flow and Wait for user input

• Return a string

• Print()
• Output to console or screen

• Eval()
• Takes a string argument and evaluate it as a Python expression, returns the result

• Be cautious about using it when users can cause problems with “inappropriate” input

• Comments
• Anything after a “#” is ignored by python

Why comment?
✓Describe what is going to happen in a sequence of code

✓Document who wrote the code and other important information

✓Turn off a line of code – usually temporarily

35

Examples

36

Flow Control

Boolean type

• Python contains a built-in Boolean type, which takes two values
True/False

• Number 0 can also be used to represent False. All other numbers
represent True

Comparison operators

• Boolean expressions ask a question and produce a Yes/No result

• Comparison operators check variables while not change values

• Common comparison operators

Operator Meaning

< Smaller

<= Smaller or equal

== Equal

>= Larger or equal

> Larger

!= Not equal
37

38

If-Else statement

One way decisions

Two way decisions

Multi way decisions

39

Tips on if - else

• Else must come after if

• Use indentation to match if and else

40

• Increase after if/for statements

• Maintain to indicate the scope of the block

• Decrease to indicate the end of a block

• Blank lines and comments are ignored

Indentation

Nested decisions

41

42

Logical operators

• Logical operators can be used to combine several logical
expressions into a single expression

• Python has three logical operators: not, and, or

43

Try/except structure

• You surround a dangerous part of code with try/except

• If the code in try block works, the except block is skipped

• If the code in try block fails, the except block will be executed

Use try/except to capture errors

• When the first conversion fails, it just stops
into the except block, and the program
continues

• When the second conversion succeeds, it just
skips the except block

44

Repeated Flow - Loop

Program Outputs

• Loops (repeated steps) have iterative variables that change each time
through a loop

• Often these iterative variables go through a sequence of numbers

45

Repeated Flow - Loop

Finishing an iteration with continue

Breaking from a Loop

46

Indefinite Loop

• While loops are called “indefinite loops”, since they keep going until a
logical condition becomes false

• Till now, the loops we have seen are relatively easy to check whether
they will terminate

• Sometimes it can be hard to determine whether a loop will terminate

47

Definite loop

• Quite often we have a finite set of items

• We can use a loop, each iteration of which will be executed for each item in
the set, using the for statement

• These loops are called “definite loops” because they execute an exact number
of times

• It is said that “definite loops iterate through the members of a set”

• For loops (definite loops) have explicit iteration variables that change each
time through a loop.

48

in

• The iteration variable “iterates” through a
sequence (ordered set)

• The block (body) of the code is executed once
for each value in the sequence

• The iteration variable moves through all of the
values in the sequence

Iteration variable
Sequence with

five elements

49

Practice

•Given a list of numbers, write a program to

calculate their sum using for loop

50

Practice

• Given a list of numbers, write a program to calculate their sum using
for loop

51

Filtering in a loop

• We can use an if statement in a loop to catch/filter the values we are interested in

• Operations shall be considered whenever filtering conditions satisfied or not

Finding the smallest number

52

Function

53

Python functions

• There are two types of functions in Python

✓ Built-in functions which are part of Python, such as print(), int(), float(), etc

✓ Functions that we define ourselves and then use

• The names of built-in functions are usually considered as new
reserved words, i.e. we do not use them as variable names

54

Function definition

• In Python, a function is some reusable code which can take arguments as input,
perform some computations, and then output some results

• Functions are defined using reserved word def

• We call/invoke a function by using the function name, parenthesis and
arguments in an expression

Example - max()

55

Building our own functions

• We create a new function using the def key word, followed by optional
parameters in parenthesis

• We indent the body of the function

• This defines the function, but does not execute the body of the function

56

Argument
• An argument is a value we pass into the function as its input when we call

the function

• We use arguments so we can direct the function to do different kinds of
work when we call it at different times

• We put the argument in parenthesis after the name of the function

big = max(‘I am the one’)

Parameters

• A parameter is a variable which we use in the function definition that is a
‘handle’ that allows the code in the function to access the arguments for a
particular function invocation

57

Multiple parameters/arguments

• We can define more than one parameter in a
function definition

• We simply add more arguments when we call the
function

• We match the number and order of arguments and
parameters

Default argument

• Arguments can be set as default argument values

• Default argument values will work when function
is invoked without respective arguments

58

Return values

• Often a function will take its arguments, do some computation and return a value
to be used as the value of the function call in the calling expression. The return
keyword is for this purpose.

• The return statement ends the function and send back the result of the function

59

Return values

Void functions
• Void function is a function that does not return any value
• When a function has no return statement, it will return None

Return multiple values
• Python allows a function to return multiple values
• you need to pass the returned values in a simultaneous assignment

60

Argument, parameter, and result

Argument

Parameter

Result

61

To function or not function…

• Organize your code into paragraphs - capture a complete thought and name it

• Don’t repeat yourself – name it to work once and reuse it

• If something goes too complex, break up them into several blocks, and put
each of them into a function

• Make a library of common stuffs that you do over and over again – perhaps
share with other people

62

String type

• A string is a sequence of characters

• A string literal uses quotes ‘’ or “”

• For strings, + means “concatenate”

• When a string contains numbers, it is still a string

• String can be indexed to get any character within it

• Index number must be an integer which starts from zero

• String has a length, which can be get by built-in function len()

• Python error if you attempt to index beyond the end of a string

• We can look at ant continuous section of a string using colon operator

• The second number is one beyond the end of the slice, which is not
included

• If the second number is greater than the length of the string, it stops at
the end

• If the first or second number of the slice is not specified, it is assumed
to be the beginning or end of the string, respectively

63

Slicing strings

64

String library

• Python has a number of string functions which are in the string library

• These functions are built-into every string, we invoke them by appending
the function to the string variable

• These function do not modify the original string, instead they return a new
string altered from the original string

https://docs.python.org/3/library/stdtypes.html#string-methods

65

Searching a string
• Use find() function to search for a substring in a

string
• find() finds the first occurrence of target substring
• If not found, find() returns -1

Making a string upper/lower
• A string can be convert into all upper case or lower

case using upper() or lower()

Search and Replace
• The replace() function is like a “search and

replace” operation in a word processor
• It replaces all occurrences of the search string with

the replacement string

66

Stripping whitespaces

• Use strip method to remove whitespaces at the beginning and/or end

• lstrip() and rstrip() processes the left and right end of a string respectively

• strip() removes whitespaces at both ends

67

Using ‘in’ in conditional statement

• The in keyword can also be used to check whether one string is in another string

• The in expression is a logical expression and returns True or False

• It can be used in if or while statement

68

File processing

• open() : Before we can read the contents of a file, we must tell Python which
file we are going to work with and what we will do with that file

• open() returns a “file handle” - a variable used to perform operations on
files

• handle = open(filename, mode)

• Filename is a string; Mode is optional, use ‘r’ if we want to read the file,
and ‘w’ if we want to write to the file

• Error if the input filename not exists

69

Handle

70

File processing

• A text file can be thought of as a sequence of lines

• A text file has newline at the end of each line

• We use a new character to indicate when a line ends called “newline”

• We represent it as ‘\n’ in strings; Newline is still one character, not two

71

File Reading

File handle as a sequence

• A file handle open for read can be treated as
a sequence of strings where each line in the
file is a string in the sequence

• We can use the for statement to loop through
a sequence

Read the whole file

• Read the whole file into a single string

File Writing

• To write a file, use the open() function with ‘w’ argument

• Use the write() method to write to the file

72

Practice

A file named “score.txt” is shown below which contains a sequence of lines. Each line

starts from the name of a student and then shows the scores of 5 courses one by one

(note that the order of courses is random). Please write a program to 1) calculate the

average score for each course; 2) write them to “average.txt” (for each line, write the

course name followed by the average score).

73

74

List, Dictionary & Tuple

75

List is a kind of Collection

• A collection allows us to put many values in a single “variable”

• A collection is nice because we can carry all many variables around in
one convenient package

• Not a collection: variables have only one value in them – when we
put a new value in the variable, the old value will be over-written

76

List constants

• List constants are surrounded by square
brackets and the elements in the list are
separated by commas

• A list element can be any Python object – even
another list

• A list can be empty

• Like string, list can be indexed

• Unlike string, list is mutable, whose element
can be changed by indexing

• Length of list can be obtained using len()

77

List methods
Build a list from scratch
• We can create an empty list using list(), then add elements using append()

• List stays in order, and new elements are positioned at the end of the list

Concatenating lists
• Addition between two lists creates a new list, who is concatenation of

original ones

78

List methods
Slicing list
• List can be sliced using colon; the first number is start position while the second is “up to

but not included”

Sort list
• A list is an ordered sequence, and hold items in order until order is changes

• A list can be sorted using sort(), meaning “sort yourself”

79

List methods
Build-in functions of list

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

80

Practice

• Write a program to instruct the user to input several numbers and calculate
their average using list methods

Best friends: strings and lists

• Use the split() method to
break up a string into a list
of strings

• We think of these as words

• We can access a particular
word or loop through all
the words

81

• When you do not specify a
delimiter, multiple spaces are
treated like “one” delimiter

• You can specify what
delimiter character to use in
splitting

82

83

•List: a linear collection of values that stay in order

•Dictionary: a “bag” of values, each with its own label

84

Dictionary

• Dictionaries are Python’s most powerful data collection

• Dictionaries allow us to do fast database-like operations in Python

• Dictionaries have different names in different languages

• Associative arrays – Perl/PHP

• Properties or Map or HashMap – Java

• Property Bag – C#/.Net

• Dictionary literals use curly braces and have list of key:value pairs

• You can make an empty dictionary using empty curly braces or dict()

85

List v.s. dictionary

• Lists are ordered sequences while dictionaries have no order

• Lists index based on positions while dictionaries index based on key

• List gets error if index number beyond its length while diction gets error to
reference a key which is not within it

• in operator can be used to see if an element is in list or a key is in the dictionary

86

The get() method

• This pattern of checking to see if a key is already in a dictionary, and assuming a

default value if the key is not there is so common, that there is a method called

get() that does this for us

87

Definite loops and dictionaries

• Even though dictionaries are not stored in order, we can write a for

loop that goes through all elements in a dictionary – actually it goes

through all the keys in that dictionary and looks up the values

88

Definite loops and dictionaries

• You can get a list of keys, values or items (both) from a dictionary

89

Definite loops and dictionaries

• We loop through the key-value pairs in a dictionary using two iteration
variables

• Each iteration, the first variable is the key, and the second variable is the
corresponding value for the key

90

Tuples

• Tuples are another type of sequence that function more like a list –
they have elements which are indexed starting from 0

• Immutable: Unlike a list, once you create a tuple, you cannot change its
contents – similar to a string

• Efficient: Since Python doe not have to build tuple structures to be
modifiable, tuples are simpler and more efficient in terms of memory use
and performance than lists

91

Tuple vs Dictionary

• The item() method in dictionaries returns
a list of (key, value) tuples

92

Tuples are comparable

• The comparison operators work with tuples and other sequences if the first
item is equal. Python goes on to the next element, until it finds the elements
which are different

93

Sorting dictionary via sorting tuple

• sort the dictionary by the key using the items() method

• We can do this even more efficiently using a built-in function sorted()
which takes a sequence as a parameter and returns a sorted sequence

94

Practice

• Write a program, which sorts the elements of a dictionary by the
value of each element

95

Sort by values instead of key

• If we could construct a list of
tuples of the form (key, value) we
could sort by value

• We do this with a for loop that
creates a list of tuples

Thanks for Listening !

96

	Slide 0
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Programmer
	Slide 13: Programmer
	Slide 14
	Slide 15
	Slide 16: What Should We Do?
	Slide 17: The AI Revolution: Our Generation's 'Dot-Com' Moment
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Python (1991)
	Slide 22
	Slide 23
	Slide 24: Integrated development environment
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Sentences or lines
	Slide 29
	Slide 30: Practice
	Slide 31
	Slide 32: Practice
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Boolean type
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: https://docs.python.org/3/library/stdtypes.html#string-methods
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: File Writing
	Slide 73: Practice
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Best friends: strings and lists
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

